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Abstract. A new information-theoretic approach is presented for finding the pose of an object in an image. The
technique does not require information about the surface properties of the object, besides its shape, and is robust
with respect to variations of illumination. In our derivation few assumptions are made about the nature of the
imaging process. As a result the algorithms are quite general and may foreseeably be used in a wide variety of
imaging situations.

Experiments are presented that demonstrate the approach registering magnetic resonance (MR) images, aligning
a complex 3D object model to real scenes including clutter and occlusion, tracking a human head in a video sequence
and aligning a view-based 2D object model to real images.

The method is based on a formulation of the mutual information between the model and the image. As applied
here the technique is intensity-based, rather than feature-based. It works well in domains where edge or gradient-
magnitude based methods have difficulty, yet it is more robust than traditional correlation. Additionally, it has an
efficient implementation that is based on stochastic approximation.

1. Introduction

In object recognition and image registration there is
a need to find and evaluate the alignment of model
and image data. It has been difficult to find a suitable
metric for this comparison. In other applications, such
as medical imaging, data from one type of sensor must
be aligned with that from another. We will present an
information theoretic approach that can be used to solve
such problems. Our approach makes few assumptions
about the nature of the imaging process. As a result the
algorithms are quite general and may foreseeably be
used with a wide variety of sensors. We will show that
this technique makes many of the difficult problems of
model comparison easier, including accommodation of
the vagaries of illumination and reflectance.

The general problem of alignment entails comparing
a predicted image of an object with an actual image.
Given an object model and a pose (coordinate transfor-
mation), a model for the imaging process could be used
to predict the image that will result. The predicted im-
age can then be compared to the actual image directly.
If the object model and pose are correct the predicted
and actual images should be identical, or close to it. Of
course finding the correct alignment is still a remaining
challenge.

The relationship between an object model (no matter
how accurate) and the object’s image is a complex one.
The appearance of a small patch of a surface is a func-
tion of the surface properties, the patch’s orientation,
the position of the lights and the position of the ob-
server. Given a modelu(x) and an imagev(y) we can
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formulate an imaging equation,

v(T(x)) = F(u(x), q) + η (1)

or equivalently,

v(y) = F(u(T−1(y)), q) + η. (2)

The imaging equation has three distinct components.
The first component is called a transformation, or pose,
denotedT . It relates the coordinate frame of the model
to the coordinate frame of the image. The transforma-
tion tells us which point in the model is responsible for
a particular point in the image. The second compo-
nent is the imaging function,F(u(x), q). The imaging
function determines the value of image pointv(T(x)).
In general a pixel’s value may be a function both of the
model and other exogenous factors. For example an
image of a three dimensional object depends not only
on the object but also on the lighting. The parameter
q collects all of the exogenous influences into a sin-
gle vector. Finally,η is a random variable that models
noise in the imaging process. In most cases the noise
is assumed Gaussian.

Alignment can be a difficult problem for a number
of reasons:

• F , the imaging function of the physical world, can
be difficult to model.

• q, the exogenous parameters, are not necessarily
known and can be difficult to find. For example
computing the lighting in an image is a non-trivial
problem.

• T , the space of transformations, which may have
many dimensions, is difficult to search. Rigid ob-
jects often have a 6 dimensional transformation
space. Non-rigid objects can in principle have an
unbounded number of pose parameters.

One reason that it is, in principle, possible to de-
fine F is that the image does convey information about
the model. Clearly if there were no mutual informa-
tion betweenu andv, there could be no meaningfulF .
We propose to finesse the problem of finding and com-
puting F andq by dealing with this mutual informa-
tion directly. We will present an algorithm that aligns
by maximizing the mutual information between model
and image. It requires no a priori model of the relation-
ship between surface properties and scene intensities—
it only assumes that the model tells more about the
scene when it is correctly aligned.

Though the abstract suggestion that mutual informa-
tion plays a role in object recognition may not be new,
to date no concrete representations or efficient algo-
rithms have been proposed. This paper will present
a new approach for evaluating entropy and mutual in-
formation called EMMA1. It is distinguished in two
ways: 1) EMMA does not require a prior model for
the functional form of the distribution of the data; 2)
entropy can be maximized (or minimized) efficiently
using stochastic approximation.

In its full generality, EMMA can be used whenever
there is a need to align images from two different sen-
sors, the so-called “sensor fusion” problem. For exam-
ple, in medical imaging data from one type of sensor
(such as magnetic resonance imaging—MRI) must be
aligned to data from another sensor (such as computed
tomography—CT).

2. An Alignment Example

One of the alignment problems that we will address
involves finding the pose of a three-dimensional object
that appears in a video image. This problem involves
comparing two very different kinds of representations:
a three-dimensional model of the shape of the object
and a video image of that object. For example, Fig. 1
contains a video image of an example object on the left
and a depth map of that same object on the right (the
object in question is a person’s head: RK). A depth map
is an image that displays the depth from the camera to
every visible point on the object model.

From the depth map alone it might be difficult to see
that the image and the model are aligned. For a human
observer, the task can be made much easier by simulat-
ing the imaging process and rendering an image from
the 3D model. Figure 2 contains two renderings of the
object model. These synthetic images are constructed
assuming that the 3D model has a Lambertian surface
and that the model is illuminated from the right. It is
almost immediately obvious that the model on the left
of the figure is more closely aligned to the video im-
age than the model on the right. Unfortunately, what
might seem like a trivial determination is difficult to
reproduce with a computer. The task is made difficult
because the intensities of the true video image and the
synthetic images are quite different. In fact, the pix-
els of the real image and the correct model image are
uncorrelated. Somehow, the human visual system is ca-
pable of ignoring the superficial differences that arise
from changes in illumination and surface properties.
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Figure 1. Two different views of RK. On the left is a video image. On the right is a depth map of a model of RK that describes the distance to
each of the visible points of the model. Closer points are rendered brighter than more distant ones.

