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Abbreviations: 3D = three-dimensional,
RMSD = root-mean-square deviation, SDE =

standard deviation of the error.

Cardiac Radiology

PURPOSE: To reconstruct three-di-
mensional (3D) myocardial deforma-
lions from orthogonal sets of parallel-
tagged magnetic resonance (MR)
images.

MATERIALS AND METHODS: Dis-
placement information in the direc-
tion normal to the undeformed tag

planes was obtained at points along
tag lines. Three independent sets of
one-dimensional displacement data
were used to fit an analytical series
expression to describe 3D displace-
ment as a function of deformed posi-
tion. The technique was demon-
strated with computer-generated
models of the deformed left ventricle
with data from healthy human volun-
teers.

RESULTS: Model deformations were
reconstructed with a 3D tracking er-
ror of less than 0.3 mm. Error be-
tween estimated and observed one-
dimensional displacements along the
tags in 10 human subjects was 0.00
mm ± 0.36 (mean ± standard devia-
tion). Robustness to noise in the tag
displacement data was demonstrated
by using a Monte Carlo simulation.

CONCLUSION: The combination of
rapidly acquired parallel-tagged MR
images and field-fitting analysis is a
valuable tool in cardiac mechanics
research and in the clinical assess-
ment of cardiac mechanical function.

Index terms: Heart, function, 51.91 #{149}Mag-

netic resonance (MR), physics, 511.1214 #{149}Myo-

cardium, MR. 511.1214

M AGNETIC resonance (MR) imag-

ing tagging (1-7) and fast,

breath-hold imaging (8,9) are pnomis-
ing tools for nominvasive study of the

function of the heart wall in both ne-
search and clinical settings. The objec-

tive of this study was to measure non-
invasively the three-dimensional (3D)

deformation field within the heart
wall at many time points in the heart
cycle.

Myocandiab tags are regions where
the magnetization has been perturbed
before imaging and that, therefore,
produce a signal intensity difference
relative to that of nomtagged regions
for a time proportional to Ti. Because
the tags result from perturbations of

the magnetization of the tissue itself,
the deformation of the tags accurately
reflects the motion of the underlying

tissue (10-12). Special techniques are

needed to reconstruct the 3D motion
of the heart from MR image planes
that are fixed in space, because differ-
ent sections of tissue are sampled at

different times.
The movement of the heart

through short-axis image planes,
known as cardiac through-plane mo-
tion, is typically 10 mm at the base of
the left ventricle (13). (This was con-
firmed with the analysis of 10 healthy
human subjects discussed in this an-
tide.) Correction for this is crucial,
even for two-dimensional analysis of
wall deformation (14). This correction
was achieved by combining infonma-

tiom from both long- and short-axis
sets of tagged heart images into a umi-

fled expression for the 3D displace-
ment field.

Previously presented motion recon-

Figure 1. MR images (7.0/2.3, 15#{176}flip angle)
of an in vivo human heart of a healthy 30-

year-old male volunteer obtained with the

parallel-tagging and -imaging protocol. The

progression (from left to right) through three

phases in the cardiac cycle is shown: early,

middle, and late systole. Two cardiac short-
axis images and one long-axis image are

shown; each displays tag lines from a differ-

ent set of mutually orthogonal tag planes.

struction schemes for MR imaging tag
data require identifiable points within

the images such as intersections be-

tween tags (11,12), intersections be-
tweem tags and myocandiab contours

(14), or points along striped tag lines

(i5). Analyses with such sparse tag

intersection data, however, neglect

valuable information contained in the

intervening portions of the tag lines.
Accordingly, the descriptions of de-

formation that result suffer from poor

spatial resolution. These methods also

require images with high spatial neso-

lution both in the frequency and
phase directions, which results in ac-

quisition times of longer than one

breath hold and thus limits their clini-

cab applicability.



b.a.
Figure 2. (a) Typical 3D short-axis tag data set for x-displacement in an in vivo heart of a
healthy volunteer. Image shows the appearance of the tags and the contours near end systole
on seven short-axis image planes. (b) Typical 3D contour data set and the estimated prolate
spheroidal centroid (upper gray circle) and apical focal point (lower black circle).
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In this study, we developed a
method for reconstructing the 3D de-
formation field of the left ventricle
from tagged MR images with use of
position and displacement infonma-
tion along the entire length of each
tag. This method relies on accurately
defined tag profiles (16) rather than
on poorly defined heart contours (17).
This approach eliminates the need for

accurate simultaneous measurement
of displacement in two dimensions
and permits computation of the 3D
deformation gradient tensor at any
point in the heart wall.

