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Abstract—The success of prostate brachytherapy critically
depends on delivering adequate dose to the prostate gland. Intra-
operative localization of the implanted seeds provides potential for
dose evaluation and optimization during therapy. A reduced-di-
mensionality matching algorithm for prostate brachytherapy seed
reconstruction (REDMAPS) that uses multiple X-ray fluoroscopy
images obtained from different poses is proposed. The seed recon-
struction problem is formulated as a combinatorial optimization
problem, and REDMAPS finds a solution in a clinically acceptable
amount of time using dimensionality reduction to create a smaller
space of possible solutions. Dimensionality reduction is possible
since the optimal solution has approximately zero cost when the
poses of the acquired images are known to be within a small
error. REDMAPS is also formulated to address the “hidden seed
problem” in which seeds overlap on one or more observed im-
ages. REDMAPS uses a pruning algorithm to avoid unnecessary
computation of cost metrics and the reduced problem is solved
using linear programming. REDMAPS was first evaluated and its
parameters tuned using simulations. It was then validated using
five phantom and 21 patient datasets. REDMAPS was successful
in reconstructing the seeds with an overall seed matching rate
above 99% and a reconstruction error below 1 mm in less than 5 s.

Index Terms—Brachytherapy, combinatorial optimization,
integer programming, linear programming, optimal matching,
prostate cancer.

I. INTRODUCTION

C ARCINOMA of the prostate is one of the most prevalent
and fatal cancers in men in North America. Prostate

cancer alone accounts for 25% of cancer cases and 9% of
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cancer deaths in men with 192 280 estimated new cases and
27 360 estimated deaths in 2009 in the United States alone
[1]. During the past decade, ultrasound-guided low dose rate
(LDR) transperineal brachytherapy has become one of the
popular choices of therapy for patients with early prostate
cancer [2]–[4]. It involves the implantation of radioactive seeds
(either or ) into the prostate, and its success critically
depends on adequately dosing the target gland by implanting
a sufficient number and distribution of radioactive seeds while
avoiding excessive radiation toxicity to adjacent organs, most
notably urethra, bladder, and rectum.

In the contemporary prostate brachytherapy procedure, an
implant plan is made either preoperatively [5] or intraopera-
tively [6] based on transrectal ultrasound (TRUS) imaging. The
physician first contours the prostate and the planning target
volume from TRUS images, and then a treatment planning
system is used to create a seed implant plan to deliver the
prescribed dose to the target. During the implant procedure, the
patient lies on his back with his legs in a high lithotomy posi-
tion. The physician places the seeds into the planned locations
in the prostate via needles inserted transperineally through a
template guide using TRUS guidance as depicted in Fig. 1.

One of the greatest challenges of the current TRUS-guided
implant method is that it is difficult to visualize the implanted
seeds on TRUS. Seed positions may be estimated intraopera-
tively at the time of deposition based on visualization of the
needle tip on TRUS images, but this method is subject to in-
accuracies due to procedural variations such as patient motion,
needle deviation, seed migration, and prostatic edema [7]–[9].
As a consequence, seed positioning variations cannot be iden-
tified intraoperatively during the procedure. An additional seed
implant session (which can be technically challenging) or sup-
plemental external beam radiation is sometimes necessary to
cover underdosed regions [10], [11]. The future direction of
prostate brachytherapy involves the development of a system
that intraoperatively assists the brachytherapist to achieve op-
timal dosimetric quality with a favorable dose profile to the
target and surrounding normal tissues [4], [9].

In order to achieve concurrent visualization of the anatomy
and implanted seeds, systems that use ultrasound imaging
and X-ray fluoroscopy have been proposed to permit both
monitoring of the implant process and reconstruction of the
implanted seeds for intraoperative treatment optimization
[12]–[17]. In particular, X-ray projection images can be ac-
quired using conventional mobile C-arms and the 3-D seed
positions can be reconstructed from these data. The recon-
structed seeds can then be registered to the prostate volume
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Fig. 1. Schematic describing prostate brachytherapy procedure.

that is visualized using the TRUS images. Overall, this process
provides sufficient information for the computation of an in-
traoperative dose distribution at intermediate implant stages in
relation to the target from which a modification to the original
seed placement plan can be computed and carried out during
the same therapeutic procedure.

