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Estimation of 3-D Left Ventricular Deformation From
Medical Images Using Biomechanical Models

Xenophon Papademetris*, Albert J. Sinusas, Donald P. Dione, R. Todd Constable, and James S. Duncan

Abstract—The quantitative estimation of regional cardiac de-
formation from three-dimensional (3-D) image sequences has im-
portant clinical implications for the assessment of viability in the
heart wall. We present here a generic methodology for estimating
soft tissue deformation which integrates image-derived informa-
tion with biomechanical models, and apply it to the problem of
cardiac deformation estimation. The method is image modality in-
dependent. The images are segmented interactively and then initial
correspondence is established using a shape-tracking approach. A
dense motion field is then estimated using a transversely isotropic,
linear-elastic model, which accounts for the muscle fiber directions
in the left ventricle. The dense motion field is in turn used to cal-
culate the deformation of the heart wall in terms of strain in car-
diac specific directions. The strains obtained using this approach
in open-chest dogs before and after coronary occlusion, exhibit a
high correlation with strains produced in the same animals using
implanted markers. Further, they show good agreement with pre-
viously published results in the literature. This proposed method
provides quantitative regional 3-D estimates of heart deformation.

Index Terms—Cardiac deformation, left ventricular motion esti-
mation, magnetic resonance imaging, nonrigid motion estimation,
validation.

I. INTRODUCTION

A CUTE coronary artery occlusion results in myocardial in-
jury, which will progress from the endocardium to the epi-

cardium of the heart wall in a wavefront fashion. A primary goal
in the treatment of patients presenting with acute myocardial
infarction is to reestablish coronary flow, and to interrupt the
progression of injury, thereby salvaging myocardium. Unfortu-
nately, there are no universally accepted noninvasive imaging
approaches for the accurate determination of the extent of in-
jury. Using conventional measures of regional myocardial func-
tion, the extent of myocardial infarction is overestimated. This
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can be attributed to persistent postischemic dysfunction (“stun-
ning”), persistent myocardial hypoperfusion (“hibernation”), or
mechanical tethering of normal areas by the adjacent injured
myocardium. This tethering can be seen at the lateral margins
of an infarct, resulting in a viable although dysfunctional border
zone. Motion of the viable epicardium can also be constrained
by injury of the underlying endocardial myocardial tissue. The
location and ultimate transmural extent of the injury has im-
portant implications for long term prognosis of patients fol-
lowing myocardial infarction. Those patients with transmural
myocardial infarction are likely to dilate their left ventricles over
time, a condition termed left ventricular (LV) “remodeling.” The
occurrence of postinfarction remodeling carries a much worse
long-term prognosis.

A number of laboratories have shown that a comprehensive
quantitative analysis of myocardial strain can more accurately
identify ischemic injury than can simple analysis of endocardial
wall motion or radial thickening [5]. Furthermore, the character-
ization of segmental strain components has shown great promise
for defining the mechanical mechanisms of tethering or remod-
eling [25], [28]. Experimental animal studies demonstrate that
decreased circumferential shortening in myocardial regions ad-
jacent to the infarct zone relative to remote regions is associated
with late LV remodeling [24]. At present, quantitative nonin-
vasive measurement of three-dimensional (3-D) strain proper-
ties from images has been limited to special forms of magnetic
resonance (MR) acquisitions, specifically MR tagging, and to a
lesser extent MR phase contrast velocity.

The MR tagging approach to the measurement of myocardial
strain was originally developed, and then vigorously pursued
further by two groups, one at the University of Pennsylvania [4]
and the other at Johns Hopkins [30]. In general, there are three
different approaches to estimating displacement data from MR
tagging. The first approach involves tagging in multiple inter-
secting planes at the same time, and using the tag intersections
as tokens for tracking (e.g., [1], [23], and [55]). The second ap-
proach involves tagging in multiple intersecting planes, one set
of parallel planes at a time. Then, each tagging plane is used sep-
arately to estimate the normal direction of motion perpendicular
to the plane. This generates a set of partial displacements (i.e.,
the component parallel to the tag lines is missing) to be com-
bined later (e.g., [11] and [18]). The final approach uses a lower
resolution modulation technique and attempts to model the tag
fading over time using the Bloch equations. The displacements
are then extracted using a variable brightness optical flow tech-
nique (e.g., [17] and [42]). The reader is also referred to a re-
cently published book [3].
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As an alternative to MR tagging, several investigators have
employed changes in phase due to motion of tissue within a
fixed voxel or volume of interest to assist in estimating instan-
taneous, localized velocities, and ultimately cardiac motion
and deformation. While the basic ideas were first suggested
by van Dijk [52] and Nayler [33], it was Pelc and his team
[39]–[41] that first bridged the technique to conventional cine
MR imaging (MRI) and permitted the tracking of myocardial
motion throughout the cardiac cycle. This technique basically
relies on the fact that a uniform motion of tissue in the presence
of a magnetic field gradient produces a change in the MR
signal phase that is proportional to velocity. In general, two
approaches have emerged to assemble deformation information
from phase contrast images: 1) processing the data directly to
estimate strain rate (e.g., [40] and [53]) and 2) integrating the
velocities over time, via some form of tracking mechanism to
estimate displacements (e.g., [10], [19], [32], [56], and [57]).

The use of computer vision-based techniques to estimate dis-
placement is also possible. One approach to establishing cor-
respondence is to track shape-related features on the LV over
time as reported by Kambhametu [22], Cohen [9], Amini [2],
McEachen [29] and Shi [46]. This is the basis for much of our
own work and is expanded later. In general, here, preliminary
displacements are estimated by matching local curvatures from
segmented surfaces from consecutive time frames and then the
estimates are smoothed to produce final displacement values.