Figure 2. At left is a rendering of a 3D model of RK. The position of the model is the same as the position of the actual head. At right is a
rendering of the head model in an incorrect pose.

A successful computational theory of object recogni-
tion must be similarly robust.

Lambert’s law is perhaps the simplest model of sur-
face reflectivity. It is an accurate model of the re-
flectance of a matte or non-shiny surface. Lambert’s
law states that the visible intensity of a surface patch is
related to the dot product between the surface normal
and the lighting. For a Lambertian object the imaging
equation is:

v(T(x)) =
∑

i

αi El i · u(x), (3)

where the model valueu(x) is the normal vector of
a surface patch on the object,l i is a vector pointing
toward light sourcei , andαi is proportional to the in-
tensity of that light source ((Horn, 1986) contains an
excellent review of imaging and its relationship to vi-
sion). As the illumination changes the functional rela-
tionship between the model and image will change.

Since we can not know beforehand what the imag-
ing function will be, aligning a model and image can be

quite difficult. These difficulties are only compounded
if the surface properties of the object are not well un-
derstood. For example, many objects can not be mod-
eled as having a Lambertian surface. Different surface
finishes will have different reflectance functions. In
general reflectance is a function of lighting direction,
surface normal and viewing direction. The intensity of
an observed patch is then:

v(T(x)) =
∑

i

R(αi , El i , Eo, u(x)), (4)

whereEo is a vector pointing toward the observer from
the patch andR(·) is the reflectance function of the
surface. For an unknown material a great deal of
experimentation is necessary to completely categorize
the reflectance function. Since a general vision sys-
tem should work with a variety of objects and under
general illumination conditions, overly constraining
assumptions about reflectance or illumination should
be avoided.
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Figure 3. On the left is a video image of RK with the single scan-line highlighted. On the right is a graph of the intensities observed along
this scan line.

Let us examine the relationship between a real im-
age and model. This will allow us to build intuition
both about alignment and image formation. Data from
the real reflectance function can be obtained by align-
ing a model to a real image. An alignment associates
points from the image with points from the model. If
the alignment is correct, each pixel of the image can be
interpreted as a sample of the imaging functionR(·).
The imaging function could be displayed by plotting
intensity against lighting direction, viewing direction
and surface normal. Unfortunately, because intensity
is a function of so many different parameters the result-
ing plot can be prohibitively complex and difficult to
visualize. Significant simplification will be necessary
if we are to visualize any structure in this data.

In a wide variety of real images we can assume that
the light sources are far from the object (at least in terms
of the dimensions of the object). When this is true and
there are no shadows, each patch of the object will be
illuminated in the same way. Furthermore, we will as-
sume that the observer is far from the object, and that
the viewing direction is therefore constant throughout
the image. The resulting relationship between normal
and intensity is three dimensional. The normal vector
has unit length and, for visible patches, is determined
by two parameters: thex andy components. The im-
age intensity is a third parameter. A three dimensional
scatter plot of normal versus intensity is really a slice
through the high dimensional space in whichR(·) is
defined. Though this graph is much simpler than the
original, three dimensional plots are still quite difficult
to interpret. We will slice the data once again so that all
of the points have a single value for they component
of the normal.

Figure 3 contains a graph of the intensities along a
single scan-line of the image of RK. Figure 4 shows
similar data for the correctly aligned model of RK.
Model normals from this scan-line are displayed in two
graphs: the first shows thex component of the normal
while the second shows they component. Notice that
we have chosen this portion of the model so that they
component of the normal is almost constant. As a result
the relationship between normal and intensity can be
visualized in only two dimensions. Figure 5 shows the
intensities in the image plotted against thex compo-
nent of the normal in the model. Notice that this rela-
tionship appears both consistent and functional. Points
from the model with similar surface normals have very
similar intensities. The data in this graph could be well
approximated by a smooth curve. We will call an imag-
ing function like this oneconsistent. Interestingly, we
did not need any information about the illumination or
surface properties of the object to determine that there
is a consistent relationship between model normal and
image intensity.

Figure 6 shows the relationship between normal and
intensity when the model and image are no longer
aligned. The only difference between this graph and
the first is that the intensities come from a scan-line 3
centimeters below the correct alignment (i.e., the model
is no longer aligned with the image, it is 3 centimeters
too low). The normals used are the same. The result-
ing graph is no longerconsistent. It does not look as
though a simple smooth curve would fit this data well.

In summary, when model and image are aligned there
will be a consistent relationship between image inten-
sity and model normal. This is predicted by our as-
sumption that there is an imaging function that relates
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Figure 4. On the left is a depth map of RK with the single scan-line highlighted. At top right is a graph of thex component of the surface
normal. On the bottom right is they component of the normal.

Figure 5. The aligned case: A scatter plot of the intensity of the
video image versus thex component of the surface normal from the
model. The image and model are correctly aligned.

models and images. While the actual form of this
function depends on lighting and surface properties,
a correct alignment will generally lead to a consistent
relationship. Conversely, when model and image are
misaligned the relationship between intensity and nor-
mal is inconsistent.

3. A Formal Definition of Consistency

Alignment can be performed by jointly searching
over the space of possible imaging functions, exoge-
nous parameters, and transformations. The principle of
maximum likelihood can be used to motivate this pro-
cedure. The probability of an image given a model and
transformation can be expressed as:

p(v | u, T) =
∫ ∫ ∏

xa

p(η = v(T(xa)) − F(u(xa), q))

×p(F)p(q) dF dq, (5)

where the product is computed over points from the
model,xa. This equation integrates over all possible
imaging functions and all possible sets of exogenous
variables. We are not aware of any approach that has
come close to evaluating such an integral. It may not
be feasible. Another possible approach is to find the
imaging function and exogenous variables that make
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Figure 6. The misaligned case: on the left is the misaligned scan-line from the video image of RK. On the right is a scatter plot of the intensity
of this part of the video image versus thex component of the surface normal from the model.

the image most likely,

p(v | u, T) ≈ max
F,q

∏
xa

p

(
η = v(T(xa))

− F(u(xa), q)

)
p(F)p(q). (6)

This approximation is accurate whenever the integral
in Eq. (5) is approximated by the component of the
integrand that is maximal. The approximation is a good
one when a particularF andq are much more likely
than any other.

