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Estimation of 3-D Left Ventricular Deformation From
Medical Images Using Biomechanical Models

Xenophon Papademetris*, Albert J. Sinusas, Donald P. Dione, R. Todd Constable, and James S. Duncan

Abstract—The quantitative estimation of regional cardiac de- can be attributed to persistent postischemic dysfunction (“stun-
formation from three-dimensional (3-D) image sequences has im- ning”), persistent myocardial hypoperfusion (“hibernation”), or
portant clinical implications for the assessment of viability in the mechanical tethering of normal areas by the adjacent injured
heart wall. We present here a generic methodology for estimating . . . .
soft tissue deformation which integrates image-derived informa- myocardlum. Th's_tethe””g can be seen at the Ia.teral margins
tion with biomechanical models, and apply it to the problem of Of aninfarct, resulting in a viable although dysfunctional border
cardiac deformation estimation. The method is image modality in- zone. Motion of the viable epicardium can also be constrained
dependent. The images are segmented interactively and then initial py injury of the underlying endocardial myocardial tissue. The
correspondence is established using a shape-tracking approach. Alocation and ultimate transmural extent of the injury has im-
dense motion field is then estimated using a transversely isotropic, . L . g
linear-elastic model, which accounts for the muscle fiber directions porFant |mpI|cat|.on§ for ang term progl_"l05|s OT patients fol-
in the left ventricle. The dense motion field is in turn used to cal- l0wing myocardial infarction. Those patients with transmural
culate the deformation of the heart wall in terms of strain in car- myocardial infarction are likely to dilate their left ventricles over
diac specific directions. The strains obtained using this approach time, a condition termed left ventricular (LV) “remodeling.” The

in open-chest dogs before and after coronary occlusion, exhibit a oy rrence of postinfarction remodeling carries a much worse
high correlation with strains produced in the same animals using .
long-term prognosis.

implanted markers. Further, they show good agreement with pre- . .
viously published results in the literature. This proposed method A number of laboratories have shown that a comprehensive

provides quantitative regional 3-D estimates of heart deformation. quantitative analysis of myocardial strain can more accurately
Index Terms—Cardiac deformation, left ventricular motion esti- identify i_SChemiC i,”J'UVY than'can simple analysis of endocardial
mation, magnetic resonance imaging, nonrigid motion estimation, Wall motion or radial thickening [5]. Furthermore, the character-
validation. ization of segmental strain components has shown great promise
for defining the mechanical mechanisms of tethering or remod-
eling [25], [28]. Experimental animal studies demonstrate that
decreased circumferential shortening in myocardial regions ad-
CUTE coronary artery occlusion results in myocardial infacent to the infarct zone relative to remote regions is associated
jury, which will progress from the endocardium to the epiwith late LV remodeling [24]. At present, quantitative nonin-
cardium of the heart wall in a wavefront fashion. A primary goalasive measurement of three-dimensional (3-D) strain proper-
in the treatment of patients presenting with acute myocardi@s from images has been limited to special forms of magnetic
infarction is to reestablish coronary flow, and to interrupt theesonance (MR) acquisitions, specifically MR tagging, and to a
progression of injury, thereby salvaging myocardium. Unfortuesser extent MR phase contrast velocity.
nately, there are no universally accepted noninvasive imagingThe MR tagging approach to the measurement of myocardial
approaches for the accurate determination of the extent of #irain was originally developed, and then vigorously pursued
jury. Using conventional measures of regional myocardial funfirther by two groups, one at the University of Pennsylvania [4]
tion, the extent of myocardial infarction is overestimated. Thignd the other at Johns Hopkins [30]. In general, there are three
different approaches to estimating displacement data from MR
Manuscript received January 17, 2001, revised April 10, 2002. This Workwgr%‘gging' The first approach involves tagging in multiple inter-
supported by the National Institutes of Health (NIH) under Grant NIH-NHLBsecting planes at the same time, and using the tag intersections
RO1-HL44803. The Associate Editor responsible for coordinating the review §§ tokens for tracking (e.qg., [1], [23], and [55]). The second ap-
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corresponding author. proach involves tagging in multiple intersecting planes, one set
*X. Papademetris is with the Department of Diagnostic Radiologf parallel planes atatime. Then, each tagging plane is used sep-
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As an alternative to MR tagging, several investigators haleft ventricle. In Section V, we introduce some concepts from
employed changes in phase due to motion of tissue withincantinuum mechanics and describe the model used for the my-
fixed voxel or volume of interest to assist in estimating instamcardium. In Section VI, we outline the framework used for esti-
taneous, localized velocities, and ultimately cardiac motignating a complete volumetric displacement field. Experimental
and deformation. While the basic ideas were first suggestegbults and validation are discussed in Section VII.
by van Dijk [52] and Nayler [33], it was Pelc and his team
[39]-{41] that first bridged the technique to conventional cine
MR imaging (MRI) and permitted the tracking of myocardial IIl. SURFACE RECONSTRUCTION
motion throughout the cardiac cycle. This technique basically The |eft ventricle is segmented on a slice by slice basis using
relies on the fact that a uniform motion of tissue in the presenge. ;stom designed software platform [36]. The segmentation
of a magnetic field gradient produces a change in the MRqqrithm results in a set of planar contours parameterized using
signal phase that is proportional to velocity. In _gen_eral, tWB—spIines (as shown in Fig. 2—step 1) which are subsequently
approaches have emerged to assemble deformation informalighypled to generate a discrete set of points on each plane (see
from phase contrast images: 1) processing the data directlyg 2—step 2).
estimate strain rate (e.g., [40] and [53]) and 2) integrating the o these contours, we reconstruct the endo- and epicar-
velocities over time, via some form of tracking mechanism t@i5| surfaces in a two-step procedure as follows: 1) We inter-
estimate displacements (e.g., [10], [19], [32], [56], and [57]). holate between contours to generate in-between contours at the

The use of computer vision-based techniques to estimate cﬁ%‘sired sampling distance. This results in an iso-sampled set of
placement is also possible. One approach to establishing Gints in three dimensions. 2) We construct a surface mesh by
respondence is to track shape-related features on the LV ojging triangles between the points (as shown in Fig. 2—step
time as reported by Kambhametu [22], Cohen [9], Amini [2]3) This defines the neighborhood relationship between points

McEachen [29] and Shi [46]. This is the basis for much of oWhich is then used in the smoothing and curvature calculation
own work and is expanded later. In general, here, pre“m'”aé}’gorithms.