Finally, some investigators have used the intensity of the im-
ages directly to track local LV regions. Song and Leahy [47]
used the intensity in ultrafast CT images to calculate the dis-
placement fields for a beating heart. In addition, other investi-
gators have used local image intensity or intensity-based image
texture from echocardiographic image sequences to track local
positions over two-dimensional (2-D) image sequences [27],
[31]. These efforts, along with some related MR tagging ap-
proaches (e.g., [17]) roughly fall into the category of optical
flow-based methods. With the exception of methods based on
magnetic resonance tagging and to a lesser extent MR phase
contrast velocities, none of the other methods is capable of es-
timating complete 3-D deformation maps of the left ventricle.

In this paper, we present a modality-independent method for
estimating 3-D LV deformation from 3-D image sequences. In
this current paper, we have applied this methodology to ordinary
cine-MR data and 3-D cine-CT data. An earlier version of this
methodology was previously applied to 3-D echocardiographic
sequences [37]. This paper constitutes the definitive presenta-
tion of this methodology, including the complete description of
both the geometrical algorithms as well as the integration frame-
work. Moreover, we present results from new 3-D image se-
quences from both animals and humans. Our algorithm derived
strains are validated in the experimental models using surgically
implanted markers.

The paper is structured as follows (see also the schematic in
Fig. 1). In Section II, we describe the method of reconstructing
the left-ventricular bounding surfaces from planar contours. The
surfaces are then used as inputs to the shape-based tracking al-
gorithm described in Section III, which is used to generate the
initial displacement field. Section IV describes the mesh gener-
ation algorithm used to generate the volumetric model for the

left ventricle. In Section V, we introduce some concepts from
continuum mechanics and describe the model used for the my-
ocardium. In Section VI, we outline the framework used for esti-
mating a complete volumetric displacement field. Experimental
results and validation are discussed in Section VII.

II. SURFACE RECONSTRUCTION

The left ventricle is segmented on a slice by slice basis using
a custom designed software platform [36]. The segmentation
algorithm results in a set of planar contours parameterized using
b-splines (as shown in Fig. 2—step 1) which are subsequently
sampled to generate a discrete set of points on each plane (see
Fig. 2—step 2).

From these contours, we reconstruct the endo- and epicar-
dial surfaces in a two-step procedure as follows: 1) We inter-
polate between contours to generate in-between contours at the
desired sampling distance. This results in an iso-sampled set of
points in three dimensions. 2) We construct a surface mesh by
forming triangles between the points (as shown in Fig. 2—step
3). This defines the neighborhood relationship between points
which is then used in the smoothing and curvature calculation
algorithms.

A. Shape-Based Interpolation of Contours

We use a subpixel adaptation of work presented by Herman
[20] to interpolate between contours. In [20], the interpolation
was done at a pixel level resolution. However, given that the
motion we are trying to estimate is of the order of half of a voxel
per frame, subpixel resolution is needed.

The first step in the interpolation process is to convert each
contour into a gray-value 2-D image known as thedistance
map,where pixel values represent the shortest signed distance
of points from the contour, with positive values for pixels inside
the contour and negative values outside. The algorithm is ini-
tialized by assigning distances to all points that lie within two
pixels of the contour using exhaustive search. Then, the com-
plete distance map is calculated by performing two consecutive
chamferingprocesses [20] using the template shown in Fig. 3.
These templates are scaled versions of the ones used in [20], the
scaling being done to improve subpixel resolution, while still
remaining within the two-byte integer range. The choices of the
original unscaled two 3 3 templates have been justified to be
near-optimal [20]. The resulting image represents the chamfer
distance map of the given contour.

The second step in the interpolation process is the generation
of the output distance map. This is done by combining the input
distance maps in the appropriate way. If we label two contours
as and and their distance maps as and ,
respectively and we need to find the mean contour, we first
generate . [Note that in the
region between contours and , and have
opposite signs, hence, this results in a zero set.]

The third step is the extraction of from its distance map
. We define to be the zero level set in the distance map
and we extract it using a border following scheme adapted

from the level-set work of Malladiet al. [43] (which in turn is
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Fig. 1. Outline of the proposed algorithm. The numbers in parenthesis [e.g., Mesh Generation (IV)] refer to the section in the paper where this component is
described, i.e., mesh generation is described in Section IV.

Fig. 2. Steps involved in moving from slice by slice contours to full surface representation. 1) Slice by slice B-spline parameterized contours as extracted by the
segmentation process. 2) Discretized contours as equally-spaced points. 3) Formation of wire-frame by Delaunay triangulation. 4) Surface rendering. 5) Smoothing
of surface using nonshrinking smoothing algorithm. 6) and 7) First and second principal curvatures of the surface. Here, green shows negative (i.e.,inward)
curvature, white shows flat regions and red indicates positive (i.e., outward) curvature.
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(a) (b)

Fig. 3. Chamfer transformation templates. The two templates used by the
dual chamfering processes to calculate the distance maps: template (a) for the
top-to-bottom, left-to-right chamfering, and template (b) for the bottom-to-top,
right-to-left chamfering.

derived from the marching cube work of Lorenson [26]). It is
this last step which gives the method its subpixel resolution
compared with the one used in Herman [20]. (See [34], for more
details.)

B. Delaunay Triangulation Between Planar Contours

Having created an isotropic set of points on the surface we re-
construct the surface using 2-D-constrained Delaunay triangu-
lation [45]. The algorithm described here takes advantage of the
fact that the original points lie on parallel planar contours and
are ordered. The resulting triangulation has the smallest total
length of triangle sides of all possible triangulations between
the two planar contours. This triangulation method is optimal in
thatno flipping of connections can decrease the total length of
all the sides of all the triangles.

For the case of constructing a set of triangles between two
discretized, anticlockwise oriented, closed planar contours,
and , the procedure is as follows: (a proof of optimality can
be found in [34]). First, for a point on contour find the
nearest point to it on contour . For this find the nearest
point to it on contour . If label ,
as the starting pair of points and start creating triangles. Other-
wise, if choose another point on contourand repeat
the initialization step. The process fails if there is no point
for which this criterion is satisfied. (This is extremely unlikely.)
Once the original seed points and are defined, we start the
connection process. First, we define two test pointsand .

is the next point along from , and which is the next
point along from . If label the next
point else , and add triangle , , to the
list. Then, if then set , else set . We
then proceed to define new test pointsand unless
and in which case the algorithm terminates.