Using (6) we can define an alignment procedure as a
nested search: i) given an estimate for the transforma-
tion, find F andq that make the image most likely; ii)
given estimates forF andq, find a new transformation
that makes the image most likely. Terminate when the
transformation has stabilized. In other words, a trans-
formation associates points from the model with points
in the image; for everyu(x) there is a corresponding
v(T(x)). A function F and parameter vectorq are
sought that best model the relationship betweenu(x)

andv(T(x)). This can be accomplished by “training” a
function to fit the collection of pairs{v(T(xa)), u(xa)}.

The search forF is not a simple process. The range
of possible imaging functions is of course infinite. In
order to condition the search it is necessary to make a set
of assumptions about the form ofF . In addition some
assumptions about the smoothness ofF are necessary
to insure convergence of the nested search for the max-
imum of (6). These assumptions can be enforced by
formulating a strong prior probability over the space of
functions,p(F).

In many cases the search for an imaging function and
exogenous parameters can be combined. For any partic-
ular F andq, another functionFq(u(x)) = F(u(x), q)

can be defined. The combined function is best thought
of as areflectance map(Horn, 1986). It maps the nor-
mals of an object directly into intensities. The three
dimensional alignment procedure we will describe ma-
nipulates a similar combined function.

How might Eq. (6) be approximated efficiently? It
seems reasonable to assume that for most real imaging
functions similar inputs should yield similar outputs.
In other words, the unknown imaging function is con-
tinuous and piecewise smooth. An efficient scheme
for alignment could skip the step of approximating
the imaging function and attempt to directly evaluate
theconsistencyof a transformation. A transformation
is considered consistent if points that have similar val-
ues in the model project to similar values in the image.
By similar we do not mean similar in physical location,
as in|xa −xb|, but similar in value,|u(xa)−u(xb)| and
|v(T(xa)) − v(T(xb))|. One ad-hoc technique for es-
timating consistency is to pick a similarity constantψ

and evaluate the following sum:

Consistency(T) = −
∑

xa 6=xb

gψ(u(xb) − u(xa))

× (v(T(xb)) − v(T(xa)))
2, (7)

wheregψ is a Gaussian with standard deviationψ , and
the sum is over points from the model,xa andxb. In
order to minimize this measure, points that are close
together in value must be more consistent, and those
further apart less so.

An important drawback of consistency is that it
is maximized by constancy. The most consistent
transformation projects the points of the model onto
a constant region of the image. For example, if scale
is one of the transformation parameters, one entirely
consistent transformation projects all of the points of
the model down to a single point of the image.
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Figure 7. The joint distribution of data from the aligned and misaligned case above (left: aligned, right: misaligned). The weighted neighbor
function approximation is show as a thin black line.

We now have two alternatives for alignment when
the imaging function is unknown: a theoretical tech-
nique that may be intractable, and an outwardly effi-
cient ad-hoc technique that has a number of important
difficulties. One would like to find a technique that
combines the best features from each approach. We
propose that the complex search for the most likely
imaging function,Fq, be replaced with a simpler search
for the most consistent imaging function.

One type of function approximator that maximizes
consistency is known as kernel regression or the weigh-
ted neighbor approximator:

F∗(u) =
∑

xa
R(u − u(xa))v(T(xa))∑

xa
R(u − u(xa))

. (8)

The weighting functionR usually has a maximum at
zero, and falls off asymptotically away from zero.F∗

can be used to estimate the likelihood of a transforma-
tion as we did in (6). This formulation can be much
more efficient than a naive implementation of (6) since
there is no need to search forFq. The model, image,
and transformation defineF∗ directly.

Figure 7 shows the weighted neighbor approxima-
tion to the data from the RK alignments (in these
graphsR is the Gaussian density function with variance
0.0003). NoticeF∗ fits the aligned model much better
than the misaligned model. Assuming that the noise
is Gaussian the log likelihood of the aligned model,
1079.49, is much larger than the log likelihood of the
misaligned model, 537.34.2

4. From Likelihood to Entropy

The “classical” derivation of weighted neighbor like-
lihood provided a context in which insights could
be developed and concrete representations described.

Though weighted neighbor likelihood is a power-
ful technique, it has three significant drawbacks (see
(Viola, 1995) for a more detailed discussion).

Firstly, it will only work when the image is a function
of the model. Though this was assumed at the outset,
in several important applications the image data may
not be a function of the model. This is frequently the
case in medical registration applications. For exam-
ple, a CT scan is neither a function of an MR scan,
nor is an MR scan a function of a CT scan. The sec-
ond drawback of weighted neighbor log likelihood is
that it can be susceptible to outliers. If one assumes,
as is typical, that the image is conditionally Gaussian,
occlusion and specularity can ruin an otherwise good
match between model and image3. The third drawback
arises from weighted neighbor likelihood’s affinity for
constant solutions.

Rather than require that the image be a function of the
model, one natural generalization is to require that the
image be predictable from the model. Predictability
is closely related to the concept of entropy. A pre-
dictable random variable has low entropy, while an
unpredictable random variable has high entropy. By
moving to a formulation of alignment that is based on
entropy many of the drawbacks of weighted neighbor
likelihood can be circumvented.