displacements are estimated by matching local curvatures from
segmented surfaces from consecutive time frames and then Ah
estimates are smoothed to produce final displacement values:
Finally, some investigators have used the intensity of the im-We use a subpixel adaptation of work presented by Herman
ages directly to track local LV regions. Song and Leahy [4720] to interpolate between contours. In [20], the interpolation
used the intensity in ultrafast CT images to calculate the digas done at a pixel level resolution. However, given that the
placement fields for a beating heart. In addition, other investiotion we are trying to estimate is of the order of half of a voxel
gators have used local image intensity or intensity-based imagg frame, subpixel resolution is needed.
texture from echocardiographic image sequences to track locaTl he first step in the interpolation process is to convert each
positions over two-dimensional (2-D) image sequences [2€pntour into a gray-value 2-D image known as tfistance
[31]. These efforts, along with some related MR tagging aprap,where pixel values represent the shortest signed distance
proaches (e.g., [17]) roughly fall into the category of opticalf points from the contour, with positive values for pixels inside
flow-based methods. With the exception of methods based e contour and negative values outside. The algorithm is ini-
magnetic resonance tagging and to a lesser extent MR phtgkized by assigning distances to all points that lie within two
contrast velocities, none of the other methods is capable of pg<els of the contour using exhaustive search. Then, the com-
timating complete 3-D deformation maps of the left ventricle.plete distance map is calculated by performing two consecutive
In this paper, we present a modality-independent method fdramferingprocesses [20] using the template shown in Fig. 3.
estimating 3-D LV deformation from 3-D image sequences. [fhese templates are scaled versions of the ones used in [20], the
this current paper, we have applied this methodology to ordinasgaling being done to improve subpixel resolution, while still
cine-MR data and 3-D cine-CT data. An earlier version of thigmaining within the two-byte integer range. The choices of the
methodology was previously applied to 3-D echocardiographiciginal unscaled two X 3 templates have been justified to be
sequences [37]. This paper constitutes the definitive presemaar-optimal [20]. The resulting image represents the chamfer
tion of this methodology, including the complete description afistance map of the given contour.
both the geometrical algorithms as well as the integration frame-The second step in the interpolation process is the generation
work. Moreover, we present results from new 3-D image sef the output distance map. This is done by combining the input
guences from both animals and humans. Our algorithm derivéidtance maps in the appropriate way. If we label two contours
strains are validated in the experimental models using surgicadlyc; and ¢, and their distance maps @s,(c1) andd,,(c2),
implanted markers. respectively and we need to find the mean contgurwe first
The paper is structured as follows (see also the schematigeneratel,,,(c,,) = (d(c1) + dn(c2))/2. [Note that in the
Fig. 1). In Section II, we describe the method of reconstructimggion between contours andcs, d,,(c1) andd,,(¢c2) have
the left-ventricular bounding surfaces from planar contours. Tle@posite signs, hence, this results in a zero set.]
surfaces are then used as inputs to the shape-based tracking alhe third step is the extraction ef,, from its distance map
gorithm described in Section Ill, which is used to generate tlg,. We definec,, to be the zero level set in the distance map
initial displacement field. Section IV describes the mesh genet; and we extract it using a border following scheme adapted
ation algorithm used to generate the volumetric model for tliem the level-set work of Malladét al. [43] (which in turn is

eShape—Based Interpolation of Contours
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Fig. 1. Outline of the proposed algorithm. The numbers in parenthesis [e.g., Mesh Generation (IV)] refer to the section in the paper where this isompone
described, i.e., mesh generation is described in Section IV.
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Fig. 2. Steps involved in moving from slice by slice contours to full surface representation. 1) Slice by slice B-spline parameterized contaatedbgxthe
segmentation process. 2) Discretized contours as equally-spaced points. 3) Formation of wire-frame by Delaunay triangulation. 4) Surigc8ySnaeoithing
of surface using nonshrinking smoothing algorithm. 6) and 7) First and second principal curvatures of the surface. Here, green shows ndgatarel)(i.e.,

curvature, white shows flat regions and red indicates positive (i.e., outward) curvature.
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Fig. 3. Chamfer transformation templates. The two templates used by the

Cutting Corners
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dual chamfering processes to calculate the distance maps: template (a) for the R oM ey e to iher cueve ymmetric
top-to-bottom, left-to-right chamfering, and template (b) for the bottom-to-top,
right-to-left chamfering. e Reconstructed curve after connecting points

Fig. 4. lllustration of problems with asymmetric nearest neighbor matches.

. . .The two examples (left and middle) where the correspondence is driven
derived from the marching cube work of Lorenson [26]). It i xclusively in one direction show problems such as “cutting corners” when the

this last step which gives the method its subpixel resoluti@fo curves are not roughly parallel. In the third case, by using a symmetric
compared with the one used in Herman [20]. (See [34], for mopearest neighbor map the problem is avoided.
details.)

Gaussian filtering in [45].) Then, curvatures are computed
B. Delaunay Triangulation Between Planar Contours using the same method as was used in [45] and [46]. At each

Having created an isotropic set of points on the surface we %qint on the -surface we cqmpute the two principal curvatures
construct the surface using 2-D-constrained Delaunay triangfﬂ-andk2 as illustrated in Fig. 2.
lation [45]. The algorithm described here takes advantage of the
fact that the original points lie on parallel planar contours and
are ordered. The resulting triangulation has the smallest totaln this section, we describe the shape-tracking algorithm,
length of triangle sides of all possible triangulations betweeawhich is an extension of the work by Shi [46]. The key im-
the two planar contours. This triangulation method is optimal provement over this previous work is the use of the symmetric
thatno flipping of connections can decrease the total length ekarest neighbor algorithm to initialize the shape-tracking. We
all the sides of all the triangles. first describe the estimation of symmetric nearest neighbor

For the case of constructing a set of triangles between tworrespondences, first in curves, and then its extension to
discretized, anticlockwise oriented, closed planar contayrs, surfaces. Then, we describe the shape-tracking algorithm
andcz, the procedure is as follows: (a proof of optimality caitself. We note that the curve version of the symmetric nearest
be found in [34]). First, for a point; on contoure; find the neighbor algorithm is used in the mesh generation algorithm
nearest point to ip, on contoure,. For thisp, find the nearest described in Section IV.
point to itp; on contoure;. If p; = p; labels; = p1, s2 = p2
as the starting pair of points and start creating triangles. Othér- Symmetric Nearest Neighbor Correspondences in Curves
wise, if p1 # p1 choose another point on contayrand repeat  |n most computer-vision applications and in related work
the initialization step. The process fails if there is no peint [46], [29], the estimation of initial correspondences is done
for which this criterion is satisfied. (This is extremely unlikely.ysing what we will term an “asymmetric nearest neighbor”
Once the original seed points ands are defined, we start the technique. In this case, for each point on curve/surfactne
connection process. First, we define two test potatandt,. nearest point on curve/surfaege is found and labeled as the
t1 is the next point along: from s, and¢» which is the next jnitial point. This has problems when the two curves are locally
point alongc, from so. If [¢1 — s2| < [t2 — s1| label the next not parallel as whole regions of one curve map to a single point
pointn, = t; elsen, = ¢», and add triangle;, sz, n,, to the  on the other curve. Also, whole regions on the second curve
list. Then, ifn, = ¢, then sets; = n,, else set; = n,. We  may not contribute to this map resulting in “cutting corners”
then proceed to define new test poititsandt, unlesss; = p1  as demonstrated in Fig. 4. In this section, we focus on the 2-D
ands; = py in which case the algorithm terminates. case; we present extensions to the full 3-D case in Section I1I-B.