Connectivity Distance:The Delaunay triangulation defines
the connectivity of the points on each surface. We further define
the distance between the two points to be the order of their con-
nection. A point has a distance of zero with itself, a distance of
one with a first-order neighbor (a point with which it is directly
connected by the edge of a triangle), a distance of two with a
second-order neighbor, and so on. We will call this the connec-
tivity distance .

C. Surface Postprocessing

The constructed surfaces are smoothed using the non-
shrinking two-stage Gaussian algorithm proposed by Taubin
[50]. (This is compared with the more typical one-stage

Fig. 4. Illustration of problems with asymmetric nearest neighbor matches.
The two examples (left and middle) where the correspondence is driven
exclusively in one direction show problems such as “cutting corners” when the
two curves are not roughly parallel. In the third case, by using a symmetric
nearest neighbor map the problem is avoided.

Gaussian filtering in [45].) Then, curvatures are computed
using the same method as was used in [45] and [46]. At each
point on the surface we compute the two principal curvatures

and as illustrated in Fig. 2.

III. T HE SHAPE TRACKING ALGORITHM

In this section, we describe the shape-tracking algorithm,
which is an extension of the work by Shi [46]. The key im-
provement over this previous work is the use of the symmetric
nearest neighbor algorithm to initialize the shape-tracking. We
first describe the estimation of symmetric nearest neighbor
correspondences, first in curves, and then its extension to
surfaces. Then, we describe the shape-tracking algorithm
itself. We note that the curve version of the symmetric nearest
neighbor algorithm is used in the mesh generation algorithm
described in Section IV.

A. Symmetric Nearest Neighbor Correspondences in Curves

In most computer-vision applications and in related work
[46], [29], the estimation of initial correspondences is done
using what we will term an “asymmetric nearest neighbor”
technique. In this case, for each point on curve/surfacethe
nearest point on curve/surface is found and labeled as the
initial point. This has problems when the two curves are locally
not parallel as whole regions of one curve map to a single point
on the other curve. Also, whole regions on the second curve
may not contribute to this map resulting in “cutting corners”
as demonstrated in Fig. 4. In this section, we focus on the 2-D
case; we present extensions to the full 3-D case in Section III-B.

Motivated by the bimorphism work of Tagare [49] we de-
velop a symmetric technique to estimate initial correspondences
without “cutting corners.” This is important so as to ensure that,
as much as possible, the whole of curvemaps to the whole of
curve and that the map is free from singularities (such as two
points mapping to the same point) which are not either permis-
sible or plausible in the areas of application of this algorithm.
The symmetric nearest neighbor algorithm has three steps as
follows.

Step 1. For all points on curve find the nearest neighbor
on curve . So, for example, for a point on curve

we have a corresponding point on curve .
Then, for point estimate its nearest neighbor
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Fig. 5. An example of the 2-D implementation of the symmetric nearest
neighbor algorithm. In this case, we try to map the inner curvec to the outer
curve c . Curve c is defined by four points(c (0:0), c (0:25), c (0:5),
c (0:75)), all of which apart fromc (0:5) have a symmetric nearest neighbor.
The nearest neighbor ofc (0:5) is shown on the left (bad) and the point
c (0:5) is mapped to by the algorithm is shown on the right [c (0:65) good!].

on . If then the points are sym-
metric nearest neighbors and the match is retained.
Otherwise, the match is discarded.

Step 2. For all points on curve which do not have sym-
metric nearest neighbors on, find a matching point
on by interpolating between the matching points
of its neighbors. We do this until all points onhave
a matching point on .

Step 3. Smooth the displacement field slightly to eliminate
potential near-singularities.

The interesting part of this algorithm is the interpolation step
(step 2). We take advantage of the fact that a curve can be pa-
rameterized using its arclength. An example will help to illus-
trate the point: consider the case that curvehas four points
[ , , , and ] which match to dif-
ferent positions on , as illustrated by Fig. 5, and noting that

represents the point on curve at arclength of .
In this case, step 1 resulted in three symmetric neighbor pairs
and left one point without a match. We can represent the points
on by their arclengths as follows: [

].
In this case, point has no corresponding point after

step 1. To generate a match for we interpolate between
the corresponding points of and the nearest
points to on that do havesymmetricnearest neigh-
bors. This results in .1 The final result of
step 2 is:

.
Then, in step 3 we smooth the displacements slightly (by con-

volving the arclengths on with a small Gaussian kernel) to
ensure no near singularities. This could result in a map such as:

which tries to equispace the points on
subject to staying close to their original positions. For this ap-
proach to work well in practice, where the curves are discretized,

has to be sampled much more finely than(typically five to
eight times more).

1Note that we in effect place the corresponding point ofc (0:5)at the centroid
of the (shortest) segment of the curvec connecting the corresponding points
of its neighbors [c (0:4) andc (0:9)]. This generalization will become useful
when we move to 3-D.

Fig. 6. Symmetric Nearest Neighbor Algorithm in 3-D. A portion of surface
s is shown on the left centered on a pointp which has first-order neighbors
a; b; c; d; e; f . Of these neighborsa; b; c have symmetric nearest neighbors
a ; b ; c on s shown on the right.p itself does not have a symmetric
nearest neighbor ons . We generate the first estimate of the position of
the corresponding point ofp , p̂ , by averagingu(a), u(b) and u(c), the
displacement vectors of points a, b, c to estimate a vectoru and translatingp
by u . Then,p̂ is mapped to surfaces by finding its (asymmetric) nearest
point ons . This is pointp which is the corresponding point of pointp on
surfaces . We also defineu(p ) (not shown) asu(p ) = p � p . We further
show the first-order neighbors ofp on surfaces labeled asg; h; i andj.

B. Symmetric Nearest Neighbor Correspondences in Surfaces

In this section, we extend the work of the previous section
to three dimensions. The key step here is to find a way of re-
placing the arclength parameterization. We do this by using the
Euclidean distance. We focus here on steps 2 and 3 of the algo-
rithm; step 1 is identical to the 2-D case.