The method was tested on a corn-
puter-generated model of a prolate
spheroid that undergoes deforma-
tions that simulate those measured in
the beating heart. Finally, parallel-
tagged, breath-hold cine data sets
from 10 human hearts were analyzed
by means of this method. Noise prop-

agation properties were then tested
by means of a Monte Carlo simulation

with human cardiac geometry and
deformation.

MATERIALS AND METHODS

Parallel-tagged Data Sets

A typical 3D tag data set of an in vivo
human heart consisted of three sets of
multiphasie images: one in the cardiac
bong-axis view and two in the cardiac
short-axis view. The short-axis image sets
consisted of stacks of six or seven contigu-
ous parallel sections and the long-axis im-
age set consisted of six sections prescribed
radially around the cardiac long axis with

an angular separation of 30#{176}.For each im-
age set, a stack of parallel tag planes ori-
ented perpendicularly to the readout di-
rection was obtained at eight to 12 time
frames throughout systole.

The three sets of tag planes come-
sponded to three orthogonal Cartesian
coordinate axes. Portions of a representa-
tive human image set are shown in Figure
1. The images were processed by means of
a semiautomated software package (18) to
define positions along the tag lines and
around the endoeardial and epicardiab
heart contours. A typical tag and contour
data set for a healthy human after image
processing is shown in Figure 2. For a tag
separation in the reference state of 6.0
mm, approximately 12 tags were pro-
duced in the myocardium in each set. At a
point separation along each tag of 1 mm,
this produced more than 4,600 raw data

points, of which every other point was
used in the fitting.

Field Fitting

In general terms, field fitting is a tech-
nique for estimation of the value of some
parameter throughout a particular region
of interest, given discrete samples of that
parameter in and around that region. In
displacement field fitting, the parameter of
interest is the 3D displacement vector, and
the samples are the values of one-dimen-
sional displacement measured at points on
tags in the deformed heart wall. Although
field-fitting is generally applicable to any
motion-detection method, it has been ap-
plied here to the analysis of three inde-
pendent one-dimensional sets of displace-
ment measurements from parallel-tagged
MR images. This type of data is depicted

Figures 3, 4. (3) Depiction of a short-axis image at some time after initial tagging. Inset depicts an enlarged view of one deformed tag line af-

ten detection of tag points at 1-mm intervals. (4) Deformation of a tag plane into a tag surface in 3D. The bold curves are the intersections of the
tag surface within the heart wall with four vertical image planes. The enlarged dots on these curves are the tag points generated by means of
an automated tag detection algorithm. � represents the one-dimensional displacement associated with the nth tag point. The rectangle in the
figure at the upper left shows the region of the heart depicted.
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Figure 5. Prolate spheroidal coordinate sys-

tern. Surfaces of constant X are ellipsoids and

surfaces of constant longitudinal coordinate
4i are hyperboloids. const = constant.
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in Figure 3, which illustrates a short-axis
image and a deformed set of tags.

The key concept of the method is
shown in Figure 4. In three dimensions,
each observed tag line represents the in-
tersection of a deformed tag surface with

the two-dimensional image plane. The tag
surface results from the deformation of an

initially flat tag plane. The figure depicts a

tag surface within the heart wall that is cut

by four parallel image planes. In each

plane, tag points were marked along tag
lines between the endocardial and epicar-
dial heart contours. For each tag point on

the deformed tag surface, the component
of its displacement vector that was normal
to the tag plane (ix, in Fig 4) and its posi-
tion were measured.

Reconstruction of the displacement field

was performed by using the tag point dis-

placement and position data to solve for
the coefficients of a series expression that

describes the field. This is analogous to use

of digital sampling and Fourier analysis to
reconstruct a continuous, one-dimensional

signal. Here, this expression described the
displacement throughout the entire left

ventricle. In the simplest case, each unidi-

nectionab displacement data set was used

to solve for an interpolation function for

the displacement field in that one diree-

tion, independently of the motion in the

other Cartesian directions. Once the three
independent displacement field expres-

sions were determined, they were used to

compute the 3D displacement of any point
in the deformed heart wall. At higher

complexity, displacement data from mul-

tiple directions can be used simulta-

neously to solve for the full displacement

vector field in an any coordinate system.
The displacement field at each time frame
was computed independently by using
the time at which the tag planes were gen-
erated as the universal reference state.

