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Abstract

This paper addresses the challenging problem of statistics
on images by describing average and variability. We de-
scribe computational anatomy tools for building 3-D and
spatio-temporal 4-D atlases of volumetric image data. The
method is based on the previously published concept of un-
biased atlas building, calculating the nonlinear average im-
age of a population of images by simultaneous nonlinear
deformable registration. Unlike linear averaging, the re-
sulting center average image is sharp and encodes the av-
erage structure and geometry of the whole population. Vari-
ability is encoded in the set of deformation maps. As a new
extension, longitudinal change is assessed by quantifying
local deformation between atlases taken at consecutive time
points. Morphological differences between groups are ana-
lyzed by the same concept but comparing group-specific at-
lases. Preliminary tests demonstrate that the atlas building
shows excellent robustness and a very good convergence,
i.e. atlases start to stabilize after 5 images only and do not
show significant changes when including more than 10 vol-
umetric images taken from the same population.

1. Introduction
Statistical modeling is concerned with the construction of a
compact and stable description of the population mean and
variability. Applied to a population of images taken from
a common domain and only differing by natural variability,
we are facing the fundamental question of the definition of
anaverage image. It is obvious that averaging images after
linear alignment of pose, e.g. by affine registration, cannot
be sufficient and results in a blurred result (see for example
Fig. 2 top). Variability among the set of images requires
alignment of much higher order, to ensure that features
are in correspondence. This geometric variability of the
anatomy cannot be represented by elements of a flat space
since the space of transformations is not a vector space but
rather the infinite dimensional group of diffeomorphisms of
the underlying coordinate system. A fundamental difficulty
for the development of a processing scheme is the high di-
mensionality of the set of features given the relatively small

sample size, typically2563 features versus 20 to 50 sample
images in volumetric neuroimaging studies as presented in
this paper.

Mapping of populations of 3-D images into a common
coordinate space is a central topic of the brain mapping neu-
roimaging community. The mapping establishes correspon-
dence between sets of images for statistical testing of group
differences and for warping subject images into a reference
frame with known anatomical coordinates (e.g. Talairach
atlas [1]). Whereas linear global alignment was sufficient in
early analysis of coarse resolution positron emission tomog-
raphy brain imaging (PET) and to some extent in functional
MRI (fMRI), todays spatial resolution of scanning technol-
ogy has significantly improved and shows excellent levels
of detail. This improvement in spatial resolution requires
appropriate new analysis methods.

Most digital brain atlases so far are based on a single sub-
ject’s anatomy [1, 2, 3, 4]. Although these atlases provide a
standard coordinate system, they are limited because a sin-
gle anatomy cannot faithfully represent the complex struc-
tural variability between individuals. Extending this frame-
work to be less dependent on a single template, Rohlfing et
al. [5] showed automatic segmentation of images by trans-
forming sets of labeled templates to a new unknown image,
encoding variability of the atlas.

A major focus of computational anatomy has been the
development of image mapping algorithms [6, 7, 8, 9] that
can map and transform a single brain atlas on to a popu-
lation. In this paradigm the atlas serves as a deformable
template[10]. The deformable template can project detailed
atlas data such as structural, biochemical, functional as well
as vascular information on to the individual or an entire pop-
ulation of brain images. The transformations encode the
variability of the population under study. Statistical analy-
sis of the transformations can be used to characterize dif-
ferent populations [11, 12, 13, 14]. For a detailed review
of deformable atlas mapping and the general framework for
computational anatomy see [15, 16].

Most other previous work [17, 18] in atlas formation has
focused on the small deformation setting in which arith-
metic averaging of displacement fields is well defined. Gui-
mond et. al develop an iterative averaging algorithm to re-
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duce the bias [17]. In the latest work of [18], explicit con-
straints requiring that the sum of the displacement fields
add to zero is enforced in the proposed atlas construc-
tion methodology. These small deformation approaches are
based on the assumption that a transformations of the form
h(x) = x + u(x), parameterized via a displacement field,
u(x), are close enough to the identity transformation such
that composition of two transformations can be approxi-
mated via the addition of their displacement fields:

h1 ◦ h2(x) ≈ x + u1(x) + u2(x) .

In more recent and related work Avants and Gee [19, 20]
developed an algorithm in the large deformation diffeomor-
phic setting for template estimation by averaging velocity
fields.

One of the fundamental limitations of using a single
anatomy as a template is the introduction of a bias based on
the arbitrary choice of the template anatomy. The focus of
this paper is to build on methodology developed by Avant et
al. [20] and Joshi et al. [21, 22] which describe contruction
of atlases by simultaneously estimating the set of transfor-
mations and the unbiased template in the large deformation
setting. The unbiased template is a result of the processing,
and is representing a new image centered in the population
of images. We will discuss stability, convergence and vali-
dation, and will extend this framework to 4-D by describing
deformation between atlases.