There has been extensive previous work on the reconstruction
of brachytherapy seeds from multiple X-ray images [18]–[31].
The most common approaches consist of the following tasks:
1) acquire several X-ray images from different orientations; 2)
segment the seeds and find their 2-D coordinates in every image;
3) determine which segmented seeds in each image correspond
to the same physical seed (“seed matching”); and 4) compute
the positions of each physical seed from the corresponding
seeds (“triangulation”). In order to minimize the chances of
having multiple, equally-valid solutions to this problem, at least
three images are required. Regardless of the number of acquired
images, the resulting optimization problem required for seed
matching is closely related to NP-hard problems such as the

-partite matching problem [29]–[31], which implies that most
reconstruction algorithms must be approximate since carrying
out an exhaustive search is too time-consuming for routine
clinical practice. Most of the current approaches assume that
every seed can be individually identified in every image; but,
in reality, each image will generally contain some seeds whose
projections overlap [32]. Both the computational demands
and the so-called “hidden seed problem” represent significant
impediments to the routine application of currently known seed
reconstruction methods in clinical practice.

In recent years, several methods have been proposed for
solving the hidden seed problem. Su et al. [32] developed
a statistical classifier to determine the number of seeds in
a self-connected region in the segmented seed images and
extended fast-CARS [27] to reconstruct seed locations from
images where the number of identified seeds in each image
differs. However, it may reconstruct a greater number of seeds
than were actually implanted, depending on the accuracy

of seed image location and the accuracy of calibration of
the imaging device and relative pose of the X-ray images.
Narayanan et al. [33] proposed a seed reconstruction method
based on epipolar geometry using a pseudo-seed-matching
strategy. Since epipolar geometry is defined only over two
projections, it requires a co-planar imaging constraint in order
to use three images. It also requires at least one of the three
projections to be complete—i.e., all the seeds are identified—in
order to reliably solve the hidden seed problem. Furthermore,
the algorithm cannot reconstruct undetected seeds if they are
in the same search restriction band in all three images. Kon et
al. [34] extended MARSHAL [29] to deal with the hidden seed
problem. They solve a series of bipartite matching problems
projected from the original multipartite matchings to guarantee
a polynomial time solution. However, the resulting solution
is only locally optimal and may not be close to the globally
optimal solution in the presence of errors in seed segmentation
or errors in the estimation of pose of the C-arm (referred to
shortly herein as pose error).

Su et al. [35] proposed reconstruction methods based on
two versions of adaptive-grouping techniques where seed im-
ages are divided into groups for efficient seed reconstruction.
It showed improved performance compared to the epipolar
geometry-based reconstruction [33] in terms of accuracy and
computation time. However, it may fail to detect overlap-
ping seeds when the projection with the largest number of
seed images among the divided groups is incomplete. Also,
overdividing due to incorrect division of triplets may produce
false positive seeds. Hong et al. [36] developed a localization
method that is able to separate overlapping seeds based on the
distance between seeds in each film using three-film technique,
but the overall seed detection rate in phantom data was only
94% or lower. Tutar et al. [37] designed a tomosynthesis-based
selective backprojection and Lam et al. [38] utilized a Hough
trajectory that is unique for each 3-D seed coordinate. However,
these methods require a large number of images and wide image
acquisition angles to guarantee stable reconstruction. Murphy
and Todor [39] have reported a preliminary work using a for-
ward iterative method that simultaneously estimates the seed
positions and camera parameters. This optimization method is
prone to yield only locally optimal solutions and was tested
only on clean simulated images. In earlier work, we proposed
a tomosynthesis seed reconstruction approach with Gaussian
blurring followed by a false positive removal process using
optimal coverage cost [40]. It is able to reliably reconstruct
the implanted seeds even when the image acquisition angle is
very small, e.g., 5 , but it still needs 5–6 images to reliably
reconstruct the seeds and requires at least three images whose
image poses are known with high accuracy.

There have been attempts to formulate the seed reconstruc-
tion problem as an integer program and to solve it using a
linear programming approach. Siebert et al. [30] proposed a
fast linear programming approach combined with randomized
rounding. In order to reduce the number of useful seed triples,
they trim away instances that have larger cost values than a
certain threshold determined from their histogram analysis of
patient data. However, since their algorithm utilizes both ends
of the uniquely identified seeds and defines the seeds as straight
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lines, not as points, it requires more complicated seed segmen-
tation than other seed-matching algorithms that identify the 2-D
seed images as points. For certain manufacturers’ seed types
that do not leave line-like traces in the 2-D image, this method
would not be applicable. Also, when there are hidden seeds
(i.e., number of identified seeds in each image differs), it can
only reconstruct the smallest number of identified seeds. The
remaining seeds are recovered by manual interaction through a
visualization software, which makes the entire seed reconstruc-
tion process significantly slower and impractical for clinical
adoption. Singh et al. [31] also formulated seed reconstruction
as a minimization integer program with geometric approaches
to exploit the special structure of the problem and solved it
using linear programming techniques. Through investigation
of the upper bound on the maximal error, they could reduce
the original problem by using a ball-sweep process. However,
it is designed for the case where all seeds in every image are
identified with their 2-D image coordinates, and conversion
of their formulation for handling the hidden seed problem is
not trivial. Even when all seeds are identified and the images
are acquired along very wide acquisition angles (AP, lateral,
and two oblique views), their matching accuracy remains only
about 95%.