The entropy of a random variable is defined as

h(y) ≡ −
∫

p(y) ln p(y) dy. (9)

The joint entropy of two random variablesx andy is

h(z, y) ≡ −
∫

p(z, y) ln p(z, y) dz dy. (10)

Log likelihood and entropy are closely related (see
(Cover and Thomas, 1991) for an excellent review
of entropy and its relation to statistics). It can be
shown that under certain conditions the conditional log
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likelihood of the image given the model is a multi-
ple of the conditional entropy of the image given the
model:

log p(v(T(x) | u(x), T) = − Nh(v(T(x)) | u(x), T),

(11)

where N is the number of model points4. This is
true only when the conditional distribution ofv is the
same as the assumed distribution for the noise,η. So
if the noise is assumed Gaussian, equality holds when
the conditional distribution ofv is Gaussian. Note that
while this is a restrictive assumption, it does not require
either that the distribution ofv be Gaussian, or that the
joint distribution ofv andu be Gaussian.

Both the constraint thatv be a function ofu and the
constraint on the conditional distribution ofv can be
relaxed by estimating the conditional entropy directly:

h(v(T(x)) | u(X)) ≡ h(u(x)) − h(u(X), v(T(x))).

(12)

In the next section we will present an efficiently opti-
mizable measure of entropy (EMMA) that can be used
for this purpose. Nowhere in the derivation of EMMA
will it be necessary to assume thatv is a function ofu.
In addition, even in situations wherev is a function of
u, EMMA will frequently work better than weighted
neighbor likelihood. While weighted neighbor like-
lihood requires restrictive assumptions aboutp(η),
EMMA can be used with a wide variety of densities.
This make EMMA more robust to non-Gaussian errors.

In addition, the move from likelihood to entropy
presents a principled mechanism for avoiding constant
solutions. Conditional entropy, though it is more gen-
eral than weighted neighbor likelihood, is still closely
related to the consistency measure defined in Eq. (7).
Like consistency, conditional entropy will accept a con-
stant solution as optimal. Conditional entropy con-
founds two distinct situations: conditional entropy will
be low when the image is predictable from the model,
but it will also be low if the image by itself is pre-
dictable. Rather than conditional entropy we will es-
timate themutual informationbetween the model and
the image:

I (u(x), v(T(x))) ≡ h(u(x)) + h(v(T(x)))

− h(u(x), v(T(x))). (13)

The mutual information defined in Eq. (13) has three
components. The first term is the entropy in the model,

and is not a function ofT . The second term is the en-
tropy of the part of the image into which the model
projects. It encourages transformations that projectu
into complex parts ofv. The third term, the (nega-
tive) joint entropy ofu andv, contributes whenu and
v are functionally related. It encourages transforma-
tions whereu explainsv well. Together the last two
terms identify transformations that find complexity and
explain it well.

Why are weighted neighbor likelihood and condi-
tional entropy related? Weighted neighbor likelihood
measures the quality of the weighted neighbor func-
tion approximation. In the graph on the left of Fig. 7
the points of the sample lie near the weighted neighbor
function approximation. In addition, the joint distribu-
tion of samples is tightly packed together. Points are
not distributed throughout the space, but lie instead in
a small part of the joint space. This is the hallmark of
a low entropy distribution. In the graph on the right of
Fig. 7 the weighted neighbor function approximation
is a poor fit to the data and the data is more spread out.
In general, aligned signals have low joint entropy and
misaligned signals have high joint entropy.

5. EMMA Alignment

We seek an estimate of the transformationT̂ that aligns
the modelu and imagev by maximizing their mutual
information over the transformationsT ,

T̂ = arg max
T

I (u(x), v(T(x))). (14)

Here we treatx as a random variable over coordinate
locations in the model. In the alignment algorithm
described below, we will draw samples fromx in order
to approximateI and its derivatives.

5.1. EMMA and its Derivatives

The entropies described above are defined in terms of
integrals over the probability densities associated with
the random variablesu andv. When analyzing signals
or images we will not have direct access to the densities.
In this section we describe a differentiable estimate of
the entropy of a random variable that is calculated from
samples.

The entropy of a random variablezmay be expressed
as an expectation of the negative logarithm of the prob-
ability density:

h(z) = −Ez(ln p(z)).
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Our first step in estimating the entropies from
samples is to approximate the underlying probabil-
ity density p(z) by a superposition of Gaussian den-
sities centered on the elements of a sampleA drawn
from z:

p(z) ≈ 1

NA

∑
zj ∈A

Gψ(z − zj ),

where

Gψ(z) ≡ (2π)
−n
2 |ψ | −1

2 exp

(
− 1

2
zTψ−1z

)
.

This method of density estimation is widely known
as theParzen Windowmethod. It is described in the
textbook by Duda and Hart (1973). Use of the Gaussian
density in the Parzen density estimate will simplify
some of our subsequent analysis, but it isnotnecessary.
Any differentiable function could be used. Another
good choice is the Cauchy density.

Next we approximate statistical expectation with
the sample average over another sampleB drawn
from z:

Ez( f (z)) ≈ 1

NB

∑
zi ∈B

f (zi ).

We may now write an approximation for the entropy
of a random variablez as follows,

h(z) ≈ −1

NB

∑
zi ∈B

ln
1

NA

∑
zj ∈A

Gψ(zi − zj ). (15)

The density ofzmay be a function of a set of parame-
ters,T . In order to find maxima of mutual information,
we calculate the derivative of entropy with respect to
T . After some manipulation, this may be written com-
pactly as follows,

d

dT
h(z(T)) ≈ 1

NB

∑
zi ∈B

∑
zj ∈A

Wz(zi , zj )(zi − zj )
T

× ψ−1 d

dT
(zi − zj ), (16)

using the following definition:

Wz(zi , zj ) ≡ Gψ(zi − zj )∑
zk∈A Gψ(zi − zk)

.

The weighting factorWz(zi , zj ) takes on values be-
tween zero and one. It will approach one ifzi is sig-
nificantly closer tozj than it is to any other element

of A. It will be near zero if some other element of
A is significantly closer tozi . Distance is interpreted
with respect to the squared Mahalanobis distance (see
(Duda and Hart, 1973))

Dψ(z) ≡ zTψ−1z.