Fitting to a power series in Cartesian coordi-

notes-As an initial step, a first-order
power series expansion in x, y, and z was
used to remove the large-scale bulk mo-

tions and linear stretches and shears. This

greatly increased the efficiency of the pro-

late spheroidal fitting by aligning the fixed
centroid and long axis of the prolate sphe-

roidal coordinate system at each time

frame. In addition, large bulk deforma-

tions may cause the centroid or apical fo-

cus to intersect the myocardium, which
would create a mathematical singularity
within the heart wall; the Cartesian fit

eliminates this problem. The expression

for the displacement in x, �x(x,y,z)(Fig 4),
as a function of position (x,y,z) and un-

known coefficients, a,, took the form �x =

a0 + a1x + a2Y + a3z.

In vector notation, this can be written
�x = a � p where a = [a�,al,a,,a1] and p =

[1,x,y,zl. (In this article, vectors are de-

noted with a lowercase bold italic font;
tensors, uppercase bold italic; and scalars,

plain italic.) For each sampled tag point

(x,,,y,,,z,), each term in the vector p was
evaluated and the x displacement value,

ix,,, was measured. By considering the x

displacements and p vectors for all tag

points, a series of simultaneous equations

was created and the unknown coefficients,

a, were fitted by using singular value de-

composition (a least-squares fitting method)
(19). Independent series expressions for

the y and z displacement fields were gen-

erated and fitted analogously.

Fitting to a power series in prolate spheroi-
dal coordinates-To efficiently describe the

curvilinear deformations expected in the

heart, the first-order Cartesian fit was fol-

bowed by a probate spheroidal fit of the
residual displacement fields. Figure 5

shows the prolate spheroidal coordinate

system; A is the radial component, 4 is the
longitudinal coordinate, 0 is the circumfer-

ential angle, andfis the focal length.
These are related to Cartesian coordinates

by means of

and

x = fsinh (1�) sin (�) cos (0),

y = fsinh (X) sin (4�) sin (0),

z =fcosh (X)cos (4).

For each prolate spheroidal coordinate
displacement field, a series expansion with

prolate spheroidal coordinates (X4,0) was

created by using a generating function
analogous to the spherical harmonic series:

,�0 � �1a1P�”uI [cos �

sin (mO), in > 0
. cos (mO), in � 0,

where P71 is the associated Legendre

polynomial function, N is the radial fitting

order, L is the angular fitting order, and

the unknown coefficients, a, , were num-
bered sequentially. For the typical tagging

and imaging geometry and the typical im-
age signal-to-noise characteristics, we de-
termined that a fit with N = 1 and L = 4

was most appropriate for this data density

(20) and generated 50 free-fitting param-

eters per coordinate direction.

To fit for the coefficients of the prolate
spheroidal series expansions from mea-

surements of displacement in the Carte-

sian coordinate directions, the measured
displacements were projected onto the

local prolate spheroidal axes. The infini-
tesimal displacements in Cartesian and

prolate spheroidal coordinates are related
by means of the following directional de-

rivatives:

�x = fcosh (It) sin (4) cos (0) IIX

+ fsinh (X) cos (4i) cos (0) �l4

- fsinh (X) sin (4) sin (0) �0,

�jy = fcosh (X) sin (4k) sin (0) �iX

+ fsinh (X) cos (4i) sin (0) 114

+ fsinh (A) sin (4) cos (0) 110,

liz = fsinh (It) cos (�) IIX

- fcosh (A) sin (di) 1k�,

and

(5)

(6)

(7)

which can be expressed in vector notation

as

bx = I � BA, (8)

where Sx = [�x,by,1z], BA = [1iX,�,10], and
J is the Jacobian matrix for this coordinate

transformation.

For a, b, and c, defined as the vectors of
unknown coefficients for the 1IX, 64, and

( ) �o expressions, respectively, and p, the

(2) vector of 50 series terms derived from the
generating function, M = a � p, � b .

and �0 = c � p (the a vector for the Carte-
(3) sian fit and the a vector here are different).