Connectivity Distance:The Delaunay triangulation defines otivated by the bimorphism work of Tagare [49] we de-
the connectivity of the points on each surface. We further defigg|op a symmetric technique to estimate initial correspondences
the distance between the two points to be the order of their cQfithout “cutting corners.” This is important so as to ensure that,
nection. A point has a distance of zero with itself, a distance g§ much as possible, the whole of cueyenaps to the whole of
one with a first-order neighbor (a point with which it is directlycurvec, and that the map is free from singularities (such as two
connected by the edge of a triangle), a distance of two withy@ints mapping to the same point) which are not either permis-
second-order neighbor, and so on. We will call this the connegple or plausible in the areas of application of this algorithm.
tivity distanced... The symmetric nearest neighbor algorithm has three steps as

follows.

Step 1. For all points on curvg find the nearest neighbor
The constructed surfaces are smoothed using the non- on curvee,. So, for example, for a point, on curve

shrinking two-stage Gaussian algorithm proposed by Taubin c1 we have a corresponding poipt on curvecs.

[50]. (This is compared with the more typical one-stage Then, for pointp, estimate its nearest neighboyr

[ll. THE SHAPE TRACKING ALGORITHM

C. Surface Postprocessing
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Fig. 5. An example of the 2-D implementation of the symmetric nearest . . . . )
neighbor algorithm. In this case, we try to map the inner cufveo the outer Fig- 6.  Symmetric Nearest Neighbor Algorithm in 3-D. A portion of surface
curve co. Curve c; is defined by four pointgcy (0.0), ¢1(0.25), ¢1(0.5), 5118 shown on the left centered on a paointwhich has first-order neighbors

¢1(0.75)), all of which apart front, (0.5) have a symmetric nearest neighbor.¢: b: ¢, . ¢, f. Of these neighbors, b,  have symmetric nearest neighbors
The nearest neighbor af,(0.5) is shown on the left (bad) and the point®’s ?’. ¢/ on sz shown on the rightp, itself does not have a symmetric
¢1(0.5) is mapped to by the algorithm is shown on the right().65) good!]. ~ nearest neighbor om.. We generate the first estimate of the position of
the corresponding point o, pi, by averagingu(a), u(b) and u(c), the
displacement vectors of points a, b, c to estimate a vegt@and translating,

~ . by u,. Then,p, is mapped to surface, by finding its (asymmetric) nearest
on 1 Ifp1 =pr then the pointgps, p2) arg Symf point ons,. This is pointp, which is the corresponding point of poipt on
metric nearest neighbors and the match is retaine@rfaces,. We also define:(p;) (not shown) as:(p;) = p» — p1. We further
Otherwise, the match is discarded. show the first-order neighbors pf on surfaces, labeled agj, i, ¢ andj.

Step 2. For all points on curv@ which do not have sym-
metric nearest neighbors og find amatching point g symmetric Nearest Neighbor Correspondences in Surfaces
on ¢, by interpolating between the matching points
ofits neighbors. We do this until all points enhave  |n this section, we extend the work of the previous section
a matching point om. to three dimensions. The key step here is to find a way of re-
Step 3. Smooth the displacement field slightly to eliminatgiacing the arclength parameterization. We do this by using the
potential near-singularities. Euclidean distance. We focus here on steps 2 and 3 of the algo-
The interesting part of this algorithm is the interpolation stefthm; step 1 is identical to the 2-D case.
(step 2). We take advantage of the fact that a curve can be paBefore proceeding to the description of the interpolation step
rameterized using its arclength. An example will help to illusyve note that if a poinp; on surfaces; is mapped to a poin,
trate the point: consider the case that curvéias four points on surfaces, then we define the displacement vectgp,; ) =
[(€1(0.0), €1(0.25), ¢1(0.5), ande; (0.75)] which match to dif-  p, — p;. Any pointp; on s; that has a corresponding point on
ferent positions or,, as illustrated by Fig. 5, and noting thats, also by definition has a displacement vector.
c1(s1) represents the point on cureg at arclength o = s;. The Interpolation Step:This is the step in which we find cor-
In this case, step 1 resulted in three symmetric neighbor paigsponding points for all the points pnthat do not have a sym-
and left one point without a match. We can represent the poimigtric nearest neighbor. This is done in an iterative fashion. At
one; by their arclengths as followse[(0.0), ¢1(0.25), ¢1(0.5),  each iteration, for each poipt on surfaces; that does not have
c1(0.75)) — (¢2(0.0), ¢2(0.4), 77, c2(0.9)]. a displacement vector, we average all the displacement vectors
In this case, point;(0.5) has no corresponding point afterof its first-order neighbors (that have a displacement) to generate
step 1. To generate a match far(0.5) we interpolate between a displacement vectar . If none of the first-order neighbors has
the corresponding points @f (0.25) and¢;(0.75) the nearest a displacement vector we go on to the next point. We then trans-
points toc;(0.5) on ¢; that do havesymmetricnearest neigh- late p; by u; to getp; = p; + u1. We then find poingp; on s,
bors. This results i, (0.5) — ¢2(0.65).r The final result of which is the closest point o, to 1, as shown in Fig. 6p- is
step 2 is:[c1(0.0), ¢1(0.25), ¢1(0.5), ¢1(0.75)] = [c2(0.0), the corresponding point @f on s, and we define the displace-
c2(0.4), 2(0.65), c2(0.9)]. ment ofpy, u(p1) = p2 — p1. When the iteration over all the
Then, in step 3 we smooth the displacements slightly (by copeints ons; is done, we check whether all the pointsqgrhave
volving the arclengths on, with a small Gaussian kernel) toa displacement. If they do, the process terminates, otherwise we
ensure no near singularities. This could result in a map such agecute another iteration.
[€1(0.0), ¢1(0.25), ¢1(0.5), c1(0.75)] — [c2(0.05), c2(0.38), So long as one point o has a symmetric nearest neighbor
¢2(0.62), ¢2(0.88)] which tries to equispace the points en after step 1 this algorithm will generate a set of point pairs. This
subject to staying close to their original positions. For this apigorithm is illustrated in Fig. 7.
proach to work wellin practice, where the curves are discretized,Smoothing: This is an alternating iterative process and con-
¢z has to be sampled much more finely thar{typically five to  sists of smoothing and mapping steps. Consider a susface
eight times more). During the smoothingstep, for all pointsp; on s;, we find
the average displacement vectgy of all its first-order neigh-
bors. [These would be(a), u(b), u(c), u(d), u(e) andwu(f) of
INote that we in effect place the corresponding pointgb.5) at the centroid Fig. 6.] We then generate a new displacement veetpr) —
of the (shortest) segment of the curgeconnecting the corresponding p0|nt50'75u(p1) +0.25u,. For themappingstep, then we translatg

of its neighbors ¢ (0.4) andc2(0.9)]. This generalization will become useful . ! k A
when we move to 3-D. by i to a pointp; . We then find the nearest neighbor of pgint
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A: Step 1 B: Step 2 (1)