In summary, existing seed reconstruction methods have at
least one of the following fundamental limitations: 1) they are
sensitive to pose errors of the imaging device, 2) they cannot re-
solve the hidden seed problem, 3) they require a large number
of images, large image acquisition angles, and a long time to
compute a converging solution, and 4) they require constrained
motion of the imaging device, e.g., isocentric circular trajec-
tory. Among these limitations, one may resolve the issues 1)
and 4) by using accurate tracking device and isocentric imaging
system, but they are generally very expensive and may not be
available in many hospitals. Even with a good tracking device,
a reconstruction algorithm that is robust to tracking errors is cru-
cial because the reconstruction is very sensitive to tracking er-
rors due to the small size of the implanted seeds. Therefore, the
approach described in this paper addresses all of these prob-
lems and was designed to be robust to these limitations and
to work on any type of X-ray imaging system. This is crit-
ical because all four limitations must be solved in order for the
method to be suitable for standard clinical use. We present a
seed-matching algorithm that is able to find the 3-D seed lo-
cations from multiple X-ray images in the presence of hidden
seeds and pose errors of the imaging device in polynomial time.
We named our algorithm REDMAPS for REduced-Dimension-
ality Matching Algorithm for Prostate brachytherapy Seed re-
construction. REDMAPS adopts a dimensionality reduction ap-
proach to efficiently solve the NP-hard combinatorial optimiza-
tion problem. The key insight to dimensionality reduction is the
practical observation that the optimal solution of our problem
has near-zero cost if the pose of the imaging device is known
to within a small error. We also apply a pruning algorithm for
efficient cost computation that allows us to significantly reduce
the total computation time. The reduced problem is efficiently
solved using linear programming in polynomial time.

REDMAPS was designed to work on conventional mobile
C-arms, which are often available to most brachytherapy

practitioners, unlike other approaches that require expensive
isocentric X-ray equipment [27], [33], [37] or even CT scan-
ners [41]. Importantly, REDMAPS is able to provide implant
reconstruction at the end of the procedure for the purpose
of exit dosimetry quality assurance when there is the largest
number of seeds and correspondingly higher rates of overlaps.
Finally, although REDMAPS assumes that the image acquisi-
tion poses are known, it was designed to be robust to the level
of realistic pose errors that is commonly observed in mobile
C-arm applications. REDMAPS has been tested extensively in
simulations, with phantoms, and actual clinical brachytherapy
images recorded in an IRB-approved clinical trial, and the
results are reported here.

II. METHODS

It is well known that three or four non-coplanar images are
practically sufficient to reconstruct prostate brachytherapy im-
plants [25], [29]. Fig. 2 shows an example of the reconstruc-
tion process for three implanted seeds observed in three projec-
tions. As shown in Fig. 2(b), the most common way to solve the
seed reconstruction problem is to consider it as a multipartite
seed-matching problem (i.e., resolving correspondence between
point tuples). In this approach, segmented seeds are considered
as nodes and every two nodes that belong to
different images are connected by weighted edges that represent
the matching costs. The goal of the multipartite seed-matching
problem is to find a set of edges [e.g., thick edges in Fig. 2(b)]
that gives the smallest total weight (matching cost) while cov-
ering each node from each image exactly once. Once the cor-
respondences between nodes are resolved, computing the 3-D
locations of the physical seeds is straightforward.

For a general case when at least three images are
used and all the seeds are segmented with their 2-D image
coordinates in every image, the seed reconstruction problem can
be formulated as a 3-D assignment problem (3DAP) [29], [30]
in the following way:

(1)

...

(2)

where is equal to one when the match
is chosen and is zero otherwise, and

are the costs associated with the matches. This
integer programming problem requires the matching of each
and every seed in any one image with unique seeds in each of
the other images in such a way that the additive cost associated
with all matched seeds is minimized. The cost associated with
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Fig. 2. (a) Schematic describing a simple geometry in brachytherapy seed
matching from three projections. Arrows indicate an example of a correct seed
correspondence between the projected seeds �� �� � � �. (b) Diagram
showing all possible combinations and the true combination of seeds in every
image. Each seed in every image can be considered as a node and two nodes in
two different images are connected by a weighted edge. Thick edges indicate
the correct matches in the simple case shown in (a).

any paired seeds can be defined in several ways, and should
be large if the paired seeds are not actually associated with a
single seed in 3-D.

When , 3DAP given by (1) and (2) is NP-hard
[29]–[31], [42] and is generally impractical to solve exactly
except when there is a very small number of seeds. Thus,
approximate solutions are predominant in the literature. Also,
the problem statement does not account for the presence of
hidden seeds, which becomes inevitable as the number of seeds
rises to a therapeutically relevant level. Although solutions to
the hidden seed problem exist, they are either computationally
intensive or ultimately require manual intervention. In the
following sections, we extend the problem statement to include
hidden seeds and then find the solution by using dimension-
ality reduction. The algorithm turns out to be computationally
feasible in clinically relevant scenarios.