For the case in which the Cartesian axes

(as defined by the three orthogonal sets of
tag normal vectors) are centered and

aligned with the prolate spheroidal coor-

dinate system as described in Equations

(1)-(3), the measured Cartesian displace-

ments can be expressed as

4�X � fcosh (X) sin (4) cos (0) (a . p)

+ fsinh (X) cos (4) cos (0) (b . p)

(4) - fsinh (X) sin (4) sin (0) (c . p) (9)



and

(10)

(11)

(12)

b.a.

Figure 6. Simulated (a) short-axis and (b) long-axis tag data sets for the prolate spheroid
model. Physiologic deformation modes with added Cartesian motions were modeled for

seven image sections and 10 tag planes in each view. The angles of tilt are due to simulated

image prescription error.

and

�x = a(J�p)+ b(Joip)
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+ C � (Jo’p) = u � Px’

�y = a(110p)+b(111p)

+ c (J12p) a

�Xz = a � (J2�p) + b . (J2IP)

+ C � (J22p)= a � p

where now a = [a0, . . . ,a4g,b0, . . . ,b49,C0,

. . . ,C49] and Px [Joopo J()�)P49,J01P0

JolP49,J0�Po, . . . ,J02P49]. The vectors p� and p.
were defined analogously. Similar to the

method of solution of the Cartesian power
series coefficients above, each measured
displacement value was collected into a
single row vector, �.x, and the correspond-

ing p vectors were inserted as columns in a
matrix P. The unknown coefficients, a,
were then solved for by using the equa-
tion �x = a � P.

In this way, all the unknown coefficients
can be solved for simultaneously by using
all available tag data and singular value
decomposition. Although, for finite defor-
mations, the relations between the dis-
placements in x, y, and z and those in X, �,
and 0 are not exact, the simultaneous
least-squares fitting will always result in

the optimal fit of the given displacement
data to the series expansion.

The fitting procedure was performed
independently for each time frame in the

data set. Because the heart geometry
changes throughout the cardiac cycle, a
new prolate spheroidal coordinate system
was calculated for every time frame on the

basis of the measured epicardial contour
point data. This was done first by estimat-

ing the three coordinates of the centroid
and the three coordinates of the apical
focus (point on the long axis, toward the

apex, at a distance of a focal length from
the centroid) and by computing a least-
squares optimal X value at this centroid

and apical focus for the given set of epi-
cardiab left ventricle contour points.

Within an iteration loop, the six coordi-

nates were then independently adjusted

until a combination of centroid and focal
point coordinates and the radial coordi-

nate A were derived that produced a pro-
late spheroid with the smallest fitting error
to the measured left ventricle contour
points.

Variation of the prolate spheroidal coor-

dinate centroid and apical focus required
that Equation (8) be modified to account
for the coordinate transformation neces-

sary to align the axes of the new spheroi-
dal coordinate system with those defined
by the normal vectors to the undeformed
tag planes. For the transformation to the
new coordinate system x’, defined with
the rotation matrix R such that x’ = R . x,

Equation (8) becomes Bx = R ‘J1IX. This

modification was used throughout the
derivation. In addition, this formalism per-
mitted 3D reconstruction from sets of im-
ages with arbitrary tag normal vectors, as
long as three dimensions were spanned.

Computing strains at material points-A
material point is defined as an infinitesi-

mal volume of myocardial tissue. The
mechanical state at a material point

in the heart at any given imaging time

is fully described by means of its defor-

mation gradient tensor, F, according

to dx = FdX, where x are the coordinates
of the point in the deformed state and X

are its coordinates in the reference state
(21).

F was calculated from the displacement

gradient tensor Vu, which was computed

numerically by taking partial derivatives
of the displacement expressions with re-

spect to the three coordinate directions.

Because the terms in the series expansion

were computed on the basis of the coordi-

nates of the tag points in their deformed

state, Vu described the motion from the

deformed state back to the undeformed

state when the tags were created. Thus,
to compute F from Vu requires an

inverse operation: F = (I -

where I is the identity tensor. The

Lagrangian finite strain tensor, E, can
then be computed from E = y2(FTF - I),
where the superscript T denotes matrix

transposition.