Fig. 8. The shape-tracking algorithm. For a pginton the original surface, a
window W of plausible matching points on the final surface is first generated
around poinp. which is the symmetric nearest neighbopefon the deformed
surface. [In this cas€p., € W, d.(p2, p..) < 3]. Then, the poinp, in W
which has the most similar shape-propertiepids selected as the candidate
match point. The distance function for shape-similarity is based on the principal
curvatures.

x1 andkq. This is illustrated in Fig. 8. The distance measure
used is the bending energy required to bend a curved plate or
surface patch to a newly deformed state. This is labelef}as
and is defined as (see Shi [45])

(r1(p1) — K1(p2))* + (k2(p1) — 'i2(p2))2> '
2

dye(pl,p2) = <

1)

Fig. 7. Symmetric 3-D Nearest Neighbor Algorithm. (This is shown i ; ; ink, ™ ic i
2-D for simplicity.) (A) Result of step 1, where only points 1 and 6 havﬁrhe displacement estimate vector for each PRiNt;" IS given

corresponding points. (B) (Step 2 iteration 1) Points 2 and 5 also acqufP¥/

displacements since at least one of their neighbors has a displacement (points

1 and 6, respectively). Note that the displacement vectors of points 2 and ut = po — p1, Po = argmin [dy. (pl, p2)] .

5 have two parts. The first, shown using a dotted line, is the average of the p2EW

displacements of the neighbors, and the second, shown using a solid line, is . L . . .

the result of mapping this position to the next surface. (C) (Step 2 iteration 2) The underlying assumption in this algorithm is that the curva-

Points 3 and 4 also have displacements. (D)—(F) lterations of the smoothiggre at a point does not change much between two time frames.

algorithm. Note how the map becomes progressively more regular. Obviously, strictly speaking, this is not a valid assumption as
the left ventricle is a nonrigidly deforming object, but since

on s, and we label this point gs,. Next, we calculate the dis- the change in curvature between any two image time frames is

placement vectou(p; ) = p2 — p1. p2 is also the corresponding small, this is a reasonable assumption to make.

point of p; on s. Probabilistic Modeling of the Shape-Based Displacement Es-
timates: The bending energy measures for all the points inside
C. Shape-Based Matching the search regioml” are recorded as the basis to measure the

goodnessanduniquenessf the matching choices. These mea-
on successive surfaces using a shape similarity metric. T [resare combined to generate a confidence measure in the local

distance is based on the difference in principal curvatures. TW@tChC_WhiCh takes a highvalue wh_en a m_at_ch s bOt.h very good
method was validated using implanted markers [45]. In th d unique and low values otherwise. This is described in more
paper, we modify the initialization step of this algorithm to tak etail in [46].

advantage of the symmetric nearest neighbor correspondencg'_v en a set of d|spwlacement vector megsuremaﬁtsand“
finding algorithm previously described in Section III-B. confidence measure$® we model these estimates probabilis-

The first step in this algorithm is to estimate for all pointé'caIIy by assuming that the noise in the individual measure-

on surfaces; their symmetric nearest neighbor, as explained eitsl |snrl10|rmacljlé/_tc_i|str|buted with Ztﬁr(: trrr:ean and a varltance
Section 11I-B. Next, for any given poing; on a surfaces; at = 1/c™. In addition, we assume that the measurements are

time#, and which has a corresponding pginton surfaces, at uncorrelated. Given these assumptions we can write the mea-

time ¢, as a result of the symmetric nearest neighbor estimatigHeMent probability for each point as
step we construct a p!ausible search _vvindevon 52. This P ) = 1 o~ (umum)?) /20"
search windowV consists of all the points os, which have ;
a connectivity distance less than a threshiofdom p, on sz,
i.e.,py € Wiff d.(p2, pw) < t.

Next, a search is performed within this plausible regi®n
on the deformed surfaecg and the poinp, which has the local We proceed to describe the mesh-generation method used for
shape properties closest to thosepofis selected. The shapegenerating a volumetric model for the left ventricle, in terms
properties here are captured in terms of the principal curvatuddhexahedral elements. The output mesh of this algorithm will

The shape-based tracking algorithm tries to follow poin

)

2102

IV. M ESH GENERATION
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(a) Step 1: For each slice interpolate betwesn endo and epi
contowrs to generate interpolated contours
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(b} Step 2A: Estimate contour by
contowr correspondences for

the endacardial surface

starting &t the middle shce

(d) Step 3: Connect the
dats 1o form elements.

Pi

Fig. 9. A schematic of the mesh generation process. First, we interpolate between the endocardial and epicardial surfaces on a contour bys amingur basi
shape-based interpolation to create the interpolated surfaces. Next, we find correspondences between the contours on the endocardieigatfireeratddle
level using the 2-D algorithm described in Section IlI-A. Next, we find correspondences on each slice starting from the endocardium, using treigame al

Finally, we connect the dots to generate the elements.

be used to describe the geometry of the left ventricle as needed
for the estimation of the complete deformation field using finite
elements.

Mesh generation in three dimensions is a notoriously difficult
problem for complicated geometries [6]. Here, we describe an
algorithm that takes advantage of the “cylinder-like” geometry
of the left ventricle to make the problem easier. The two basic

priate number of in-between interpolated surfaces
(typically three or four). Because of the greater
geometrical complexity of the endocardium, we
space the interpolated surfaces to be preferentially
closer to the endocardium. We then discretize the
contour on the middle slice of the endocardium to
the desired number of nodes (typically 35-45).

building blocks of the algorithm are the shape-based contourStep 2A.Using the symmetric nearest neighbor algorithm,

interpolation method of Section II-A and the symmetric nearest
neighbor correspondence algorithm described in Section IlI-A.
The algorithm is best described with reference to Fig. 9. It con-
sists of four steps as follows.

Step 1. Interpolate on a contour by contour basis between

estimate correspondences between slices on the
endocardial surface on a contour-by-contour basis
starting in the middle slice. This generates a grid
of connected points on the endocardium. These
correspondences are shown in blue in Fig. 9(b).

the endocardial and epicardial surfaces using Step 2B. For the points present in the correspondence maps

shape-based interpolation to generate an appro-

of step 2A, find their correspondences within each
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slice starting at the endocardium and moving onldere,w is the small rotation tensor and is antisymmeteics
level at a time toward the epicardium. This genethe small (infinitesimal) strain tensor and is symmetric. These
ates a grid of connected points on each slice. Theaee defined as

correspondences are shown in purple in Fig. 9(c).

Step 3. We complete the mesh by taking advantage of the 1/0u; Ou
grid-like topology of the hexahedral mesh. Consider Wi,j =5 <8x,» - 8x<>
the following example with reference to Fig. 9(d). I !
A point P1 on slice S10 is mapped to point P5 on o1 <3Ui 4 3%’)
slice S11 on the endocardial surface (step 2A), and 2\ Ox;  Oxi )
point P3 on slice S10 on the first midwall surface
(step ZB).' Further, point P5 on slice S11 on th ften, taking advantage of the symmetries, these tensors are
endocardium corresponds to point P7 on slice S%/vritten in vector form as
of the first midwall surface (step 2B). By virtue of
the topology of the mesh, P3 also has to connect to
P7. This completes the quadrilateral which forms e=
one face of the element. 9 —

®)

t

le11, €22, €33, €12, €13, €23]
t
[0, 0, 0, w12, w13, wa3]".