Thus,Wz(zi , zj ) is an indicator of the degree of match
between its arguments, in a “soft” sense. It is equiva-
lent to using the “softmax” function of neural networks
(Bridle, 1989) on the negative of the Mahalanobis dis-
tance to indicate correspondence betweenzi and ele-
ments ofA.

The summand in Eq. (16) may also be written as:

Wz(zi , zj )
d

dT

1

2
Dψ(zi − zj ).

In this form it is apparent that to reduce entropy, the
transformationT should be adjusted such that there
is a reduction in the average squared distance between
those values whichW indicates are nearby, i.e., clusters
should be tightened.

5.2. Stochastic Maximization
of Mutual Information

The entropy approximation described in Eq. (15) may
now be used to evaluate the mutual information of the
model and image (Eq. (13)). In order to seek a maxi-
mum of the mutual information, we will calculate an
approximation to its derivative,

d

dT
I (u(x), v(T(x))) = d

dT
h(v(T(x)))

− d

dT
h(u(x), v(T(x))).

Using Eq. (16), and assuming that the covariance
matrices of the component densities used in the ap-
proximation scheme for the joint density are block di-
agonal:ψ−1

uv = DIAG (ψ−1
uu , ψ−1

vv ), we can obtain an
estimate for the derivative of the mutual information as
follows:

d̂ I

dT
= 1

NB

∑
xi ∈B

∑
xj ∈A

(vi − v j )
T

×
[
Wv(vi , v j )ψ

−1
v − Wuv(wi , w j )ψ

−1
vv

]
× d

dT
(vi − v j ). (17)
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The weighting factors are defined as

Wv(vi , v j ) ≡ Gψv
(vi − v j )∑

xk∈A Gψv
(vi − vk)

and

Wuv(wi , w j ) ≡ Gψuv
(wi − w j )∑

xk∈A Gψuv
(wi − wk)

,

using the following notation (and similarly for indices
j andk),

ui ≡ u(xi ), vi ≡ v(T(xi )), and wi ≡ [ui , vi ]
T .

If we are to increase the mutual information, then the
first term in the brackets (of Eq. (17)) may be inter-
preted as acting to increase the squared distance be-
tween pairs of samples that are nearby in image inten-
sity, while the second term acts to decrease the squared
distance between pairs of samples that are nearby in
both image intensityand the model properties. It is
important to emphasize that distances are in the space
of values (intensities, brightness, or surface properties),
rather than coordinate locations.

The term d
dT (vi − v j ) will generally involve gra-

dients of the image intensities and the derivative of
transformed coordinates with respect to the transfor-
mation. In the simple case thatT is a linear operator,
the following outer product expression holds:

d

dT
v(T(xi )) = ∇v(T(xi ))x

T
i .

5.2.1. Stochastic Maximization Algorithm. We seek
a local maximum of mutual information by using a
stochastic analog of gradient descent. Steps are repeat-
edly taken that are proportional to the approximation
of the derivative of the mutual information with respect
to the transformation:

Repeat:

A ← {sample of sizeNA drawn fromx}
B ← {sample of sizeNB drawn fromx}
T ← T + λ d̂ I

dT

The parameterλ is called thelearning rate. The
above procedure is repeated a fixed number of times or
until convergence is detected.

A good estimate of the derivative of the mutual in-
formation could be obtained by exhaustively sampling
the data. This approach has serious drawbacks because

the algorithm’s cost is quadratic in the sample size. For
smaller sample sizes, less effort is expended, but addi-
tional noise is introduced into the derivative estimates.

Stochastic approximation is a scheme that uses noisy
derivative estimate instead of the true derivative for
optimizing a function (see (Widrow and Hoff, 1960;
Ljung and S¨oderström, 1983; Haykin, 1994)). Con-
vergence can be proven for particular linear systems,
provided that the derivative estimates are unbiased, and
the learning rate is annealed (decreased over time). In
practice, we have found that successful alignment may
be obtained using relatively small sample sizes, for
exampleNA = NB = 50. We have proven that the
technique will always converge to a pose estimate that
is close to locally optimal (Viola, 1995).

It has been observed that the noise introduced by the
sampling can effectively penetrate small local minima.
Such local minima are often characteristic of continu-
ous alignment schemes, and we have found that local
minima can be overcome in this manner in these appli-
cations as well. We believe that stochastic estimates for
the gradient usefully combine efficiency with effective
escape from local minima.

5.2.2. Estimating the Covariance. In addition toλ,
the covariance matrices of the component densities in
the approximation method of Section 5.1 are important
parameters of the method. These parameters may be
chosen so that they are optimal in the maximum like-
lihood sense with respect to samples drawn from the
random variables. This approach is equivalent to min-
imizing the cross entropy of the estimated distribution
with the true distribution (Cover and Thomas, 1991).
For simplicity, we assume that the covariance matrices
are diagonal.

The most likely covariance parameters can be es-
timated on-line using a scheme that is almost iden-
tical in form to the scheme for maximizing mutual
information.

6. Experiments

In this section we demonstrate alignment by maximiza-
tion of mutual information in a variety of domains. In
all of the following experiments, bi-linear interpolation
was used when needed for non-integral indexing into
images.

6.1. MRI Alignment

Our first and simplest experiment involves finding the
correct alignment of two MR images (see Fig. 8).
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Figure 8. MRI alignment (from left to right): original proton-density image, original T2-weighted image, initial alignment, composite display
of final alignment, intensity-transformed image.

The two original images are components of a double-
echo MR scan and were obtained simultaneously, as
a result the correct alignment should be close to the
identity transformation. It is clear that the two im-
ages have high mutual information, while they are not
identical.

A typical initial alignment appears in the center of
Fig. 8. Notice that this image is a scaled, sheared,
rotated and translated version of the original. A suc-
cessful alignment is displayed as a checkerboard. Here
every other 20×20 pixel block is taken either from the
model image or target image. Notice that the boundary
of the brain in the images is very closely aligned.