For both the mathematical and experi-
mental models, a set of material points
was defined within the heart wall in the
first imaging time frame and 3D displace-

ments and deformations were evaluated

over time at these points as they moved

through space. A mesh of 96 material

points regularly spaced in X, �, and 0 was
selected on the basis of the imaging see-

tion locations and the shape of the heart.

The material-point locations at the first
time frame were constrained bongitudi-
nally by the most basal and most apical

short-axis image sections and radially by
the endocardiab and epicardial contours.
The interpolation of the contour bound-
aries between image section locations was

achieved by fitting the left ventricle epi-
cardiab and endocardial contour points of

the first time frame to a fourth-order pro-
late spheroidal coordinate expansion for X
as a function of the two angular coordi-
nates.

Analytical Test Case

To test the method with a known defor-

mation field, a realistic, computer-gener-
ated deformation model was constructed.

We adapted to prolate spheroidal coordi-
nates an axisymmetnically deformative

cylinder model described by Young and
Axel (5), which was based on 3D strains
measured by means of cine radiography of

the anterolateral free wall of the left yen-
tnicbe with implanted metallic beads (22).
The governing equations that describe the
deformed coordinates (X,�,0) as a function

of the initial coordinates (A,�,O) and the
deformation parameters were as follows:

0 = 0 + A + Bfeos (4)

+ Cfsinh (A), (13)

�ti = � + Dfeos (CF)

+ Efsin (t) sinh (A), (14)

Vol (1�.) = 4/3-�rf� cosh (X) sinh2 (X)

= [Vol (A) - Vol (�‘endo)] �

+ Vol (�‘endo)’ (15)

where A is the axial rotation at the equa-
tor, B is the torsion around the central
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Figure 7. Short- and long-axis MR images
(7.0/2.3, 15#{176}flip angle) of a human heart ob-
tamed in a healthy, 21-year-old male volun-
teer at 228 msec into systole overlaid with tag

point locations predicted from the 3D field

fit.

axis, C is the transmural twist, D is the

axial stretch, E is the transmural-longitudi-

nab shear,fis the focal length of the pro-
late spheroidal coordinate system, Vol(X)
is the volume within a prolate spheroidal

shell of constant X, and “endo” denotes
endocardial measurement. Deformation
in the radial component, A., was limited
to a volume-conserving (incompressible)
contraction mode by setting a = 1. The
initial and deformed short-axis endocar-
dial equatorial radii,fsinh(Aefldo) and

I sinh(X,fld0), were chosen to approximate
realistic heart geometry and resulted in an

ejection fraction of � 50%. The prolate
spheroidal deformation parameters are
listed in Table 1.

Bulk motions and linear deformations
that incorporate ellipticalization (the
change in cross-sectional shape of the left
ventricle from a circle at end diastole to an

ellipse at end systole) and shears in x, y.
and z were then superimposed on the axi-
symmetric modes in the manner of Arts et
al (23). The magnitudes of these additional
modes were chosen to provide the overall
model with approximately physiologic
rigid body motions and to reproduce
those deformations observed by Arts et al
(23). These deformation values are listed
in Table 2. Image prescription error, which

occurs when the central axis of the imag-
ing volume is not coincident with the long
axis of the left ventricle, was also simu-
bated with representative values of 5#{176}off-
set about the x axis and of 8#{176}offset about
the y axis.

Seven image sections and 10 tag planes
were simulated for each image set. Separa-
tion between adjacent tag points along a
given tag was fixed at 2 mm. Throughout
the entire 3D data set, this produced
� 2,400 tag points. The prolate spheroidal

deformation model is shown in Figure 6.

Human Data Sets

Ten healthy human volunteers gave
informed consent and underwent imaging
with a i.5-T scanner (Sigma; GE Medical
Systems, Milwaukee, Wis). A cine breath-
hold imaging sequence with parallel tags
was used (8). Eighteen acquisitions were
performed in each subject during a breath
hold. Volunteers underwent imaging at
end expiration in the supine position with
a flexible surface coil wrapped around the
left side of the chest.

The imaging parameters for each see-
tion were a repetition time of 7.0 msec and

an echo time of 2.3 msec (7.0/2.3, fractional

echo), a 15#{176}flip angle, 110 phase encoding
steps, I .25 x 2.9 x 7 mm voxels, one signal
acquired, and five phase-encoded views
per movie frame (35 msec time resolution).