A. Extended Assignment Problem for Hidden Seeds

3DAP requires exactly implanted seeds to be identified and
matched in each image. In realistic scenarios, however, several

seeds are often overlapping in each projection such that only
seed locations are identified in image , where . We can
still construct an appropriate assignment problem by thinking
about matching the locations of seeds rather than the seeds
themselves. Accordingly, we define the following extended as-
signment problem (EAP) that is able to handle the hidden seed
problem. For X-ray images

(3)

...

(4)

The differences between 3DAP and EAP are minimal but im-
portant. First, (3) sums only over the identified seed locations in
each image. It is therefore not necessary in this framework to try
to “disambiguate” seed locations in order to arrive at seeds
in each image. Second, inequalities in (4) replace the equalities
in (2) in order to handle the occurrence of hidden seeds. Unlike
the equalities of (2), these inequalities permit more than one as-
signment to each identified seed location in each image. (If that
happens during optimization, then the “hidden seeds” have been
automatically identified.) Third, the new equality constraint that
appears in (4) and not in (2) guarantees that exactly seeds are
matched. This constraint was not necessary in 3DAP because
the equality constraints implied this constraint.

EAP can be stated in a very concise way. Let
, and let and be vector

forms of and in (3), respectively. Let
be a matrix form of the inequality constraints in (4). Then,
EAP (3), (4) can be formulated as the following binary integer
program (BIP):

(5)

(6)

where and means that, for
every th element, . Since each element of is either 0
or 1 and there must be 1’s, (5) is equivalent to choosing
cost coefficients that minimize the overall cost while satisfying
(6).
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Fig. 3. An example of symbolic intersection computation for � � �. � �� �
��� �� ��� is a line connecting a seed position chosen from image � with the
X-ray source position corresponding to that image. A symbolic intersection�

is calculated by finding the point with minimum mean square distances from the
lines.

B. Cost-Metric and Seed Reconstruction

In order to fully specify EAP in (3), (4) or (5), (6), the cost
coefficients must be specified. Among the various costs that
have been proposed in the literature [24], [25], [43], the recon-
struction accuracy (RA) is appealing due to its simple geometric
interpretation, its speed of computation, and its utility in cost
pruning (described below). The basic idea of RA is as follows.
Consider a proposed match comprising seed locations from
different images. If the locations truly correspond to the same
3-D seed, then the lines connecting their positions on the de-
tectors with their corresponding X-ray source positions should
intersect at the true 3-D seed position, and . The more
likely situation, as illustrated in Fig. 3 for the case of , is
that the lines will “narrowly” miss each other due to calibration
and pose errors. In this case, the RA will be greater than zero but
still small if calibration and pose errors are not too large. At the
same time, if one or more lines does not correspond to the same
3-D seed as the other lines, then the estimated intersection will
not, in general, be close to any line, and the RA will be large,
which reflects a poor match.

To arrive at a mathematical definition of RA, for images,
assume that there are identified seeds in image with seed
index . Let line be defined by the point

, e.g., the seed identified in the image , and the unit di-
rection , as illustrated in Fig. 3. Let be
a multi-index representing the combination . For
each combination , we define the estimated intersection point

of lines as the point that minimizes the sum of the square
distances from to the lines. Then RA for the combination

is defined as the root mean square distance from to each
line, as follows:

(7)

where is the Euclidean distance from to line .
The best matches comprise lines passing close to a single esti-

mated intersection point and are therefore those that minimize
the . It should be noted that we have specifically chosen
the 2-norm rather than the 1-norm or -norm because it permits
fast computations, as we shall see.

It is convenient to minimize the square of , which we
can write and expand as follows:

(8)

where is a skew-symmetric matrix formed from the ele-
ments of as follows:

(9)

Since, by definition, achieves the minimum of the square of
, it can be analytically computed by solving

as

(10)

where . Note that can be computed very
efficiently by using just a few summations followed by a 3 3
matrix inversion.

Once EAP is solved, the 3-D locations of the implanted
seeds are declared to be the estimated intersection points ’s
of all matches.

C. Dimensionality Reduction in EAP

Given images each having seeds (i.e., no hidden seeds),
there are cost coefficients and feasible solutions.
Since the number of implanted seeds in prostate brachytherapy
can be easily over 100 and at least three images are required for
unique reconstruction, it is practically impossible to compute all
the cost coefficients and consider every feasible solution. How-
ever, both 3DAP and EAP have a salient geometrical feature that
we can exploit: the optimal solution has a near-zero cost when
the pose error is small. We use this observation to reduce the
number of variables in our problem, thus permitting us to get
the optimal solution at reasonable computational complexity.