2 Methodology

This section reviews existing methods and provides analysis
of of stability and convergence. In later sections, we will
extend the concept to longitudinal and cross-sectional group
difference analysis and present preliminary results from an
ongoing clinical research study.

2.1 Unbiased atlas building

Construction of atlases is a key procedure in population-
based medical image analysis. A simple averaging of im-
ages after a linear transformation, most often affine, is know
to result in a blurred image. Nonlinear registration to a
template requires the choice of a template that is close
to the expected average, but the result is biased by the
choice of a template. Both problems can be overcome by
nonlinear processing via large deformation registration and
population-based simultaneous nonlinear averaging of sets
of images [20, 21].

We follow the notation as presented in [21]. As discussed
in the introduction, the geometric variability of anatomy is
not a vector space. For representations in which the un-
derlying geometry is parametrized as a Euclidean vector

space, training data can be represented as a set of vectors
x1, · · · , xN in a vector spaceV . In a vector space, with
addition and scalar multiplication well defined, an average
representation of the training set can be computed as the
linear average

µ =
1
N

N∑
i=1

xi .

In the group of diffeomorphisms, the addition of two
diffeomorphisms is not generally a diffeomorphism and,
hence, a template based on linear averaging of transforma-
tions is not well defined.

Frechet [23] extended the notation of averaging to gen-
eral metric spaces. For a general metric spaceM , with a
distanced : M × M → R, the intrinsic meanfor a collec-
tion of data pointsxi can be defined as the minimizer of the
sum-of-squared distances to each of the data points. That is

µ = argmin
x∈M

N∑
i=1

d(x, xi)2 .

This approach, combined with the mathematical metric
theory of diffeomorphisms developed by Miller and Younes
[24], presents the core of the unbiased atlas methodology.
A detailed description is not the topic of this paper, and a
reader might consult the literature for more details.

Applied to sets of images, we need to solve the following
estimation problem. Given a metric on a group of transfor-
mations, the template construction problem can be stated
as that of estimating an imagêI that requires the minimum
amount of deformation to transform into every population
imageIi. More precisely, given a transformation groupS
with associated metricD : S×S → R, along with an image
dissimilarity metricE(I1, I2), we wish to find the imagêI
such that

{ĥi, Î} = argmin
hi∈S,I

N∑
i=1

E(Ii ◦ hi, I)2 + D(e, hi)2

wheree is the identity transformation andhi the resulting
deformation maps.

Results presented in this paper are based on a greedy
implementation of fluid flow algorithm. We are currently
working on implementing the full space time optimization
based on the Euler-Lagrange equations derived in [24].

Figure 1 illustrates the construction of an atlas of a pop-
ulation of 14 3-D MRI images of pediatric subjects. A qual-
itative check shows that the resulting atlas is still sharp and
that its anatomical objects seem to represent the expected
average shape geometry. The resulting deformation maps
guaranteee diffeomorphism, i.e. transformations are invert-
ible and do not show eventual overfolding of space. Invert-
ible transformations are of significant advantage as users
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can transform images to an atlas but also atlas information
back to the whole set of images, e.g. for automatic labeling
or segmentation.

Figure 1: Atlas building by simultaneous nonlinear defor-
mation of a population of images. A set of 14 3D MRI
datasets of a clinical pediatric database is processed. Top
and bottom row show axial and coronal sections of the set
of images (left) and the resulting atlas (right).

2.2. Stability and convergence
The stability and convergence rate of atlas building is dis-
cussed by Lorenzen et al. [25]. To qualitatively test stabil-
ity, atlases were built from two sets of mutually exclusive
sets of 7 images each (Fig. 2). The anatomy represented by
two atlases becomes very similar. A comparison of top and
bottom rows clearly demonstrates the improved quality and
sharpness of the deformable registration scheme over lin-
ear processing. Convergence was tested by creating atlases
from a different number of images selected from the same
population. Figure 3 top illustrates three orthogonal slices
of atlases created from 9, 10, 13 and 14 images. Entropy as
a quantitative measure of convergence has been proposed
by Lorenzen et al. [25]. This metric is based on the as-
sumption that high-quality sharp atlases need less number
of bits to represent the distribution of image intensities. En-
tropy is defined asH(p) = −

∑n
i=1 p(i) log p(i), where

[p(i), i = 1 · · ·n] represents the image intensity histogram
with n bins. In addition to entropy, we currently explore
the use variance across the stack of co-registered images
(see Fig. 3 third and sixth rows) and the use of gradient his-
togram information, both measures related to image sharp-
ness.