The tagging pulse consisted of five nonse-
leetive radio-frequency pulses with rela-
tive amplitudes of 0.7, 0.9, 1.0, 0.9, and 0.7
separated by spatial modulation of mag-
netization (2) encoding gradients to

achieve a tag spacing of 6 mm. The tag-
ging tip angle was tuned to achieve a 180#{176}

flip angle.

Monte Carlo Simulations

A representative human data set was
fitted; the reconstructed displacement
field and heart geometry were then used
to generate a physiologic noise-free paral-
beb tag data set. The effect of uncertainty in
tag point position on the final material-
point tracking predictions was evaluated
by using a Monte Carlo simulation (19).
One-dimensional Gaussian noise profiles

with 0.25-1.00-mm standard deviation

were added to the �.x, �y, and �z data
sets, and the resultant 3D material-point
trajectories were computed for the 96 ma-
terial points for 100 trials. A single root-
mean-square deviation (RMSD) value was

computed for each point from the 3D dis-
tribution of the cloud of estimated point
trajectories around the expected location.

RESULTS

Two measures of the displacement
field-fitting performance were evalu-

ated with the prolate spheroidal de-
formation model: tracking and fitting.

The 3D tracking performance was
evaluated by comparing the esti-
mated material-point trajectories de-
nived from the field-fitting neconstruc-

tiom to the exact solution computed
from the deformation model of Equa-

tions (13)-(15). The mean absolute

value and the standard deviation of
the tracking error were computed for
the set of 96 material points. The fit-
ting performance was evaluated by

computing the standard deviation of

the error (SDE; around a mean error
of 0) between the estimated and the

measured one-dimensional displace-

ments at each tag point. Thus, the fit-

ting performance reflects the ability of

the reconstruction to account for the

variations in the displacement field at
the locations where the measure-
ments were made, whereas the track-

ing performance reflects both the

quality of the fitting and the interpo-

latiom of the displacement field be-

tween the measurement locations.

Mathematical Deformation Model
Results

The SDE of the fit to the � 2,400

model tag data points was 0.095 mm.
This is on the order of the expected

uncertainty in the determination of

tag point displacements for typical in

vivo data sets (16,17). This implies

that the fitting error for a human data

set will be dominated by the uncen-
tainty in the tag point displacement

data rather than by error in recom-
structiom of the displacement field at

the measurement locations.

The 3D tracking error for the set of

96 material points was 0.28 mm ± 0.i6

(mean ± standard deviation). The
relatively large value of the 3D track-
ing error ( 0.3 mm) compared to the

SDE of the fit ( 0.1 mm) suggests

that further improvements to the me-

construction cam be made by increas-

ing the tag density and number of

fitting parameters. The corresponding

circumferential strain errors at the 96
material points were 0.006 ± 0.012 for

a mange of -0.25 to 0.06, the bongitudi-

nab strain errors were 0.0003 ± 0.0070

for a range of -0.23 to -0.08, and the
rnidwall radial strain errors were
0.017 ± 0.026 for a mange of rnidwall
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radial strains of 0.18-0.52. The high
accuracy of the strain estimations,
even where 3D tracking errors were

_ 0.3 mm, is due to the correlation of

tracking errors between neighboring
myocandial regions. These errors and
standard deviations are well below
the threshold necessary to detect mo-
tion abnormalities in the isehemic
heart wall (24).

In Vivo Human Heart Results

The SDE of the fit (a mean error of
0) to the tag data at 228 msec after

the electrocardiograph R wave in the
10 subjects was 0.36 mm ± 0.06 (mean

SDE ± standard deviation SDE). This
reflects both the error in recomstmue-
tion of the displacement field, as seen
in the fit results for the mathematical
model, and the uncertainty in the de-
termination of the tag point locations.
The accuracy of the fitting can be il-
lustrated by the ability to reconstruct
the positions of deformed tags. The
fitted 3D displacement field was used
to generate points that started from
the reference state tag plane locations
and moved into the image plane at

228 msec into systole. Figure 7 shows

representative short- and long-axis

human cardiac images obtained at 228

msee into systole and demonstrates

the agreement between the predicted

locations of the tag points and the

actual tags on the MR images.