Before proceeding to the description of the interpolation step
we note that if a point on surface is mapped to a point
on surface then we define the displacement vector

. Any point on that has a corresponding point on
also by definition has a displacement vector.
The Interpolation Step:This is the step in which we find cor-

responding points for all the points onthat do not have a sym-
metric nearest neighbor. This is done in an iterative fashion. At
each iteration, for each point on surface that does not have
a displacement vector, we average all the displacement vectors
of its first-order neighbors (that have a displacement) to generate
a displacement vector . If none of the first-order neighbors has
a displacement vector we go on to the next point. We then trans-
late by to get . We then find point on
which is the closest point on to , as shown in Fig. 6. is
the corresponding point of on and we define the displace-
ment of , . When the iteration over all the
points on is done, we check whether all the points onhave
a displacement. If they do, the process terminates, otherwise we
execute another iteration.

So long as one point on has a symmetric nearest neighbor
after step 1 this algorithm will generate a set of point pairs. This
algorithm is illustrated in Fig. 7.

Smoothing: This is an alternating iterative process and con-
sists of smoothing and mapping steps. Consider a surface.
During thesmoothingstep, for all points on , we find
the average displacement vector of all its first-order neigh-
bors. [These would be , , , , and of
Fig. 6.] We then generate a new displacement vector

. For themappingstep, then we translate
by to a point . We then find the nearest neighbor of point
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Fig. 7. Symmetric 3-D Nearest Neighbor Algorithm. (This is shown in
2-D for simplicity.) (A) Result of step 1, where only points 1 and 6 have
corresponding points. (B) (Step 2 iteration 1) Points 2 and 5 also acquire
displacements since at least one of their neighbors has a displacement (points
1 and 6, respectively). Note that the displacement vectors of points 2 and
5 have two parts. The first, shown using a dotted line, is the average of the
displacements of the neighbors, and the second, shown using a solid line, is
the result of mapping this position to the next surface. (C) (Step 2 iteration 2)
Points 3 and 4 also have displacements. (D)–(F) Iterations of the smoothing
algorithm. Note how the map becomes progressively more regular.

on and we label this point as . Next, we calculate the dis-
placement vector . is also the corresponding
point of on .

C. Shape-Based Matching

The shape-based tracking algorithm tries to follow points
on successive surfaces using a shape similarity metric. This
distance is based on the difference in principal curvatures. The
method was validated using implanted markers [45]. In this
paper, we modify the initialization step of this algorithm to take
advantage of the symmetric nearest neighbor correspondence
finding algorithm previously described in Section III-B.

The first step in this algorithm is to estimate for all points
on surface their symmetric nearest neighbor, as explained in
Section III-B. Next, for any given point on a surface at
time and which has a corresponding pointon surface at
time as a result of the symmetric nearest neighbor estimation
step we construct a plausible search windowon . This
search window consists of all the points on which have
a connectivity distance less than a thresholdfrom on ,
i.e., iff .

Next, a search is performed within this plausible region
on the deformed surface and the point which has the local
shape properties closest to those ofis selected. The shape
properties here are captured in terms of the principal curvatures

Fig. 8. The shape-tracking algorithm. For a pointp on the original surface, a
windowW of plausible matching points on the final surface is first generated
around pointp which is the symmetric nearest neighbor ofp on the deformed
surface. [In this case8 p 2 W , d (p ; p ) < 3]. Then, the point̂p in W
which has the most similar shape-properties top is selected as the candidate
match point. The distance function for shape-similarity is based on the principal
curvatures.

and . This is illustrated in Fig. 8. The distance measure
used is the bending energy required to bend a curved plate or
surface patch to a newly deformed state. This is labeled as
and is defined as (see Shi [45])

(1)

The displacement estimate vector for each point, is given
by

The underlying assumption in this algorithm is that the curva-
ture at a point does not change much between two time frames.
Obviously, strictly speaking, this is not a valid assumption as
the left ventricle is a nonrigidly deforming object, but since
the change in curvature between any two image time frames is
small, this is a reasonable assumption to make.

Probabilistic Modeling of the Shape-Based Displacement Es-
timates: The bending energy measures for all the points inside
the search region are recorded as the basis to measure the
goodnessanduniquenessof the matching choices. These mea-
sures are combined to generate a confidence measure in the local
match which takes a high value when a match is both very good
and unique and low values otherwise. This is described in more
detail in [46].

Given a set of displacement vector measurementsand
confidence measures we model these estimates probabilis-
tically by assuming that the noise in the individual measure-
ments is normally distributed with zero mean and a variance

. In addition, we assume that the measurements are
uncorrelated. Given these assumptions we can write the mea-
surement probability for each point as

(2)

IV. M ESH GENERATION

We proceed to describe the mesh-generation method used for
generating a volumetric model for the left ventricle, in terms
of hexahedral elements. The output mesh of this algorithm will
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Fig. 9. A schematic of the mesh generation process. First, we interpolate between the endocardial and epicardial surfaces on a contour by contour basis using
shape-based interpolation to create the interpolated surfaces. Next, we find correspondences between the contours on the endocardial surface starting at the middle
level using the 2-D algorithm described in Section III-A. Next, we find correspondences on each slice starting from the endocardium, using the same algorithm.
Finally, we connect the dots to generate the elements.

be used to describe the geometry of the left ventricle as needed
for the estimation of the complete deformation field using finite
elements.

Mesh generation in three dimensions is a notoriously difficult
problem for complicated geometries [6]. Here, we describe an
algorithm that takes advantage of the “cylinder-like” geometry
of the left ventricle to make the problem easier. The two basic
building blocks of the algorithm are the shape-based contour
interpolation method of Section II-A and the symmetric nearest
neighbor correspondence algorithm described in Section III-A.
The algorithm is best described with reference to Fig. 9. It con-
sists of four steps as follows.