We represent the transformation by a 6 element
affine matrix that takes two dimensional points from
the image plane of the first image into the image plane
of the second image. This scheme can represent any
combination of scaling, shearing, rotation and transla-
tion. Before alignment the pixel values in the two MR
images are pre-scaled so that they vary from 0 to 1.
The component densities areψuu = ψw = 0.1, and the
random samples are of size 20. We used a learning rate
of 0.02 for 500 iterations and 0.005 for 500 iterations.
Total run time on a Sparc 10 was 12 seconds.

Over a set of 50 randomly generated initial poses
that vary in position by 32 pixels, a little less than one
third of the width of the head, rotations of 28 degrees,
and scalings of up to 20%, the “correct” alignment
is obtained reliably. Final alignments were well within
one pixel in position and within 0.5% of the identity ma-
trix for rotation/scale. We report errors in percent here
because of the use of affine transformation matrices.

The two MRI images are fairly similar. Good align-
ment could probably be obtained with a normalized
correlation metric. Normalized correlation assumes, at
least locally, that one signal is a scaled and offset ver-
sion of the other. Our technique makes no such as-
sumption. In fact, it will work across a wide variety
of non-linear transformations. All that is required is

that the intensity transformation preserve a significant
amount of information. On the right in Fig. 8. we show
the model image after a non-monotonic (quadratic) in-
tensity transformation. Alignment performance is not
significantly affected by this transformation.

This last experiment is an example that would defeat
traditional correlation, since the signals (the second
and last in Fig. 8) are more similar in value when they
are badly mis-aligned (non-overlapping) than they are
when properly aligned.

6.2. Alignment of 3D Objects

6.2.1. Skull Alignment Experiments. This section
describes the alignment of a real three dimensional ob-
ject of its video image. The signals that are compared
are quite different in nature: one is the video bright-
ness, while the other consists of two components of the
normal vector at a point on the surface of the model.

We obtained an accurate 3D model, including nor-
mals, of a skull that was derived from a computed to-
mography (CT) scan. Cluttered video images of the
skull were obtained (see Fig. 9). In these images the
pose of the model is displayed by projecting 3D points
from the model’s surface into the image plane and high-
lighting them in white. In the upper left of Fig. 9 the
model is displayed in a typical initial pose. The final
alignment of the skull model is in the upper right. No-
tice that the boundaries of the skull model and skull
image are in close agreement. We would like to em-
phasize that in none of these experiments have we pre-
segmented the image. The initial poses often project
the model into regions of the image that contain a sig-
nificant amount of clutter. EMMA reliably settles on a
pose where few if any of the model points project onto
the background.

One difference between the method used to per-
form 3D alignment and that used for 2D alignment is
a Z-buffering step that is used to prune hidden points
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Figure 9. Skull alignment experiments: Initial alignment, final alignment, initial alignment with occlusion, final alignment with occlusion.

from the calculations. SinceZ-buffer pruning is costly,
and the pose does not change much between iterations,
it proved sufficient to prune every 200 iterations. An-
other difference is that the model surface sampling was
adjusted so that the sampling density in the image was
corrected for foreshortening.

In this experiment, the camera has a viewing an-
gle of 18 degrees. We representT , the transforma-
tion from model to image coordinates, as a double
quaternion followed by a perspective projection (Horn,
1986). Assuming diagonal covariance matrices four
different variances are necessary, three for the joint
entropy estimate and one for the image entropy esti-
mate. The variance for thex component of the normal
was 0.3, for they component of the normal was 0.3, for
the image intensity was 0.2 and for the image entropy
was 0.15. The size of the random sample used is 50
points.

Since the units of rotation and translation are very
different, two separate learning rates are necessary. For
an object with a 100 millimeter radius, a rotation of 0.01
radians about its center can translate a model point up
to 1 millimeter. On the other hand, a translation of 0.01
can at most translate a model point 0.01 millimeters.
As a result, a small step in the direction of the derivative
will move some model points up to 100 times further
by rotation than translation. If there is only a single

learning rate a compromise must be made between the
rapid changes that arise from the rotation and the slow
changes that arise from translation. Since the models
used have a radius that is on the order of 100 millime-
ters, we have chosen rotation learning rates that are
100 times smaller than translation rates. In our exper-
iments alignment proceeds in two stages. For the first
2000 iterations the rotation learning rate is 0.0005 and
the translation learning rate is 0.05. The learning rates
are then reduced to 0.0001 and 0.01 respectively for an
additional 2000 iterations. Running time is about 30
seconds on a Sparc 10.

A number of randomized experiments were per-
formed to determine the reliability, accuracy and re-
peatability of alignment. This data is reported in
Table 1. An initial alignment to an image was per-
formed to establish a base pose. From this base pose,
a random uniformly distributed offset is added to each
translational axis (labeled1T) and then the model is
rotated about a randomly selected axis by a random
uniformly selected angle (1θ ). Table 1 describes four
experiments each including 50 random initial poses.
The distribution of the final and initial poses can be
compared by examining the variance of the location
of the centroid, computed separately inX, Y and Z.
In addition, the average angular rotation from the true
pose is reported (labeled|1θ |). Finally, the number



         P1: LMW/STR/RKB/JHR P2: STR/SRK P3: STR/SRK QC:

International Journal of Computer Vision Kl470-04-Viola July 18, 1997 9:22

Alignment by Maximization of Mutual Information 149

Table 1. Skull alignments results table.