Lemma II.1: Let be the th element of , and assume that
. Let be a feasible solution. The integer linear problem

defined by (5), (6) is equivalent to the following integer linear
problem (i.e., they share the same optimal solutions):

(11)

(12)

where

(13)
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and is the cost of problem at the feasible
solution .

Proof: Let be an optimal solution to problem . We
have for all that satisfy (6)

(14)

Let us consider . From (14) we have
. Since are positive and are binary, we

have necessarily .
Given a feasible solution, Lemma II.1 states that all cost coef-

ficients that are greater than the cost associated with this solution
cannot be selected in the optimal solution. Since those coeffi-
cients can never be selected, the dimension of the problem can
be reduced by removing those coefficients from further consid-
eration. The dimensionality reduction can be illustrated as fol-
lows:

...

...

...

...

...

...

...

...
...

(15)

This means that the original problem is equivalent to the fol-
lowing problem of reduced dimensionality:

(16)

(17)

where and with a dimensionality
reduction matrix such that

.
Once the reduced problem is solved with a solution ,

the optimal solution to the original problem is simply given
by . If the dimensionality reduction is sufficiently
large, then the new problem can be solved exactly in reasonable
time even though the original problem is far too costly to solve.
Therefore, the practical interest clearly depends on the dimen-
sionality reduction ratio .

D. Pruning Algorithm for Efficient Cost Computation and
Dimensionality Reduction

The dimensionality reduction approach in Section II-C re-
quires the computation of only cost coefficients that are lower
than the threshold in (13). But how can one efficiently
determine whether a cost coefficient is higher than the threshold

without actually computing it? The following lemma provides
the key.

Lemma II.2: When images are used, every cost
coefficient for every combination obeys the following lower
bound:

(18)

where is the Euclidean distance between lines and
that originate from seeds and in images and with

unit direction vectors and , respectively.
Proof: The symbolic intersection for the combination

from images is computed as (10) from
. Let

then

Using the fact that

we get

Therefore,

Finally, this together with (8) give us (18).
Lemma II.2 provides the key for limiting our cost computa-

tions. We start by computing for all line pairs in all
images. Now consider the partial sums for the combination

from the first images defined by

(19)

which includes all line-pair distances among the . This par-
tial sum can be recursively computed for the first images as
follows:

(20)
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We see that is an increasing function and it is re-
lated to our RA bound [see (18)] in the following way:

. This means that once
has achieved a certain threshold, say , the RA of any possible
matches that include the currently selected lines must be
larger than . Accordingly, the computation of

is not necessary because the current collection of lines
(from only images ) cannot possibly be part of the
solution.

This property can be used in a recursive algorithm in which
one image is added at each iteration and all coefficients that re-
main lower than are updated. Once all images have been con-
sidered, the actual RA cost coefficients can be computed from
the matches that remain below , the dimensionality reduction
threshold. This pruning approach is capable of culling a huge
number of possible solutions and removing their cost computa-
tion from the overall computational workload.

The underlying idea of the pruning algorithm is similar to the
ball-sweep process in [31] and the trimming based on histogram
analysis in [30] in the sense that the size of the problem can be
reduced by removing combinations with larger cost values than
a certain threshold. However, the ball-sweep process removes
only a pair of vertices not belonging to any single ball, there-
fore a combination may survive if each pair in that combination
belongs to different balls, e.g., a combination may sur-
vive if belongs to ball 1 and belongs to ball 2 even
though the cost of the combination is large. The trim-
ming process can eliminate more seed combinations because it
considers the cost values for all triples. However, it first requires
to compute cost values for all possible triples before trimming,
which is not the case in our pruning. The pruning algorithm
described above also considers the cost values for all combi-
nations, but without computing all cost values, thus achieving
more reduction of infeasible combinations than [31] in a more
efficient manner than [30].

E. Linear Programming

The resulting integer program (IP) in 3DAP and EAP can
be directly solved with standard techniques such as branch
and bound [44]. However, IP problems are generally NP-hard
and may take an exponential amount of computation time. Our
problem is a binary integer program (BIP) where variables have
to be 0 or 1 and is also NP-hard [30], [31]. Similar to [30] and
[31], we convert the reduced-BIP into a corresponding linear
program (LP) and solve a relaxed LP with a fractional constraint

instead of the binary constraint . The
relaxed LP is solved by the interior-point method [45] followed
by a test to see if the solution is binary (up to numerical errors)
using MATLAB command linprog.