Step 1. Interpolate on a contour by contour basis between
the endocardial and epicardial surfaces using
shape-based interpolation to generate an appro-

priate number of in-between interpolated surfaces
(typically three or four). Because of the greater
geometrical complexity of the endocardium, we
space the interpolated surfaces to be preferentially
closer to the endocardium. We then discretize the
contour on the middle slice of the endocardium to
the desired number of nodes (typically 35–45).

Step 2A.Using the symmetric nearest neighbor algorithm,
estimate correspondences between slices on the
endocardial surface on a contour-by-contour basis
starting in the middle slice. This generates a grid
of connected points on the endocardium. These
correspondences are shown in blue in Fig. 9(b).

Step 2B. For the points present in the correspondence maps
of step 2A, find their correspondences within each
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slice starting at the endocardium and moving one
level at a time toward the epicardium. This gener-
ates a grid of connected points on each slice. These
correspondences are shown in purple in Fig. 9(c).

Step 3. We complete the mesh by taking advantage of the
grid-like topology of the hexahedral mesh. Consider
the following example with reference to Fig. 9(d).
A point P1 on slice S10 is mapped to point P5 on
slice S11 on the endocardial surface (step 2A), and
point P3 on slice S10 on the first midwall surface
(step 2B). Further, point P5 on slice S11 on the
endocardium corresponds to point P7 on slice S11
of the first midwall surface (step 2B). By virtue of
the topology of the mesh, P3 also has to connect to
P7. This completes the quadrilateral which forms
one face of the element.

V. THE MECHANICAL MODEL

Having described the generation of the image-derived dis-
placements using the shape-based algorithm, we now turn our
attention to describing the model used to smooth and interpo-
late these displacements. We first describe some fundamental
concepts in continuum mechanics [48] and next we present the
actual model used in this paper.

A. Deformations

Consider a body which after time moves and deforms
to body . A material particle initially located at some posi-
tion on moves to a new positionon . If we further
assume that material cannot appear or disappear there will be an
one-to-one correspondence betweenand , so we can always
write the path of the particle as: . We can also de-
fine the displacement vector for this particle as .
This relationship is also invertible. Givenand , we can find .
We consider two neighboring particles located atand
on . At a new configuration we can write

(3)

The Jacobian matrix is calledthe deforma-
tion gradient matrix. We note that by definition .

The mapping defined by (3) has two components: a rigid mo-
tion component and a change in the shape or deformation of the
object. For the purposes of capturing the material behavior, we
need to extract from the component which is a function of
the rigid motion and the component which is a function of the
deformation.

Small Deformations and Rotations:Since the deformations
and the rotations in any one single time-frame interval are small
( 5%) we use here the following approximation [48].

. Next, we express as

(4)

Here, is the small rotation tensor and is antisymmetric.is
the small (infinitesimal) strain tensor and is symmetric. These
are defined as

(5)

Often, taking advantage of the symmetries, these tensors are
written in vector form as

This is the classical definition for strain in infinitesimal linear
elasticity [48].

Some Further Properties of the Strain Tensor:Given a strain
tensor (a 3 3 matrix) which was computed in a coordinate
frame parameterized by three unit vectors we can
transform it to a coordinate framesimilarly parameterized by
unit vectors as follows. First, construct the 3 3 ro-
tation matrix . Each component of , is given by the dot
product of and , i.e., . This results in :

. Using this matrix we can write the image of in the
coordinate frame as: .
We also note that the eigenvalues ofare known as the prin-

cipal strains and the eigenvectors as the principal directions. We
use the principal strains in Section VII.

B. Material Models

So far, we have restricted our description to the geometry of
the deformation. In this section, we extend this to account for
what happens when a material deforms and relate the deforma-
tion to the change in the internal structure of the material. Before
proceeding to give examples of possible material models we first
note that there are some theoretical guidelines which must be
observed [13]. The most important ones for this work are: 1)The
axiom of objectivity—this requires the material model to be in-
variant with respect to rigid motion or the spatial frame of refer-
ence; 2)The axiom of material invariance—this implies certain
symmetry conditions depending on the type of anisotropy of the
material, and implicitly reduces the number of free parameters.

The first axiom can be satisfied by postulating an internal or
strain energy function which depends on the gradient deforma-
tion matrix only through the strain tensor. One way of sat-
isfying this axiom is to model the material using a strain energy
function.

Linear Elastic Strain Energy Functions:The simplest useful
continuum mechanics model in solid mechanics uses a linear
elastic strain energy function , which takes the form

(6)
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where is a 6 6 matrix and defines the material properties
of the deforming body,2 as it relates the change in geometry
(strain) to the internal energy function . The simplest model
is the isotropic linear elastic model used widely in the image
analysis literature [18], [12].

In this paper, the left ventricle of the heart is specifically mod-
eled as a transversely elastic material to account for the prefer-
ential stiffness in the fiber direction. This is an extension of the
isotropic linear elastic model which allows for one of the three
material axes to have a different stiffness from the other two. In
this case, the matrix takes the form

(7)

where is the fiber stiffness, is cross-fiber stiffness and
are the corresponding Poisson’s ratios and is the

shear modulus across fibers. [ .] If
and this model reduces to the more common

isotropic linear elastic model. The fiber stiffness was set to be
3.5 times greater than the cross-fiber stiffness [16]. The fiber di-
rections used are from [16] and are shown in Fig. 10.

A Probabilistic Formulation of the Mechanical Model:As
originally demonstrated by Geman and Geman [15] and pre-
viously applied to medical image analysis problems (e.g., [8]
and [14]), there is a correspondence between an internal energy
function and a Gibbs probability density function. Given an en-
ergy function we can write an equivalent prior probability
density function of the Gibbs form [15] as

(8)

where is a normalization constant.

C. Limitations of the Transversely Elastic Linear Model

Linear models do not capture the progressive hardening of
many materials (especially soft tissue) when it is stretched. In

2This class of model is linear as it results in a linear stress-strain relationship,
i.e.,� = Ce. We do not use stresses in this work so we will not express mate-
rial models explicitly in terms of their stress-strain relationships. Moreover, we
deliberately avoid the terms “force,” “stress,” and “equilibrium.” These would
be inappropriate since the problem we are trying to solve has no real forces as
such. The use of the word “forces” in related work such as Terzopoulos [51] in
the context of physics-based vision may have been appropriate since the authors
were not trying in any way to use real physics in their methods. In this paper,
since we are usingreal mechanical models to modelreal tissue properties, we
would only use words such as force to describereal forces.