Thise is the classical definition for strain in infinitesimal linear
elasticity [48].

Having described the generation of the image-derived dis-Some Further Properties of the Strain Tens@siven a strain

placements using the shape-based algorithm, we now turn §iiSOre= (@ 3x 3 matr(ljxl))wr;]lch was computed in a coordinate
attention to describing the model used to smooth and interﬂ@mefx pa_rameterlzed_ yt free unit \_/lec;tarﬁ T2, T3 WE Cdag
late these displacements. We first describe some fundamef@iSform it to a coordinate frangesimilarly parameterized by

concepts in continuum mechanics [48] and next we present fut VeCtO@h ¢2, &3 as follows. First, construct the 8 3 ro-
actual model used in this paper. tation matrix . Each component aR, R;; is given by the dot

product ofz; and¢;, i.e., R;; = (x;, &;). This results inR:
) x — &£. Using this matrixk we can write the image af, in the
A. Deformations ¢ coordinate frame, as:e; = Re, R'.

Consider a body3(0) which after timef moves and deforms _ Ve @lso note that the eigenvaluesaire known as the prin-
to bodyB(t). A material particle initially located at some posiCiPal Strains and the eigenvectors as the principal directions. We
tion X on B(0) moves to a new positianon B(#). [fwe further US€ the principal strains in Section V.
assume that material cannot appear or disappear there will be an
ong-to-one correspondence betwéeandz, so we can always B. Material Models
write the path of the particle as: = z(X, ¢). We can also de-

fine the displacement vector for this particleds) = 2(t)—X. 5o far, we have restricted our description to the geometry of

This relationship is also invertible. Giverandt, we can findX.  the deformation. In this section, we extend this to account for
We consider two neighboring particles located@nd X +dX  \what happens when a material deforms and relate the deforma-

V. THE MECHANICAL MODEL

on B(0). At a new configuratiorB(¢) we can write tion to the change in the internal structure of the material. Before
proceeding to give examples of possible material models we first
dr . note that there are some theoretical guidelines which must be

dr = axX dX. ®) observed [13]. The most important ones for this work ar@B

axiom of objectivity—this requires the material model to be in-

The Jacobian matri'(t) = dz(t)/9X is calledthe deforma- Vvariant with respect to rigid motion or the spatial frame of refer-
tion gradient matrix We note that by definitiod”(0) = 1. ence; 2)The axiom of material invarianeethis implies certain

The mapping defined by (3) has two components: a rigid méymmetry conditions depending on the type of anisotropy of the
tion component and a change in the shape or deformation of fRaterial, and implicitly reduces the number of free parameters.
object. For the purposes of capturing the material behavior, weT he first axiom can be satisfied by postulating an internal or
need to extract fron¥’ the component which is a function ofStrain energy function which depends on the gradient deforma-
the rigid motion and the component which is a function of théon matrix £ only through the strain tensd@. One way of sat-
deformation. isfying this axiom is to model the material using a strain energy

Small Deformations and RotationsSince the deformations function.
and the rotations in any one single time-frame interval are smallLinear Elastic Strain Energy FunctionsThe simplest useful
(<5%) we use here the following approximation [48}./0x ~ continuum mechanics model in solid mechanics uses a linear
du/0X. Next, we express’ as elastic strain energy functiok¥, which takes the form

F=RU=I+w)({+e¢). 4) W = ie'Ce (6)
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base

whereC' is a 6 x 6 matrix and defines the material properties
of the deforming body, as it relates the change in geometry
(strain) to the internal energy functidf. The simplest model

is the isotropic linear elastic model used widely in the image
analysis literature [18], [12].

In this paper, the left ventricle of the heart is specifically mod-
eled as a transversely elastic material to account for the prefer-
ential stiffness in the fiber direction. This is an extension of the
isotropic linear elastic model which allows for one of the three
material axes to have a different stiffness from the other two. In
this case, the matrig’ takes the form

r 1 —vp —Vp

— 0 0 0 )
£, £y Ey - apex
i i Vip 0 0 0 Fig.10. Coordinate system used to define fiber orientation. The fiber direction
Ep Ep Ef (F) lies in the plane defined by the circumferentiél)(and longitudinal L)
v Be —veE 1 axes at an angle counter-clockwise from the circumferential axis. The fibers
“fptf ol B 0 0 0 are assumed to lie in the plane defined by the local circumferertipiaad
1 £, £, Ey longitudinal ) axes. In the undeformed state, the radiB) (axis points
C = outwards, the circumferential axi§€’§ is along the circumference of a planar
0 0 0 2(1 + Vp) 0 0 section and the longitudinal axi&) is vertical. The fiber F) and cross-fiber
Ep axis (X) lie in the plane defined b¢' and L. The fiber orientation can then
be defined by the angl¢ as shown in the diagram. The epicardial fiber angle
0 0 0 0 i 0 varied between-43° at the base and-53° at the apex, and the endocardial
Gf fiber angle varied between 82t the base and 97at the apex. All the other
1 fiber angles can be found by linearly interpolating both along the vertical and
0 0 0 0 0 — the radial directions [16].
L Gy |
O

the case of linear elastic models, the effective stiffness is a con-

where £y is the fiber stiffnessE,, is cross-fiber stiffness and stant with respect to the strain whereas in practice the stiffness
vfp, Vp are the corresponding Poisson’s ratios &hgis the increases as the strain increases. Moreover, in the work of Guc-
shear modulus across fiberé&i [ ~ E;/(2(1+vy,)).]1If Ef = cione [16] the ratio of fiber-to-transverse stiffness varies with
E, andy, = vy, this model reduces to the more commorthe deformation. We selected a value of 3.5 as a reasonable value
isotropic linear elastic model. The fiber stiffness was set to er the range of deformation that is observed.
3.5 times greater than the cross-fiber stiffness [16]. The fiber di-The use of complex nonlinear models is essential if the model
rections used are from [16] and are shown in Fig. 10. by itself tries to capture the whole complex motion of the left