Monte Carlo Noise Analysis

The precision of the fitting algo-

nithm was tested by using a Monte

Carlo simulation as described in

Monte Carlo Simulations in Materials

and Methods. The RMSD of the corn-

puted material-point position in-

creased linearly as a function of input

noise level as shown in Figure 8. It

was determined that the scatter of

points around the expected value was

isotropic. The RMSDs at the endocam-

dial and epicandial material points

were equal and were greaten than the

RMSD at the midwall. At an input

noise standard deviation of 0.5 mm,

the midwall RMSD tracking error was
0.077 mm ± 0.015, and the endocandial

and epicardial RMSD was 0.126 mm ±

0.030. The RMSD computation with a

subset that consisted of 50 trials pro-

duced results that were not sigmifi-

cantly different, which suggests that

100 trials were sufficient to obtain a

stable convergence of the estimate in

tracking precision.

DISCUSSION

The combination of parallel-tag MR

imaging and displacement field fitting

is am accurate and robust method for

reconstruction of the 3D deformation

field throughout the entire left yen-

tricle. Because of its reliance on paral-

lel-tag data, the displacement field-

fitting method is inherently less

susceptible to tag- and contoun-detec-

tiom errors than were previous MR

imaging reconstruction schemes, be-

cause only the center line of any tag

need be determined during image

analysis. The incorporation of a

greater number of points along each

tag line increases the sampling den-

sity throughout the heart compared

with the sampling density obtained

with techniques that use only those

points located at intersections be-

tweem tags or between tags and myo-

cardial contours.

The fitting of displacement fields

cam also be realized by using other

methods, which include energy mini-

mizatiom techniques (5,25). In this ap-

proach, the fits can be computed mu-

menicalby for a predefimed set of

material points (nodes), and intenpo-

batiom between these points is aceom-

plished by means of linear on finite

element interpolation functions. Al-

though field fitting by solving for se-

ries coefficients has some mathemati-

cal similarities to energy minimization

and other methods, the series method

has several advantages. First, it is in-

dependent of material strain energy

models. Second, the global fit pro-

vides the ability to express the 3D de-

formation at any myocandial point

with a relatively small number of pa-

rametems, independently of a pme-

defined set of material points.
The field-fitting approach is imme-

diately suitable for other methods of

3D strain analysis in which motions in

multiple directions are independently

measured. For example, three sets of

velocity-encoded images (26) could be

used to solve for a set of expressions

that describe the velocity field

throughout a prescribed region of

interest in a manner analogous to that

described for tag-based displacement

fields. This would have the advantage

of smooth interpolation of the veboc-

ity field. Grid tag data sets cam also be

analyzed by interpreting the grid as

two independent sets of parallel tags.

We have demonstrated the applica-

tion of displacement field fitting by

using am analytical series expression

for the analysis of tagged MR imaging

cardiac data. The important features

of this method are that it allows all

o.o4� - � �
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Figure 8. RMSD of the computed material-
point position as a function of input noise

level on a human heart geometry and defor-

mation field. The distribution of tracked

points formed an isotropic cloud around the

noise-free reference trajectory. The RMSD of

the distribution about the endocardial and

epicardial material points were the same and
were larger than those about midwall mate-
rial points. The error bars correspond to the
standard deviation in the RMSD for the 100

Monte Carlo trials. ID = one-dimensional.

the available tag data to be considered

and not just points at tag-tag on tag-

contour intersections, it allows the

determination of the local 3D defor-

matiom gradient tensor at any point in

the heart wall, it has predictable noise

propagation characteristics, and it is

suitable for the analysis of both grid-

and parallel-tagged MR data. This last

property is important in light of me-

cent advances in cardiac breath-hold

imaging that are virtually free of rno-

tion artifact and in which only paral-

lel tags are produced.

The cascade of a first-order Carte-

sian basis set fit and a geometrically

more appropriate prolate spheroidal

fit enable reconstruction of material-

point trajectories to within 0.3 mm for

a physiologic deformation model. At

bate systole in 10 healthy human sub-

jects, tag displacement data was me-

constructed with an average error of

0.00 mm ± 0.36, in which the stan-

dard deviation of the error approxi-

mately matched the expected uncen-

taimty in the determination of the in

vivo tag point displacements. This

suggests that all the displacement in-

formation contained in the tag data

has been accounted for in the necom-

struction. The combination of rapidly

acquired parallel-tagged MR images

and field-fitting analysis is a valuable

tool for cardiac mechanics research

and for the clinical assessment of car-

diac mechanical function. U
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