Fig. 10. Coordinate system used to define fiber orientation. The fiber direction
(F ) lies in the plane defined by the circumferential (C) and longitudinal (L)
axes at an angle� counter-clockwise from the circumferential axis. The fibers
are assumed to lie in the plane defined by the local circumferential (C) and
longitudinal (L) axes. In the undeformed state, the radial (R) axis points
outwards, the circumferential axis (C) is along the circumference of a planar
section and the longitudinal axis (L) is vertical. The fiber (F ) and cross-fiber
axis (X) lie in the plane defined byC andL. The fiber orientation can then
be defined by the angle� as shown in the diagram. The epicardial fiber angle
varied between�43 at the base and�53 at the apex, and the endocardial
fiber angle varied between 82at the base and 97at the apex. All the other
fiber angles can be found by linearly interpolating both along the vertical and
the radial directions [16].

the case of linear elastic models, the effective stiffness is a con-
stant with respect to the strain whereas in practice the stiffness
increases as the strain increases. Moreover, in the work of Guc-
cione [16] the ratio of fiber-to-transverse stiffness varies with
the deformation. We selected a value of 3.5 as a reasonable value
for the range of deformation that is observed.

The use of complex nonlinear models is essential if the model
by itself tries to capture the whole complex motion of the left
ventricle. In this paper, the mechanical model is used as a filter in
the signal processing sense to smooth and interpolate displace-
ments in a meaningful way, hence, a simpler model of the type
used here produces reasonable results.

VI. ESTIMATING THE COMPLETEDEFORMATION FIELD

Having described the initial displacement estimation
process (Section III) and the model used for the myocardium
(Section V), we now describe the overall framework for
integrating these two forms of available information. We note
that this framework is general and can be applied to other
forms of soft tissue deformation estimation processes where
one is trying to combine image-derived displacements with
biomechanical models.

We pose the problem of estimating the complete deformation
field as a Bayesian estimation [38] problem as follows: Given
1) a set of initial, noise-corrupted displacements derived
from the shape-tracking algorithm, with an associated measure-
ment probability density function [see (2)], and 2) a
prior probability density function for the true displacement field

, derived from the mechanical model [see (8)], estimate
the optimal value of the displacement fieldas the one which
maximizes the posterior probability density function .
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Using Bayes’ rule we can write the posterior probability at
each point as

(9)

First, we note that is a constant once the measurements
have been made and can therefore be ignored in the maximiza-
tion process. We can re-write (9) by taking logarithms to arrive
at

(10)

Using the volumetric model defined by the mesh generation
algorithm (see Section IV), we then proceed to write a finite
element formulation [7] for the problem over the whole of the
left ventricle. First, we concatenate all the individual displace-
ments at the nodes of the mesh into a long vector. Then,
we can express the model term as the matrix triple
product where is the global stiffness ma-
trix. Then, we concatenate all the measurementsinto an-
other long vector and express the data term as

where is the inverse co-
variance matrix.3

Then, we can rewrite (10) in the final form

which when differentiated with respect toyields the final so-
lution equation

(11)

A. The Problem of Unit Reconciliation

There is one fundamental problem with the above framework.
This is the problem of “unit reconciliation.” This problem arises
because the model stiffness is measured in different units from
the noise variance, which results in the numbers in the stiffness
matrix having different units from the numbers in the covari-
ance matrix .

To illustrate the effects of this problem, we can rewrite both
of these matrices in this general form (using the matrix

to be either or ) as

(12)

where is the maximum value of . In the case of the
stiffness matrix , would the highest value of the stiff-
ness matrix and would be proportional to the Young’s modulus,
whereas in the case of the covariance matrix , would
be the smallest variance, or the highest confidence in any of the

3In this case, a diagonal matrix with valuesc on the leading diagonal de-
fined in (2) where there are measurements available and 0 where there are no
measurements.

measurements. Note also that the numbers in the matrices
and are dimensionless.

We can now rewrite (11) as

Dividing through by , we obtain

(13)

At this point, it is clear that the absolute values of
and enter into the functional only through their ratio

. Given that the rest of the expressions in (13) are
dimensionless4 to reconcile (13) in terms of dimensionality we
need to convert this ratio in order to also make
it dimensionless. This is done by multiplying by a scaling
constant of the appropriate units, i.e.,

(14)

From a dimensionality viewpoint, the value of the scaling con-
stant is completely arbitrary. This value can be interpreted
as defining in some sense the ratio of the relative confidences in
the modelas a wholeand the dataas a whole. While this is a
common problem in many regularization problems such as Horn
and Schunk [21], it is especially important to note it clearly in
this context where one is trying to estimate deformation of real
deformable objects using a mechanical model. The implications
of this inconsistency in the units is that the material properties of
the solid can be used to set the all the values of the regularization
functional (model) up to a scaling constant which is arbitrary. In
some previous work in this area, the authors specify the abso-
lute value used for the Young’s modulus for the left ventricle,
which is meaningless as a result of this problem.

B. The Bias Problem

The estimation framework described so far produces a biased
estimate of the deformation. The easiest way to see this is to
observe that, since the elastic model penalizes all deformations,
any estimation framework which uses it as a prior model or in-
ternal energy model as defined in (11) will underestimate the
actual deformation. The linear elastic model can be thought of
as a prior probability density function on the strain with zero
mean and variance proportional to the reciprocal of the Young’s
modulus. To illustrate this, we rewrite (11) as

Taking expectations on both sides gives

(15)

Note that for as long as is nonzero, the expected value
of will be smaller than the expected value of , hence,
the deformation will be underestimated. This is a problem in
most methods that estimate cardiac deformation—the possible

4The term “dimensionless” is used to describe a quantity that is a real number
with no associated units. A dimensionless quantity will have the same value
regardless of the system of units used in its calculation. For example, the ratio
of two lengths will the same regardless of whether the lengths are measured in
meters or in feet.
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exception being those methods that essentially believe the data
once, for example, the tag-lines have been extracted (such as
[23]).