A Probabilistic Formulation of the Mechanical ModeAs  ventricle. In this paper, the mechanical model is used as afilter in
originally demonstrated by Geman and Geman [15] and prige signal processing sense to smooth and interpolate displace-
viously applied to medical image analysis problems (e.g., [8]ents in a meaningful way, hence, a simpler model of the type
and [14]), there is a correspondence between an internal enaligg¢d here produces reasonable results.
function and a Gibbs probability density function. Given an en-

ergy functioni¥ («) we can write an equivalent prior probability v/, EsTIMATING THE COMPLETE DEFORMATION FIELD

density functio of the Gibbs form [15] as
fty functionp(u) I [15] Having described the initial displacement estimation

plu) = oy =) ®) process (Section 1ll) and the model used for the myocardium
(Section V), we now describe the overall framework for
integrating these two forms of available information. We note
that this framework is general and can be applied to other
C. Limitations of the Transversely Elastic Linear Model form; of S.Oft tissue dgformaﬂon est|.mat|or_1 Processes whgre
] ) ~one is trying to combine image-derived displacements with
Linear models do not capture the progressive hardening @fmechanical models.
2This class of model is linear as it results in a linear stress-strain relationsrfiif?,ld asa B"fly_e_Sian e_Stimation (38] p_rOblem as fOHOWS_: Given
i.e.,c = Ce. We do not use stresses in this work so we will not express mat&) a set of initial, noise-corrupted displacement$ derived
rial models explicitly in terms of their stress-strain relationships. Moreover, Weom the shape—tracking algorithm with an associated measure-
deliberately avoid the terms “force,” “stress,” and “equilibrium.” These would bability d ity f S 2 d 2
be inappropriate since the problem we are trying to solve has no real forceéggm probabr ity en§|ty un(?t|0p(“ ) [See_ (2)], and 2) a
such. The use of the word “forces” in related work such as Terzopoulos [51]ftior probability density function for the true displacement field
the context of physics-based vision may have been appropriate since the autlllorﬁ(u) derived from the mechanical model [see (8)] estimate
t trying i t | physics in their methods. In thi ' . . . P
were Mot rying ih any way 'o use real Pysics In "1eik mernoas. n s Papghe optimal value of the displacement fialcas the one which

since we are usingeal mechanical models to modkdal tissue properties, we P ) - ’ )
would only use words such as force to descrigm forces. maximizes the posterior probability density functiefu|«™).

wherek; is a normalization constant.

Authorized licensed use limited to: Johns Hopkins University. Downloaded on January 28, 2009 at 18:52 from IEEE Xplore. Restrictions apply.



PAPADEMETRISet al. ESTIMATION OF 3-D L-V DEFORMATION FROM MEDICAL IMAGES 795

Using Bayes’ rule we can write the posterior probability anheasurements. Note also that the numbers in the mafices
each point as and[X~!] are dimensionless.

We can now rewrite (11) as

. (9 — — -

O o (7] 53 [ 0 sk (5 0

max max

plu,u™) _ p(u™|u)p(u)

p(uw™) p(uw™)
First, we note thap(x™) is a constant once the measurements Dividing through byX_! , we obtain
have been made and can therefore be ignored in the maximiza-

{t = arg max {p(u|um) =

. . . . . Kma.x T ~— ~—
tion process. We can re-write (9) by taking logarithms to arrive == ([K]+[=*hv= [Z7Y U™  (13)
at max \—\. ,—/. . — ,_/.
Dimensionless Dimensionless
% = arg max (log p(u) + log p(u™|u)) . (10) At this point, it is clear that the absolute values &f,.x
u and X! enter into the functional only through their ratio

max

Using the volumetric model defined by the mesh generatidfimax/Emax- Given that the rest of the expressions in (13) are
algorithm (see Section 1V), we then proceed to write a finitdimensionlessto reconcile (13) in terms of dimensionality we
element formulation [7] for the problem over the whole of theeed to convert this ratié .../~ 5, in order to also make
left ventricle. First, we concatenate all the individual displacé- dimensionless. This is done by multiplying by a scaling
ments at the nodes of the mesh into a long veéforThen, constant,. of the appropriate units, i.e.,
we can express the model tefiwg p(w) as the matrix triple Koo Koo
product W = U!'KU where K is the global stiffness ma- oL = oSl (14)
trix. Then, we concatenate all the measuremefitsinto an-
other long vectof/™ and express the data tetog p(v'™|u) as
P = (U™ - U)s~YU™ - U) wherex~! is the inverse co-
variance matrix.

Then, we can rewrite (10) in the final form

From a dimensionality viewpoint, the value of the scaling con-
stantk,.. is completely arbitrary. This value can be interpreted
as defining in some sense the ratio of the relative confidences in
the modelas a wholeand the datas a whole While this is a
A common problem in many regularization problems such as Horn
U = arg min (UtKU+ U™ -u)ytsTH U™ - U)) and Schunk [21], it is especially important to note it clearly in
v this context where one is trying to estimate deformation of real
which when differentiated with respecttoyields the final so- deformable objects using a mechanical model. The implications
lution equation of this inconsistency in the units is that the material properties of
(K + 2_1) U=y-1lym (11) the sglid can be used to set the_ all the values of thg regL{Iarization
functional (model) up to a scaling constant which is arbitrary. In
some previous work in this area, the authors specify the abso-
lute value used for the Young’s modulus for the left ventricle,
There is one fundamental problem with the above framewonkhich is meaningless as a result of this problem.
This is the problem of “unit reconciliation.” This problem arises )
because the model stifiness is measured in different units fré The Bias Problem
the noise variance, which results in the numbers in the stiffnessThe estimation framework described so far produces a biased
matrix K having different units from the numbers in the covariestimate of the deformation. The easiest way to see this is to
ance matrix. observe that, since the elastic model penalizes all deformations,
To illustrate the effects of this problem, we can rewrite bothny estimation framework which uses it as a prior model or in-
of these matrices in this general form (using the » matrix ternal energy model as defined in (11) will underestimate the

A. The Problem of Unit Reconciliation

M to be eitherC or ¥71) as actual deformation. The linear elastic model can be thought of
[My, --- My, as a prior probability density function on the strain with zero
M= ... oo | = Mo [M] mean and variance proportional to the reciprocal of the Young’s
M, - M,, modulus. To illustrate this, we rewrite (11) as
- My My, U= ((k+x7) T ) om
Mmax Mmax 1 N H H
[M] = o e (12) Taking expectations on both sides gives
My M, fWy=((K+x) e e, @9)
- MIHH.X MIHH.X

Note that for as long a# is nonzero, the expected value

where M., is the maximum value ofi/. In the case of the . .
; . ) .. of U will be smaller than the expected value Gf"*, hence,
stiffness matrixk’, K,,. would the highest value of the stiff- . : i . .
the deformation will be underestimated. This is a problem in

ness mat_nx and would be propor_t|onal o th_e Youplg N mOdUIur?”iost methods that estimate cardiac deformation—the possible
whereas in the case of the covariance mafri¥, ¥_1 would

max
be the smallest variance, or the highest confidence in any of thérhe term “dimensionless” is used to describe a quantity that is a real number
with no associated units. A dimensionless quantity will have the same value
3In this case, a diagonal matrix with values on the leading diagonal de- regardless of the system of units used in its calculation. For example, the ratio
fined in (2) where there are measurements available and 0 where there arefrtavo lengths will the same regardless of whether the lengths are measured in
measurements. meters or in feet.
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exception being those methods that essentially believe the dzElastic String
angc]()a, for example, the tag-lines have been extracted (such  Epjcardial

. Marker -

A number of methods have been proposed to implicitly dea

with this problem (see [34] for details). None of these, however Midwall
have dealt with the cause of the problem; they are rather, in Marker
sense, trying to limit its effects with varying degrees of succes€Endocatrdial
In this paper, we correct for part of the bias by 1) solving for the Marker
cardiac deformation in a frame-by-frame manner, thus keepin
the deformations to be estimated small and, hence, closer
zero; 2) by ensuring that points that lie on the outer surfaces of

the myocardium at framestill lie on the outer surface at time Fi9- 11. Implantation of Image-Opaque Markers. This figure shows the
arrangement of markers on the myocardium. First, a small bullet-shaped

t+ 1. This second step eliminates any bias in the directions pgpper bead attached to an elastic string was inserted into the blood pool

Epicardium

Endocardium

pendicular to each outer surface. through a needle track. Then, the epicardial marker was sutured (stitched) to
the myocardium and tied to the elastic string. Finally, the midwall marker was
C. Numerical Solution inserted obliquely through a second needle track to a position approximately

half-way between the other two markers.