3. Motivation and clinical study
Imaging studies of early brain development get increasing
attention as improved modeling of the pattern of normal de-
velopment might lead to a better understanding of origin,
timing and nature of morphologic differences in neurode-
velopmental disorders. Quantitative MR imaging studies

Figure 2: Test of stability by creating atlases from two mu-
tually exclusive sets of 7 images (left and right column).
Top and bottom rows illustrate linear averaging and de-
formable registration.

face the challenge that cross-sectional inter-individual vari-
ability is very large in relation to longitudinal change, which
underscores the critical importance of a longitudinal design
of such studies. It is our goal to model the trajectory of early
brain development, primarily focusing on the most chal-
lenging group of very young children in the age range from
birth to 6 years, as a 4-dimensional atlas that is represented
by a time series of 3-D images and quantitative description
of local growth. In addition, the same technique will be ap-
plied to generate representative atlases for various groups,
e.g. group-specific atlases for female/male populations and
for healthy controls and patients.

This project is driven by the needs of several clinical pe-
diatric studies at UNC Chapel Hill. This includes an autism
study (51 autistic (AUT) and 25 control individuals (14 typi-
cally developing (TYP), 11 developmentally delayed (DD))
with baseline scans at 2 years and follow-up at 4 years. So
far, the new method has been applied to a subset of sub-
jects from this autism study. We have selected 5 subjects
each from the TYP and AUT groups. For eight of these
subjects, we had longitudinal data and could include MRIs
at 2yrs and 4 years of age. We applied the unbiased atlas
building procedure to the two groups at both time points
and computed image deformations longitudinally (compar-
ing the 2yrs and 4yrs atlases for AUT and TYP) and cross-
sectionally (TYP versus AUT at 2yrs and 4yrs).

4. Analysis of growth trajectories
Longitudinal analysis is known to have increased power
over cross-sectional group tests as it compares the rate of
change and not absolute differences. In neuroimaging ap-
plications, cross-sectional variability is usually much higher
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Figure 3: Convergence demonstrated by building atlases
from different numbers of images (top). The third and sixth
columns represent intensity variability of the set of images
for the atlases with 10 and 14 images. The bottom im-
age shows entropy calculated for linear and nonlinear atlas
building, with error estimates obtained by permutation tests.

than the expected change over time, even in pediatric pop-
ulations (see Fig. 4 top). We propose to use unbiased atlas
building to create average images of populations at different
time points and then compare deformation between the re-
sulting atlases via quantitative analysis of the deformation
field.

4.1. Invididual growth versus growth trajec-
tory between group atlases

The existing set of sample images allows a validation of the
deformation between atlases. Since we have subjects with
baseline and follow-up scans (see Fig. 4), we can compare
the growth pattern obtained from the atlas with the growth
patterns of the invidual cases. Deformable registration was
calculated between scans of each subject at age 2 and 4.
The log of the determinant of the Jacobian was then mapped
into the common atlas space for point to point comparison.
These five deformation maps can be compared to the defor-
mation map between the pair of atlases. Fig. 5 illustrates the
five images and atlases at both time points and the resulting

.

Figure 4: Design of our experimental study. Top: Age
versus total brain volume (TBV) plotted for autistic (yel-
low), typically developing (blue) and developmentally de-
layed (pink) subjects. Connecting lines represent individu-
als measured at two different times. The growth rate is sig-
nificantly smaller than the cross-sectional variability. Bot-
tom: Diagram illustrating the concept of 4-D growth mod-
eling. The deformation map between the two atlases de-
scribes local volumetric change. The change pattern be-
tween the atlases can be validated by calculating deformable
registrations between individual subjects and map these into
the common atlas space.

deformation maps. Qualitatively, each of the individual im-
ages represents the asymmetry pattern as also observed in
the atlas. The concentration of growth in cortical gray mat-
ter shown in the atlas space is also represented in each indi-
vidual subject. Beyond this purely qualitative analysis, we
are currently developing a testing scheme for quantitative
comparison of the Jacobian maps.

4.2. Extension to growth trajectory analysis
between groups

Following the processing outlined before, we can extend the
scheme by calculating unbiased atlases for different groups
at different time points. In a preliminary experiment, we se-
lected 5 children from a typically developing (TYP) group
and 5 from an autistic (AUT) group. For 8 of these subjects,
we had baseline scans at year 2 with follow-up at year 4.
Two more subjects without follow-up were added to each
group based on optimal match of gender and age. We built
atlases for each of the four groups, TYP and AUT at age 2
and 4 years. Figure 7 illustrates the four atlases and the four
deformation maps color-coded as differences in the mag-
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Figure 5: Validation of local growth pattern between the
five individual subjects and the resulting atlases. Top and
middle row represent images and atlas at age 2 and 4 years.
Bottom row shows the color-codedlog(|Jacobian|), which
blue and red representing local growth and atropy.