A number of methods have been proposed to implicitly deal
with this problem (see [34] for details). None of these, however,
have dealt with the cause of the problem; they are rather, in a
sense, trying to limit its effects with varying degrees of success.
In this paper, we correct for part of the bias by 1) solving for the
cardiac deformation in a frame-by-frame manner, thus keeping
the deformations to be estimated small and, hence, closer to
zero; 2) by ensuring that points that lie on the outer surfaces of
the myocardium at framestill lie on the outer surface at time

. This second step eliminates any bias in the directions per-
pendicular to each outer surface.

C. Numerical Solution

The overall framework described by (11) is assembled and
solved using the finite element method [7]. The first step in the
finite element method is the division or tessellation of the body
of interest into elements; these are commonly tetrahedral or hex-
ahedral in shape. In this paper, we use hexahedral elements gen-
erated using a custom mesh-generation algorithm, described in
Section IV. In our case, the myocardium is divided into approx-
imately 1500 hexahedral elements.

For each frame between end-systole (ES) and end-diastole
(ED), a two step problem is posed: 1) solving (11) normally;
2) adjusting the position of all points on the endocardial and
epicardial surfaces so they lie on the endocardial and epicardial
surfaces at the next frame using the symmetric nearest-neighbor
technique described in Section III-B and solving (11) once more
using this added constraint. This ensures that there is a reduction
in the bias in the estimation of the deformation.

The value of the weighting constant is set adaptively to
be as large as possible (which pushes the optimum toward the
data side) subject to solution convergence. In this way, we make
the following assumption: the best solution is the one which ad-
heres as much as possible to the initial estimate of the displace-
ment field but still results in a connected solid. Convergence
fails when the Jacobian of the deformation field becomes sin-
gular.5 In this case, we decrease the value of to produce a
smoother displacement field.

VII. EXPERIMENTAL RESULTS

A. Surgical Preparation/Experimental Protocol

Experiments were performed on fasting adult mongrel dogs
with approval of the Yale Animal Care and Use Committee,
in compliance with the guiding principles of the American
Physiological Society on research animal use. All dogs were
anesthetized with 10–12 mg/kg thiopental sodium (Pentothal
Abbott, North Chicago, IL) intravenously, intubated and me-
chanically ventilated on a respirator with a mixture of halothane
(0.5%–1.5%),andnitrousoxideandoxygen (NO : O 3 : 1).

A femoral vein and both femoral arteries were isolated and
cannulated for administration of fluids and drugs, pressure mon-
itoring and arterial sampling. A thoracotomy was performed in

5For example, when the path of two points on the mesh intersect as a result
of a locally bad shape-based displacement estimate.

Fig. 11. Implantation of Image-Opaque Markers. This figure shows the
arrangement of markers on the myocardium. First, a small bullet-shaped
copper bead attached to an elastic string was inserted into the blood pool
through a needle track. Then, the epicardial marker was sutured (stitched) to
the myocardium and tied to the elastic string. Finally, the midwall marker was
inserted obliquely through a second needle track to a position approximately
half-way between the other two markers.

the fifth intercostal space and the heart suspended on a peri-
cardial cradle. MR image opaque markers were implanted for
validation of our MR analysis approach, using a marker system
previously described by our group [46]. In brief, cubic arrays
of three-marker sets were carefully placed in the mid anterior
and posterior walls avoiding epicardial surface vessels. First, a
small bullet-shaped copper marker attached to an elastic string
was inserted through the myocardium via a previously created
needle track with the aid of a metal introducer. A specially de-
signed gadolinium-filled capsule was then sutured to the epicar-
dial surface directly above each of the endocardial markers, as
illustrated in Fig. 11. The elastic string was withdrawn so the en-
docardial marker was touching the endocardial surface and fixed
to the epicardial capsule with a suture, providing endocardial-
epicardial marker pairs. A second copper marker was inserted
obliquely so that it would be positioned between each endo-
cardial-epicardial marker pair. The proximal left anterior de-
scending coronary artery was isolated for placement of a snare
occluder. This occluder was externalized and the chest closed in
layers. After completion of surgical preparation, dogs were po-
sitioned in the MR scanner for imaging. An electrocardiogram
limb lead was monitored continuously during MRI and used for
gating. Resting MR images were completed in one hour. Heart
rate (HR) and aortic pressure (AoP) were recorded immediately
before and after each complete image acquisition. Dogs subse-
quently underwent repeat MR imaging following coronary oc-
clusion. Dogs were euthanized with a bolus of potassium chlo-
ride after completing all imaging.

B. MR Image Acquisition

MR imaging was performed on a GE Signa 1.5 Tesla scanner
with version 4.8 software using the head coil (26 cm diameter)
for transmission and reception. Short-axis images through the
left ventricle were obtained with the gradient echo cine tech-
nique using the following parameters: TE6 ms, TR 40 ms,
flip angle 30 , 16 phases collected, 5-mm slices, matrix 256

256, two averages, field of view 40 cm. A total of 16 con-
tiguous 5-mm-thick slices were collected, by acquiring four sets
of staggered short axis slices (four slices/set) with a separation
gap of 20-mm and 5-mm offset. This sequence provides images
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Fig. 12. Canine cine-MRI-derived principal strains using algorithmf-3. The horizontal axis represents time from ED to ES (every other frame shown). We display
the first (P1) second (P2), and third (P3) principal strains on each of the three rows. The septum is on the left and the anterior wall on the bottom. The markers
were implanted in two arrays: one in the anterior wall and another in the lateral wall.

with an in-plane resolution of 1.64 mm 1.64 mm for a 256
256 matrix and a 5-mm resolution perpendicular to the imaging
plane. This sequence also provides excellent temporal resolu-
tion (16 frames/cardiac cycle,40 ms/frame).