It is well known that linear programs can be solved optimally
in polynomial time using the interior point method [31], [46],
[47]. If the solution of the LP with fractional constraints turns
out to be binary, it is optimal for the BIP because its optimality
is proven by the LP solver. However, for some cases, the so-
lution of the LP is fractional (i.e., some elements of the solu-
tion are not binary), and we must perform rounding of this
fractional solution to get a binary solution. In such cases, we

perform rounding under the assumption that the elements with
higher fractional values in the solution are more likely to be 1
[30], [31]. Therefore, we first sort the fractional solution in a
descending order and the first elements of the solution are
rounded to 1.

In case that multiple elements in the fractional solution have
the same value, the algorithm compares their corresponding cost
coefficients and selects the elements with lower cost coefficients
until (total number of implanted seeds) is reached. (Notice
that if the number of 1’s in the solution after rounding all of these
multiple elements is still less or equal to , no selection is nec-
essary and all of them will be rounded to 1). If these same-valued
multiple elements show the same corresponding costs, the algo-
rithm randomly selects elements until the number of 1’s in the
rounded solution reaches . Our extensive experiments show
that over 85% of the LP solutions are already binary, therefore
the rounding affects the optimality of the solution in only 15%
of the cases.

The following describes the overall REDMAPS workflow. It
takes 2-D seed coordinates and the image poses as inputs, and
outputs the 3-D locations of the reconstructed seeds along with
the resolved seed correspondences.

REDMAPS workflow:

1: Compute every possible for all images. Set
.

2: Set . For the first images, compute
in (19) for every possible combination

. If , eliminate
correspondences that are associated with .

3: Repeat step 2 until .
4: Compute cost coefficients using (7) for indices

remaining from steps 2–3.
5: Solve in (16) and (17) with a relaxed fractional

constraint using the interior point method to get a
fractional optimal solution .

6: Check if is feasible and binary. If it is already binary,
the solution is optimal, therefore skip step 7.

7: If is not binary, sort the elements of in descending
order and perform rounding to get a binary solution.

8: Convert to . Compute the symbolic intersections
(10) to get the 3-D locations of the seeds.

III. RESULTS

REDMAPS was implemented using MATLAB 7.1 and tested
on a 2.5 GHz PC. Image acquisition angles were limited in both
simulations and phantom studies to a range that is practically
achievable in the clinical operating room (OR) setting.

A. Image Acquisition and Preprocessing

In our phantom experiments and clinical study, fluoroscopy
images were acquired using mobile C-arms with an X-ray image
intensifier (XRII). Prior to the implant procedure, we precom-
puted the intrinsic camera parameters of the C-arm and the geo-
metric distortion of the image using a custom-made calibration
fixture [40], [48]. The pose of the C-arm was estimated by using
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Fig. 4. Averaged seed matching rate as a function of (a) seed density, (b) image acquisition angle, (c) seed segmentation error, (d) calibration error, (e) rotation
pose error, and (f) translation pose error. Both REDMAPS and extended-MARSHAL (X-MARSHAL) are used for performance comparison.

a fluoroscope tracking fiducial (FTRAC) [49] that provides a
tracking accuracy of 0.33 in rotation and 0.56 mm in trans-
lation. Once an image was acquired, it was first preprocessed
for geometric distortion correction using precomputed distor-
tion parameters in the calibration step. The FTRAC fiducial
and the seeds were segmented from distortion-corrected images
using algorithms developed by Kuo et al. [50]. The estimated
C-arm camera parameters and the segmented seeds (with their
2-D image coordinates) are the input to REDMAPS.

B. Simulations: Robustness and Sensitivity

Assuming a set of clinically realistic C-arm imaging parame-
ters and seed configuration, we created synthetic projection im-
ages. We considered a nominal 50 cc prostate with seven dif-
ferent seed densities varying from 1.0 to 2.5 seeds/cc with 0.25
seeds/cc steps, resulting in
implanted seeds. Each seed was modeled as a cylinder with a
dimension of 1.45 mm in length and 0.8 mm in diameter, which
is similar to the size of the radio-opaque marker in a seed.
We assumed that the focal length of the C-arm is 1000 mm and
its image pixel size is . For each seed den-
sity, 10 different datasets were generated with four projection
images in each dataset. The images were created within limited
cone angles varying from 5 to 25 around the AP-axis. In each
image, 5.5% on average and up to 10.2% seeds were hidden.
In order to evaluate the robustness of REDMAPS to various
errors, we added random errors that are uniformly distributed
on (we report this as an error) to the known param-
eters. All reconstructions were computed first by REDMAPS,
and then by the extended-MARSHAL (X-MARSHAL) algo-
rithm [34] which is a fast and reliable seed-matching algorithm
for performance comparison.