The overall framework described by (11) is assembled and
solved using the finite element method [7]. The first step in t
finite element method is the division or tessellation of the bo
of interestinto elements; these are commonly tetrahedral or h

gﬁe fifth intercostal space and the heart suspended on a peri-
gQ_rdial cradle. MR image opaque markers were implanted for

ahedral in shape. In this paper, we use hexahedral elements gHg.a'uon of our MR analysis approach, using a markgr system
reviously described by our group [46]. In brief, cubic arrays

erated using a custom mesh-generation algorithm, describe . : .
Section IV. In our case, the myocardium is divided into appro>?-]J hree-marker sets were carefully placed in the mid anterior

imately 1500 hexahedral elements. and posterior walls avoiding epicardial surface vessels. _Flrst_, a
%rITéaII bullet-shaped copper marker attached to an elastic string

For each frame between end-systole (ES) and end-diast . . . :
(ED), a two step problem is posed: 1) solving (11) normall)yyas inserted through the myocardium via a previously created

2) adjusting the position of all points on the endocardial anri]eedle track with the aid of a metal introducer. A specially de-

epicardial surfaces so they lie on the endocardial and epicarc'ls'zgned gadolinium-filled capsule was then sutured to the epicar-

surfaces at the next frame using the symmetric nearest—neighI Iustsr ::;?jcii glirecltlly '?‘lr)](éveiaes?ii hsfgnth%:ngifﬁégalmnl%rﬁéséﬁs
technique described in Section 111-B and solving (11) once mo ; 9. 1L . 9 . .
ardial marker was touching the endocardial surface and fixed

using this added constraint. This ensures that there is areduc 8@1 icardial le with ¢ idi d dial
in the bias in the estimation of the deformation. 0 the epicardial capsule with a suture, providing endocardial-
epicardial marker pairs. A second copper marker was inserted

The value of the weighting constahy. is set adaptively to ) . .
be as large as possible (which pushes the optimum toward ﬂpélquely S0 thgt it would be. posmoned'between each endo-
rdial-epicardial marker pair. The proximal left anterior de-

data side) subject to solution convergence. In this way, we make

the following assumption: the best solution is the one which a89e”d'”9 coronary artery was isolated for placement of a snare

heres as much as possible to the initial estimate of the displa S%lrfe;\'ﬂzr"ic?;flllg.irnv‘é?ie?t?g;al'f:dafgggse d(;hesst (ifse%_m
ment field but still results in a connected solid. Convergen : pietl urgical preparation, dogs were p

fails when the Jacobian of the deformation field becomes si '|;|oned in the MR scanner for imaging. An electrocardiogram

gulars In this case, we decrease the valugkgf to produce a imb lead was monitored continuously during MRI and used for
smoc;ther displace;nent field gating. Resting MR images were completed in one hour. Heart

rate (HR) and aortic pressure (AoP) were recorded immediately
before and after each complete image acquisition. Dogs subse-
guently underwent repeat MR imaging following coronary oc-
A. Surgical Preparation/Experimental Protocol clusion. Dogs were euthanized with a bolus of potassium chlo-

Experiments were performed on fasting adult mongrel dogéle after completing all imaging.
with approval of the Yale Animal Care and Use Committee, o
in compliance with the guiding principles of the AmericaB. MR Image Acquisition

Physiological Society on research animal use. All dogs wereyR imaging was performed on a GE Signa 1.5 Tesla scanner
anesthetized with 10-12 mg/kg thiopental sodium (Pentothgih version 4.8 software using the head coil (26 cm diameter)
Abbott, North Chicago, IL) intravenously, intubated and Mgy transmission and reception. Short-axis images through the
chanically ventilated on a respirator with a mixture of halothangft ventricle were obtained with the gradient echo cine tech-
(0.5%~-1.5%), and nitrous oxide and oxygea O, =3:1).  nique using the following parameters: EE6 ms, TR= 40 ms,

A femoral vein and both femoral arteries were isolated an angle = 30°, 16 phases collected, 5-mm slices, matrix 256
cannulated for administration of fluids and drugs, pressure mop-o56 two averages, field of view 40 cm. A total of 16 con-
itoring and arterial sampling. A thoracotomy was performed ifiguous 5-mm-thick slices were collected, by acquiring four sets

5For example, when the path of two points on the mesh intersect as a reQIIIStaggered short axis slices (four. slices/set) with a Separat'on
of a locally bad shape-based displacement estimate. gap of 20-mm and 5-mm offset. This sequence provides images

VII. EXPERIMENTAL RESULTS
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P1

P2

P3

End Diastole = End Systole

30% 0% 30%

Fig. 12. Canine cine-MRI-derived principal strains using algorits8nThe horizontal axis represents time from ED to ES (every other frame shown). We display
the first (P1) second (P2), and third (P3) principal strains on each of the three rows. The septum is on the left and the anterior wall on the bottd@rsThe ma
were implanted in two arrays: one in the anterior wall and another in the lateral wall.

with an in-plane resolution of 1.64 mm 1.64 mm for a 256« TABLE |

256 matrix and a 5-mm resolution perpendicular to the imaging PARAMETER SETTINGS

plane. This sequence also provides excellent temporal resolu Name Material Model Posson’s
tion (16 frames/cardiac cycle;40 ms/frame). ratio

A total of four dogs completed the MR imaging protocol.  f-I Transversely Isotropic (using fibers) 0.325
Hemodynamic parameters and cardiac rhythm remained stabli f-2 Transversely Isotropic (using fibers) | 0.400
during the MR image acquisition. The HR and systolic AoP /-3 Transversely Isotropic (using fibers) |  0.475
immediately before the MR acquisition were not significantly ~ *? Isotropic (without fiber model) 0.325
different from that obtained at the completion of the acquisition. > Isotropic (without fiber model) 0.400

. -3 Isotropi ith .
All image analyses were performed on all dogs. - sotropic (without fiber model) 0475

Definition of the six different parameter settings used for both the sensitivity analysis
and the validation study with implanted markers.