A total of four dogs completed the MR imaging protocol.
Hemodynamic parameters and cardiac rhythm remained stable
during the MR image acquisition. The HR and systolic AoP
immediately before the MR acquisition were not significantly
different from that obtained at the completion of the acquisition.
All image analyses were performed on all dogs.

C. Strain Computation Using Implanted Markers

The location of each implanted marker is determined in each
temporal frame by first manually identifying all pixels which be-
long to the marker area (because of imaging artifacts the marker
“image” extends to more than one voxel) and then computing
the 3-D centroid of that cluster of points, weighted by the grey
level.6 This procedure was performed on a total of four animals
and both sets of images (baseline and postocclusion). Mid-wall
markers were not used since it was difficult to identify them cor-
rectly from the images.

Once the positions of the markers were determined, they were
used to compute the displacement at each marker between ED
and ES. Further, in each of the two regions of the LV where the

6In the case of dark markers, the image is first inverted.

TABLE I
PARAMETER SETTINGS

Definition of the six different parameter settings used for both the sensitivity analysis
and the validation study with implanted markers.

markers were implanted, groups of either six or eight markers
(depending on the local geometry) were connected to form ei-
ther prism or hexahedral elements. Given the computed dis-
placements, we then calculated the strains in these marker re-
gions. In particular, we computed the principal strains at the
centroid of each marker array. We labeled the first, second, and
third principal strains as P1, P2, and P3, respectively.

D. Sensitivity Analysis

We compare the strains obtained using the implanted markers
to the strains computed using our algorithm. In particular, we
used six different parameter settings for the algorithm as sum-
marized in Table I, resulting in six different versions of our al-
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TABLE II
ACTUAL STRAIN VALUES

Means ( ) and standard deviations () for both the marker-calculated and the algorithm-
derived % strains, in the baseline (preocclusion) studies.

TABLE III
SENSITIVITY ANALAYSIS

Average absolute percentage strain differences for the three principal strains [First, (P1),
Second, (P2), and Third (P3)] between outputs of the algorithm with six different parameter
settings as defined in Table I. Note that the variations are small even when drastic parameter
changes are involved.

gorithm. In three of these versions, we used the transversely
isotropic elastic model described by (7) with three different set-
tings of the Poisson’s ratio (0.325, 0.4, 0.475), and in the other
three versions we used an isotropic elastic model [obtained by
setting in (7)] and similarly varied the Poisson’s ratio.
An example of the principal strains derived on a baseline heart
using algorithmf-3 is shown in Fig. 12.

The average principal strains obtained in the precoronary oc-
clusion state for all the regions as estimated using the implanted
markers as well as our algorithm is tabulated in Table II, in order
to give a sense of the magnitude of these strains.

Next, we computed the difference between the outputs of
these six different versions of our algorithm in the regions of
the implanted marker arrays as a test of the sensitivity of our
algorithm to parameter changes. The results are tabulated in
Table III. We note that the algorithm is fairly insensitive to

TABLE IV
ACCURACY ANALYSIS

1) the mean ( ) and standard deviation () of the absolute percentage error between the
marker-calculated strains and the strain outputs of six versions of the algorithm, as well as
the correlation ratio between the algorithm generated strains and the marker output.

these changes of settings and also that changing the Poisson’s
ratio produces a greater change in the strain output than does
changing the underlying mechanical model type.

E. Strain Comparison

The image-derived strains were compared with strains
derived from implanted markers. These strains were compared
with the average image-derived strains in the region of the
myocardium contained within each marker array. Comparison
results are shown in Table IV for dogs (two acquisitions
per dog, one preocclusion and one postocclusion). We observe
a strong correlation of the first and third principal strain values
which roughly correspond to the radial and circumferential
directions, respectively. The correlation for the second principal
strain (roughly corresponding to the longitudinal direction) is
lower and could be the result of two factors: 1) The lower image
resolution in that direction as a result of using 5-mm-thick
slices; 2) Incomplete bias reduction in this direction since it
is perpendicular to the epi and endo-cardial surfaces of the
ventricles. We further note that the correlation ratio values
reported for the third principal strain are close to those reported
for validating circumferential shortening derived from MR
tagging recently reported in [54]. In particular, they report a
correlation ratio of 0.84 for ES.

F. Preliminary Results on Human-MRI and Canine-CT Data

In the future, we plan to apply our algorithm to both human
studies and other image modalities. In order to demonstrate the
applicability of our algorithm to these cases, we present here
some preliminary results obtained on human cine-MRI data (see
Fig. 13) and canine cine-CT data (see Fig. 14).

VIII. C ONCLUSION

In this paper, we have illustrated the application of our ap-
proach to estimating LV deformation from 3-D medical image
sequences in both experimental models and human volunteers.
The results have been validatedin vivousing implanted markers.

We note that modality-specific forms of data can be added
to this general framework. In the case of magnetic resonance
image data, midwall could be derived from MR tagging and/or
phase contrast velocities. However, we have tested the method
so far using only shape-based displacements as an input.
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Fig. 13. Human cine-MRI-derived results. Left: Magnitude breath-hold ED and ES images at a single slice level. Right: (see color scale in Fig. 12) radial strains
at three long-axis time points between ED and ES. The one difference in the processing of the human cine-MRI data as opposed to the previously presentedcanine
cine-MRI data, was that since, in this case, different 3-D slice levels are acquired at different breath holds, slices at the same time frame can be misaligned along
the long axis of the heart. We have corrected for this by manually aligning the data in each frame.

Fig. 14. Algorithm-derived strains from cine-CT dynamic spatial reconstructor (DSR) Images. (left) Example axial slice from baseline dog study at ED and ES.
(right) Radial strains at three time points ED to ES. (Again, see Fig. 12 for the colorscale.) The cine-CT canine experiments were performed by Dr. ErikRitman,
at the Mayo Clinic, using the DSR [44]. Note that the values reported are in the same range as strains from our cine-MRI data.

Further research could include the use of an active model
[35] to properly handle the bias problems inherent in the pas-
sive biomechanical model. An active model could also be used
as a means of incorporating a temporal continuity/periodicity
constraint.
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