nitude of the deformation fields. Again, the similarity of
the four atlases is striking, especially between the TYP and
AUT groups. We calculated local growth maps between
groups and across age (see Fig. 8. The growth maps for
both groups could even be compared via another process-
ing step, a scheme that would represent a group analysis
between growth patterns. Such analysis is highly relevant
for studying early development in patient groups to explore
differences in location and timing of brain growth, which
can be associated with differences in maturation of specific
brain functions. Entropies for the four atlases are calcu-
lated as 3.70 and 4.06 for TYP at age 2 and 4, and 3.65 and
3.87 for AUT at age 2 and 4. The observed smaller value for
AUT at the second time point, also reflected in the entropies
of each invididal image (not shown here), needs further ex-
planation.

5. Results
We have presented a computational anatomy methodology
to build nonlinear averages of population images and to
study differences between atlases. All the results are pre-
liminary feasibility tests on a very small set of sample im-
ages, and ongoing work is extending the analysis to the full
set of images in this study. Stability and convergence is
demonstrated by qualitative and quantitative comparison.
Our preliminary tests demonstrate that the atlas building
shows excellent robustness and a very good convergence,
i.e. atlases start to stabilize with 5 images only and do not
show significant changes when including more than 10 vol-
umetric images, which is a surprisingly low number given
the complex appearance of the 3-D volume data. Currently,
we are developing improved metrics to measure the quality
of atlases and to systematically explore stability and conver-
gence in a quantitative study. Our processing uses a diffeo-

Figure 6: 2-D and 3-D illustrations of local volumetric
growth between populations at age 2 to 4 years. Blue indi-
cates local growth, green regions of no change, and red local
atrophy. Please note the significant asymmetry of growth of
the right frontal and right temporal regions. Also, growth
regions are mostly located at the rim of cortical gray matter.

morphic registration scheme, assuming that there is a one-
to-one correspondence between features in sets of images.
The fluid warping further makes the assumption that there
is a continuous flow along geodesic paths between these im-
ages. In studies of brain images, we see that these assump-
tions are applicable to the type of changes under analysis. A
generalization to other regions of the body or images with
pathology, however, is not straightforward since topology
changes cannot be described by the proposed technique.

So far, we have developed a scheme to generate aver-
age images. Variability is encoded in the set of deformation
fields which maps each image to the unbiased atlas. We will
develop a new method for analysis of this variability, which
is necessary to for a full group hypothesis testing scheme.
In parallel, we are investigating the properties of anatom-
ical shapes embedded in the volumetric images [26, 27].
Although the atlases look correct, they do not provide ex-
plicit information about the preservation of shapes and the
relationship of resulting average shapes to the set of origi-
nal shapes. Explicit shape statistics of parametrized objects
will be compared with point-to-point correspondence pro-
vided by the unbiased atlas scheme.

The most striking result of the longitudinal growth anal-
ysis between 2 and 4 years is the apparent cerebral asym-
metry and brain torque. There is a consistent right frontal
> left frontal and a left posterior parietal/occipital> right
posterior parietal/occipital pattern, commonly called torque
or brain torsion. This growth trajectory finding is consis-
tent for both the TYP and AUT groups. Gender differences
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Figure 7: Atlas-building applied to a longitudinal clinical
study with autistic subjects and typically developing chil-
dren scanned at age 2 and 4 years. Studying deformation
between atlases allows cross-sectional (groups at same age)
and longitudinal (each group across time) analysis. Lon-
gitudinal growth maps for both groups can then be com-
pared, representing an analysis scheme for growth analysis
between groups. The four atlases look very similar, again
demonstrating the excellent stability of the atlas building.

could not yet be explored due to the small sample size. The
temporal lobes show a similar pattern as the frontal lobes,
with right temporal> left temporal growth. Local growth
is mostly evident in cortical gray, which seems to account
for the major brain growth during this age period. Lat-
eral ventricles are stable, but the third ventricle illustrates
a significant width reduction, along with a closing of the as-
cending ramus of the Sylvian fissure. Group tests between
TYP and AUT subjects reveal a strong size difference of the
cerebellum, which is much more pronounced at age 2 and
lessens towards age 4. We are currently confirming these
exploratory findings with independent samples.

Our preliminary findings indicate that the new method-
ology shows excellent potential to explore longitudinal
change, difference between groups, and differences be-
tween growth trajectories between groups. The simulta-
neous analysis of the whole volumetric brain is a major
strength, as it will reveal morphometric changes of struc-
tures with embedding context, e.g. studying cortical growth
in relationship to adjacent white matter, and examining
groups of subcortical structures and even whole circuits.
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