C. Strain Computation Using Implanted Markers

The location of each implanted marker is determined in eagh, kers were implanted, groups of either six or eight markers
temporal frame by first manually |den.t|fy|n.g all p|?<els which be(depending on the local geometry) were connected to form ei-
long to the marker area (because of imaging artifacts the markeg, prism or hexahedral elements. Given the computed dis-

‘image” extends to more than one voxel) and then computings cements, we then calculated the strains in these marker re-
the 3-D centroid of that cluster of points, weighted by the gr%je

; s ons. In particular, we computed the principal strains at the
level® This procedure was performed on a total of four animaj§ntroid of each marker array. We labeled the first, second, and
and both sets of images (baseline and postocclusion). Mid-wgji,q principal strains as P1, P2, and P3, respectively.
markers were not used since it was difficult to identify them cor-

rectly from the images. D. Sensitivity Analysis

Once the positions of the markers were determined, they wer e compare the strains obtained using the implanted markers
used to compute the displacement at each marker between EB\; b 9 P

and ES. Further, in each of the two regions of the LV where trtI% N _stra!ns computed using our algorithm. In p_artlcular, we
used six different parameter settings for the algorithm as sum-

6In the case of dark markers, the image is first inverted. marized in Table I, resulting in six different versions of our al-
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TABLE 1 TABLE IV
ACTUAL STRAIN VALUES ACCURACY ANALYSIS

Markers f-1 f2 3 i-1 -2 -3 Strain f-1 -2 3 i1 -2 18

P1 P1 I 7.1 6.9 8.2 7.2 7.3 84
m 2701 36.0| 362 ] 39.8| 344 | 358 | 38.8 o 64 58 7.5 57 59 7.0

o 124 | 151 | 142 [ 14.8 | 151 | 151 | 14.9 r2 | 071 074 077 073 073 0.78
P2 P2 m 64 6.1 6.8 57 6.0 6.3
u -104| 66 -74| -83| -62| -65]| -7.3 o 4.7 47 50 44 47 41

g 44 1.7 1.5 2.3 1.3 1.7 2.3 r2 (030 036 021 054 040 041
P3 P3 I 58 57 45 56 52 52
m -30.8 | -25.8 | -26.1 | -30.0 | -25.8 | -27.2 | -29.8 o 44 37 41 43 40 438

o 6.2 3.9 3.5 4.0 3.9 3.7 5.1 r210.77 082 0.83 0.74 076 0.72

Means {:) and standard deviations ) for both the marker-calculated and the algorithm- 1) the meang) and standard deviatiow | of the absolute percentage error between the
derived % strains, in the baseline (preocclusion) studies. marker-calculated strains and the strain outputs of six versions of the algorithm, as well as

the correlation ratio®> between the algorithm generated strains and the marker output.

TABLE Il these changes of settings and also that changing the Poisson’s
SENSITIVITY ANALAYSIS ratio produces a greater change in the strain output than does
P17 f2 F§ il 2 i3 changing the underlying mechanical model type.
f1]00 11 48 16 09 48 ) )
f-2 00 44 19 11 47 E. Strain Comparison
f'j” 0.0 g-;‘; ‘11; (13-2 The image-derived strains were compared with strains
- . . .

derived from implanted markers. These strains were compared

z'i 0.0 ég with the average image-derived strains in the region of the
- myocardium contained within each marker array. Comparison
P2 | f1 f2 f8 i1 2 i3 results are shown in Table IV fa¥ = 4 dogs (two acquisitions
f1]00 07 21 1.2 09 15 per dog, one preocclusion and one postocclusion). We observe
|2 00 15 1.7 13 14 a strong correlation of the first and third principal strain values
f‘j 0.0 38 (2); ég which roughly correspond to the radial and circumferential
2_2 ' 0:0 1:4 directions, respectively. The correlation for the second principal
-9 0.0 strain (roughly corresponding to the longitudinal direction) is
lower and could be the result of two factors: 1) The lower image
P3| f1 f2 f3 il 42 43 resolution in that direction as a result of using 5-mm-thick
f1100 09 48 13 20 56 slices; 2) Incomplete bias reduction in this direction since it
;:f, 0.0 g:g 411:2 ;g 3(1) is pe_rpendicular to the epi and endo-cardial_ surfaqes of the
it 00 13 54 ventricles. We further note that the correlation ratio values
) 0.0 41 reported for the third principal strain are close to those reported
-3 0.0 for validating circumferential shortening derived from MR

Average absolute percentage strain differences for the three principal strainsml}st,(taggmg recently reported n [54]' In partlcular, they report a

Second, P2), and Third P3)] between outputs of the algorithm with six different parametercorrelation ratio of 0.84 for ES.
settings as defined in Table I. Note that the variations are small even when drastic parameter
changes are involved.

F. Preliminary Results on Human-MRI and Canine-CT Data

gorithm. In three of these versions, we used the transverse{ In the future, we plan to apply our algorithm to both human

isotropic elastic model described by (7) with three different se’?—ﬁdIeS and other image modalities. In order to demonstrate the

tings of the Poisson’s ratio (0.325, 0.4, 0.475), and in the oth%‘?plicabi”.ty .Of our algorithm _to these cases, we present here
three versions we used an isotropic elastic model [obtained D € prellmlnary resglts obtained on h“”."a” cine-MRI data (see
settingl; = E,, in (7)] and similarly varied the Poisson’s ratio. 9. 13) and canine cine-CT data (see Fig. 14).
An example of the principal strains derived on a baseline heart
using algorithnf-3 is shown in Fig. 12. VIil. CONCLUSION
The average principal strains obtained in the precoronary oc4n this paper, we have illustrated the application of our ap-
clusion state for all the regions as estimated using the implantgdach to estimating LV deformation from 3-D medical image
markers as well as our algorithm is tabulated in Table Il, in ordeequences in both experimental models and human volunteers.
to give a sense of the magnitude of these strains. The results have been validaied/ivousing implanted markers.
Next, we computed the difference between the outputs ofWe note that modality-specific forms of data can be added
these six different versions of our algorithm in the regions b this general framework. In the case of magnetic resonance
the implanted marker arrays as a test of the sensitivity of oumage data, midwall could be derived from MR tagging and/or
algorithm to parameter changes. The results are tabulatedpirase contrast velocities. However, we have tested the method
Table Ill. We note that the algorithm is fairly insensitive taso far using only shape-based displacements as an input.
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Fig. 13. Human cine-MRI-derived results. Left: Magnitude breath-hold ED and ES images at a single slice level. Right: (see color scale in Fadstr2jmadi

at three long-axis time points between ED and ES. The one difference in the processing of the human cine-MRI data as opposed to the previousnimesented
cine-MRI data, was that since, in this case, different 3-D slice levels are acquired at different breath holds, slices at the same time framelicare e loiga

the long axis of the heart. We have corrected for this by manually aligning the data in each frame.

Fig. 14. Algorithm-derived strains from cine-CT dynamic spatial reconstructor (DSR) Images. (left) Example axial slice from baseline dog Btady &%

(right) Radial strains at three time points ED to ES. (Again, see Fig. 12 for the colo

rscale.) The cine-CT canine experiments were performed BitrBartrik

at the Mayo Clinic, using the DSR [44]. Note that the values reported are in the same range as strains from our cine-MRI data.

Further research could include the use of an active modgii]
[35] to properly handle the bias problems inherent in the pas-
sive biomechanical model. An active model could also be usef|,
as a means of incorporating a temporal continuity/periodicity
constraint.

[13]
[14]
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