Initial Final

σX σY σZ σX σY σZ
1T
XY Z
± mm

1θ
◦ mm

| 1θ |
◦ mm

| 1θ |
◦

Success
%

10 10 5.94 5.56 6.11 5.11 .61 .53 5.49 3.22 100

30 10 16.53 18.00 16.82 5.88 1.80 .81 14.56 2.77 96

20 20 10.12 12.04 10.77 11.56 1.11 .41 9.18 3.31 96

10 < 1 < 20 20< 1 < 40 14.83 15.46 14.666 28.70 1.87 2.22 14.19 3.05 78

of poses that successfully converged near the correct
solution is reported. The final variance statistics are
only computed over the “good” poses.

The lower images in Fig. 9 show the initial and final
alignment from an experiment that includes an artificial
occlusion that covers the chin area. The pose found is
very close to the correct one despite the occlusion. In a
number of experiments, we have found that alignment
to occluded images can require more time for conver-
gence. Our system works in the presence of occlusion
because the measure of mutual information used is “ro-
bust” to outliers and noise (see (Viola, 1995) for further
discussion).

These experiments demonstrate that the alignment
procedure is reliable when the initial pose is close to the
“correct” pose. Outside of this range gradient descent,
by itself, is not capable of converging to the correct
solution. The capture range is not unreasonably small
however. Translations as large as half the diameter of
the skull can be accommodated, as can rotations in the
plane of up to 45 degrees. Empirically it seems that
alignment is most sensitive to rotation in depth. This is
not surprising since only the visible points play a role in
the calculation of the derivative. As a result, when the
chin is hidden the derivative gives you no information
about how to move the chin out from behind the rest of
the skull.

6.2.2. Head Tracking Experiment. This section sum-
marizes recent results obtained using the methodology
described above to track a moving human head in a
video sequence. The results are shown in Fig. 10. The
images on the left of each square have been digitized
from video tape at 3 frames per second. A 3D model
of the subject’s head, along with surface normals, was
derived from a Cyberware scan of the subject. It is ren-
dered on the right to illustrate the poses determined by
the alignment method. (Recall that alignment proceeds
using video brightness and model surface normals.) Figure 10. Video head tracking experiment.
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Figure 11. Car model images.

An initial alignment of the model to the first frame of
the sequence was obtained using a manually-generated
starting pose (this frame is not shown). In subsequent
frames, the previous final pose was used as the initial
pose for the next alignment. Each pose refinement took
about 10 seconds on a Sparc 10.

How are the face experiments different from the skull
experiments? Firstly, the face model is much smoother
than the skull model. There really aren’t any creases or
points of high curvature. As a result it is much less
likely that an edge-based system could construct a rep-
resentation either of the image or the model that would
be stable under changes in illumination. Secondly, the
albedo of the actual object is not exactly constant. The
face contains eyebrows, lips and other regions where
the albedo is not the same. As a result this is a test of
EMMA’s ability to handle objects where the assump-
tion of constant albedo is violated. Thirdly, not all of
the occluding contours of the object are present in the
model. The model is truncated both at the chin and
the forehead. As a result experiments with this model
demonstrate that EMMA can work even when the oc-
cluding contours of the image and model are not in
agreement.

6.3. View Based Recognition Experiments

In the previous vision experiments we used knowledge
of the physics of imaging to show that the surface nor-
mal of an object should be predictive of the intensity
observed in an image. Unfortunately, in many experi-
mental situations no three dimensional model is avail-
able. In these situations it is frequently the case that
the only available information about an object is a col-
lection of images taken under a variety conditions. One
approach for solving problems like this is to use a col-
lection of images as the model. This is often called a
“view based” approach since the model is made up of a
number of views of the model object. Given a novel im-
age of some object, each model image is compared to
it in turn. If some model image is “close enough” to the

novel image, the model and novel image are considered
aligned (or recognized). One can significantly reduce
the number of model images required by adding an
affine transformation to the comparison process. The
novel image is then compared to each model image
under a set of affine transformations. The most com-
monly used comparison metric is correlation. Correla-
tion makes the assumption that the model and the image
are identical (or possibly related by a linear function).

In general the set of images that can arise from a
single object under varying illumination is very broad.
Figure 11 shows two images of the same object in the
same pose. These images are very different and are in
fact anti-correlated: bright pixels in the left image cor-
respond to dark pixels in the right image; dark pixels in
the left image correspond to bright pixels in the right
image. No variant of correlation could match these
images together.

We have presented techniques based on entropy that
can match both correlated and anti-correlated signals.
These techniques require only that there is some con-
sistent relationship between model and image. Dis-
couragingly, it is not difficult to find two images of
the same object for which there is no consistent re-
lationship. Figure 12 shows a novel image which is
aligned with the two model images. Figure 13 contains
two scatter plots of the pixel values in the novel image
versus the pixel values in the model images. Clearly,
there is no simple consistent relationship displayed in
either of these graphs. Neither correlation nor EMMA
could be used to match this novel image to either model
image.

Figure 12. A novel image of the car model.
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Figure 13. The relationship between pixels in the novel image and each of the model images.

6.3.1. Photometric Stereo.By itself each model im-
age does not contain enough information to constrain
the match between image and model. However, it is
well known that taken together a collection of images
can be used to determine the 3D shape of an object. As
we’ve seen the 3D shape is sufficient to constrain the
match between image and model.

When multiple images of an object are available a
technique calledphotometric stereocan be used to esti-
mate 3D shape (Horn, 1986). Photometric stereo works
with images which are taken from the same location but
under different illumination conditions. It is assumed
that detailed information both about illumination and
surface properties are available for each image. As
a result a reflectance map can be computed for each
image.

The reflectance map together with the intensity of
a pixel acts as a constraint on the normal vector visi-
ble from that pixel. The allowable normals usually lie
along a closed curve on the unit circle. From a sec-
ond image, and its associated reflectance map, another
set of allowable normals can be computed. By inter-
secting these constraints, two images are sufficient to
determine the surface normal at each pixel. From the
normals the shape can be obtained through integration.