Seed Density: It is obvious that the matching problem
becomes more complicated as the seed density increases.
In prostate brachytherapy, seed density typically varies
from 1.5 to 2 seeds/cc [51]. In order to evaluate the sen-
sitivity of REDMAPS to seed density, we computed total
1400 reconstructions seed densities datasets

combinations image acquisition angles using three
images with known poses. Fig. 4(a) shows the seed matching
rate as a function of seed density. Both REDMAPS and
X-MARSHAL almost perfectly resolved the correspondence,
but REDMAPS performs slightly better as the seed density
increases. Reconstruction errors of the matched seeds are dis-
played in Fig. 5(a). Overall, REDMAPS achieved a matching
rate of 99% and reconstruction error of less than 0.5 mm,
regardless of seed density, assuming that the C-arm is calibrated
and the pose is known with no errors.

Image Acquisition Angle: In clinical settings where the pa-
tient lies on his back with his legs in high lithotomy position,
the C-arm usually has only a limited rotational mobility of less
than 25 around the AP-axis due to various obstacles such as the
surgical table, the stepper stand or stabilizing arm attachment,
and the patient’s legs. As a consequence, the angular separation
between consecutive C-arm images is very small. Therefore, an
algorithm that is robust to a small image acquisition angle is
desirable. We have evaluated REDMAPS on various image ac-
quisition angles. The angles varied from 5 to 25 with a step
size of 5 . A total of 1400 reconstructions seed densities

datasets combinations image acquisition angles
were computed using three images and the results as functions
of image acquisition angle are shown in Fig. 4(b) and Fig. 5(b).
We can see that the matching rate is slightly lower and the re-
construction error is larger when the image acquisition angle is
narrower. However, the seed matching is almost perfect ( 99%)
and the reconstruction errors are very small, i.e., less than 0.5
mm even when the images are acquired within 5 cone. Both al-
gorithms performed near-perfectly, but REDMAPS was slightly
better.

Seed Segmentation Error: The 2-D image coordinates
of the seeds are input to REDMAPS and errors in the 2-D
coordinates of the segmented seeds will propagate through
the matching and reconstruction process to yield higher re-
construction errors. To simulate this effect, random seed
segmentation error varying from 0 mm to 2.0 mm with a step
size of 0.5 mm was added to each 2-D seed coordinate. A
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Fig. 5. Reconstruction error �mean � STD� of the matched seeds as a function of (a) seed density, (b) image acquisition angle, (c) seed segmentation error, (d)
calibration error, (e) rotation pose error, and (f) translation pose error.

total of 7000 reconstructions seed densities datasets
combinations image acquisition angles error levels

were computed using three images and the results are shown
in Fig. 4(c) and Fig. 5(c). Naturally, the reconstruction error
increases as the seed segmentation error increases, but it still
remains under 1 mm even at the maximum segmentation error
of 2 mm. Also note that REDMAPS achieved near perfect
matching rate ( 99%) and showed better performance than
X-MARSHAL.

Calibration Error: The intrinsic camera parameters (focal
length and image origin) of the C-arm vary as the pose of the
C-arm changes. Therefore, in theory, we must calibrate the
C-arm for each pose at which we acquire an image. How-
ever, this is a time-consuming process. The authors of [52]
investigated this problem and stated that the calibration errors
do not critically affect the reconstruction results when the
images are acquired within a small acquisition angle. In our
clinical workflow, we calibrate the C-arm only once prior to
the surgery to save time in the OR, and apply the pre-cali-
brated camera parameters to all acquired images during the
procedure. Therefore, this approximate calibration introduces
errors, and it is desirable to have a robust algorithm to these
calibration errors even though C-arm calibration is not crit-
ical to the reconstruction. Image distortion also changes with
pose which manifests in segmentation errors that we have
simulated and shown to have negligible effect. To evaluate
the robustness of REDMAPS to C-arm calibration errors, we
added random errors varying from 0 to 10 mm with 2 mm
steps to the intrinsic camera parameters of the C-arm. When
we added errors, we considered the fact that the focal length
error is always greater than the image origin error. A total
of 8400 reconstructions seed densities datasets

combinations image acquisition angles error levels
were computed and the results are shown in Fig. 4(d) and Fig.
5(d). Similar to the previous simulations, REDMAPS achieved
near perfect matching rate ( 99%) and performed better than
X-MARSHAL.

Rotation and Translation Pose Error: For rotation, random
errors varying from 0 to 5 with 1 steps were added to the
known rotation at each pose around random rotation axes.
Translation errors varied from 0 mm to 10 mm with 2 mm
steps. When we generated translation errors, we incorporated
the fact that translation errors in depth are always signifi-
cantly greater than those parallel to the plane [29]. A total
of 8400 reconstructions seed densities datasets

combinations image acquisition angles error levels
were computed for each error type. Shown in Fig. 4(e) and
(f), the results demonstrate that REDMAPS reliably finds the
correct match and reconstructs the seeds with 97.5% accuracy
with up to 2 rotation error and 5 mm translation error. The
reconstruction error increases as the pose error increases as
shown in Fig. 5(e) and (f) because the pose errors shift the
reconstructed seed positions. In comparison to X-MARSHAL,
REDMAPS performs much better when the pose errors are
large. Also, note that REDMAPS performs almost perfectly in
the pose error range that contemporary tracking systems such
as FTRAC can easily achieve [49].