Once the shape of the object is determined, the
correct alignment could be found using the three di-
mensional version of EMMA alignment. The imaging
function of this new two stage process is:

v(T(xi )) = F(G(u1(xi ), r1, u2(xi ), r2), q)

whereG( ) is the photometric stereo function that takes
two images and two reflectance maps and returns the
shape, andF( ) is our original imaging function which
predicts image intensities from object normals.

In practice, however, performing photometric stereo
requires the kind of detailed metric information about

illumination that is only available under very controlled
circumstances. One cannot use natural images where
the lighting is unknown or difficult to determine. Luck-
ily, we need not actually knowG( ), r1, r2, F( ), or q.
As long as they exist there will be high mutual infor-
mation between any novel image and apair of model
images. This is the essence of view based EMMA align-
ment. We don’t actually perform photometric stereo,
we simply assume that it is possible. As a result a
pair of images should give information about any third
image.

To demonstrate this approach we have built a model
using the two images in Fig. 11. Figure 14 shows the
target image, the initial pose of the model, and the final
pose obtained after alignment.

Technically this experiment is very similar to the
MRI alignment experiment. The main difference is that
the model is constructed from a pair of model images.
A sample of the modelu(x) = [u1(x), u2(x)]T is a
two dimensional vector containing the intensity of the
two images at locationx. This is similar to the two
component representation of normal used in the three
dimensional alignment experiments. For this experi-
mentσ is 0.1. The parameters were updated for 1000
iterations at a rate of 0.002. From a set of random-
ized experiments we have determined that the cap-
ture range of the alignment procedure is about 40%
of the length and width of the car, and 35 degrees of
rotation.

7. Discussion and Related Work

We have presented a metric for comparing objects and
images that uses shading information, yet is explicitly
insensitive to changes in illumination. This metric is
unique in that it compares 3D object models directly
to raw images. No pre-processing or edge detection is
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Figure 14. Top left: A novel image of the car. Top right: The initial pose of the car model. Though the model is made up of multiple images,
only one is shown here. Bottom left: The aligned pose of the car model.

required. The metric has been rigorously derived from
information theory.

In a typical vision application EMMA alignment
is intensity-based, rather than feature based. While
intensity based, it is more robust than traditional
correlation—since it is insensitive to negating the
image data, as well as a variety of non-linear transfor-
mations (e.g., Section 6.1), which would defeat con-
ventional intensity-based correlation.

The sensitivity of intensity correlation may be cor-
rected, to some extent, by performing correlations on
the magnitude of the intensity gradient. This, as well
as edge-based matching techniques, can perform well
on objects having discontinuous surface properties, or
useful silhouettes. These approaches work because the
image counterparts of these discontinuities are rea-
sonably stable with respect to illumination, however
they typically make two very strong assumptions: the
edges that arise are stable under changes in lighting,
and the models are well described as a collection of
edges.

There are many schemes that represent models and
images by collections of edges and define a dis-
tance metric between them, Huttenlocher’s use of the
Hausdorff distance (Huttenlocher et al., 1991) is an

example. Some methods use a metric that is propor-
tional to the number of edges that coincide (see the
excellent survey articles: (Besl and Jain, 1985; Chin
and Dyer, 1986)). A smooth, optimizable version of
such a metric can be defined by introducing a penalty
both for unmatched edges and for the distance between
those that are matched (Lowe, 1985; Wells III, 1992).
This metric can then be used both for image/model
comparison and for pose refinement. Additional tech-
nical details on the relationship between mutual infor-
mation and other measures of alignment may be found
in (Viola, 1995).

Alignment by extremizing properties of the joint
signal has been used by Hill et al. (1994) to align
MRI, CT, and other medical image modalities. They
use third order moments of the joint histogram to char-
acterize the clustering of the joint data. We believe
that mutual information is perhaps a more direct mea-
sure of the salient property of the joint data at align-
ment, and demonstrate an efficient means of estimating
and extremizing it. Recently, Collignon et al. (1995)
described the use of joint entropy as a criterion for reg-
istration of CT and MRI data. They demonstrated a
good minimum by probing the criterion, but no search
techniques were described.
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Image-based approaches to modeling have been pre-
viously explored by several authors. Objects need not
have edges to be well represented in this way, but care
must be taken to deal with changes in lighting and pose.
Turk and Pentland have used a large collection of face
images to train a system to construct representations
that are invariant to some changes in lighting and pose
(Turk and Pentland, 1991). These representations are
a projection onto the largest eigenvectors of the distri-
bution of images within the collection. Their system
addresses the problem of recognition rather than align-
ment, and as a result much of the emphasis and many
of the results are different. For instance, it is not clear
how much variation in pose can be handled by their
system. We do not see a straightforward extension
of this or similar eigenspace work to the problem of
pose refinement. In other related work, Shashua has
shown that all of the images, under different lighting,
of a Lambertian surface are a linear combination of any
three of the images (Shashua, 1992). A procedure for
image alignment could be derived from this theory. In
contrast, our image alignment method does not assume
that the object has a Lambertian surface.

Entropy is playing an ever increasing role within the
field of neural networks. We know of no work on the
alignment of models and images, but there has been
work using entropy and information in vision prob-
lems. None of these techniques use a non-parametric
scheme for density/entropy estimation as we do. In
most cases the distributions are assumed to be either
binomial or Gaussian. Entropy and mutual informa-
tion plays a role in the work of (Linsker, 1986; Becker
and Hinton, 1992; Bell and Sejnowski, 1995).
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Notes

1. EMMA is a random but pronounceable subset of the letters in the
words “Empirical entropy Manipulation and Analysis”.

2. Log likelihood is computed by first finding the Gaussian distribu-
tion that fits the residual error, or noise, best. The log of (6) is then
computed using the estimated distribution of the noise. For small
amounts of noise, these estimates can be much larger than 1.

3. Correlation matching is one of many techniques that assumes a
Gaussian conditional distribution of the image given the model.

4. Here we speak of the empirically estimated entropy of the condi-
tional distribution.
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