C. Realistic Simulations

For realistic simulation, we used the same data sets in the
Section III-B, but added truncated additive white Gaussian
noise (AWGN) to the known C-arm camera parameters. For the
pose, we used the FTRAC pose recovery errors reported in [49,
Sec. 7-B]; AWGN with mean 0.33 and STD 0.21 for rotation
and AWGN with mean 0.56 mm and STD 0.33 mm for trans-
lation. For calibration and seed segmentation, we added zero
mean AWGN with STD’s 5 mm and 0.22 mm to
the known C-arm calibration parameters and each segmented
seed coordinates, respectively. The resulting errors were trun-
cated at STD from the mean. In order to understand how
much additional images can improve the overall performance
in terms of seed matching rate and reconstruction error, we
computed total 1400 reconstructions seed densities

datasets combinations image acquisition angles
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Fig. 6. Reconstruction results when using three and four images. (a) Seed
matching rate. (b) Reconstruction error. (c) Computation time.

and 350 reconstructions seed densities datasets
combinations image acquisition angles using 3 and 4

images, respectively.
As shown in Fig. 6(a) and (b), REDMAPS reconstructed the

seeds with a seed matching rate over 99% and reconstruction
error less than 0.5 mm regardless of the seed density. The
results imply that we can improve the seed matching rate and
the reconstruction error by adding an extra image, but the
improvement is minor. Considering the increase of computation
time caused by adding an additional image, three images
seems to be sufficient for the clinical purpose (note that the
performance with only three images under realistic errors is
already sufficient).

As described in Section II-C, achieving sufficiently large di-
mensionality reduction is the key to success of REDMAPS.
Therefore, we are particularly concerned about the dimension-
ality reduction ratio and computation time. We computed the di-
mensionality reduction ratio and the computation time
for all possible combinations. In a total of 1750 reconstructions
with three and four images, we could eliminate over 99% of
the original variables and solved the optimization problem with
less than 1% of all variables. Also, the computation time of

TABLE I
PHANTOM EXPERIMENT RESULTS

TABLE II
CLINICAL STUDY RESULTS

REDMAPS was less than 5 s for up to 128 seeds when using
three images [see Fig. 6(c)].

D. Phantom Experiments

REDMAPS was tested on five phantom datasets with
nonradioactive seeds. Each seed

was made of stainless steel and had a dimension of 4.9 mm
in length and 0.8 mm in diameter, which is similar in size to

seeds. The phantom was precisely fabricated with twelve
5-mm-thick acetol slabs and each slab has 11 11 holes
with 5 mm interval where we inserted seeds keeping seed
density at about 1.56 seeds/cc. The FTRAC was attached to the
phantom at a known position for both assuring ground-truth
seed locations and tracking the C-arm. For each dataset, we
acquired six images within a 20 cone around the AP-axis
using a Philips Integris V3000 mobile C-arm. On average,
5.5% and up to 22.5% of the seeds were hidden in each image.
The C-arm was calibrated prior to the image acquisition and the
acquired fluoroscopy images were preprocessed for geometric
distortion correction. We computed a total of 100 reconstruc-
tions combinations datasets using three images and
compared the results with ground-truth. Table I summarizes
the results and Fig. 7(a) shows an example of phantom image
onto which the detected seeds were reprojected. REDMAPS
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Fig. 7. Fluoroscopy images with the reprojection of the estimated seed centroids (green dots). Red circles indicate hidden seeds. Cylinder with beads, lines, and
ellipses shown in both images is the FTRAC. (a) Phantom image with 100 seeds. (b) Patient image with 70 seeds.

successfully localized the seeds with overall mean match rate of
98.9% and the mean reconstruction error of 0.9 mm within 5 s.

E. Clinical Study

A total of twenty one patient datasets were collected from
eight patients under IRB-approved protocols. For all patients,

seeds (Theragenics, Buford, GA) were implanted. The
C-arm was calibrated prior to the surgery and the FTRAC was
attached to the needle insertion template at a known position for
computing the C-arm pose. Images were taken using an OEC
9800 mobile C-arm and the image acquisition angle was lim-
ited to within about 20 around the AP-axis. There were 0.9%
on average and up to 7.8% hidden seeds in each image. A total
of 21 reconstructions were computed using three images and
the results are shown in Table II. Since we did not know the
exact locations of the seeds, we visually assessed the correspon-
dence between the reprojection of the estimated seeds and the
actual seeds shown in each image, and computed projection er-
rors (PE). REDMAPS almost perfectly localized the seeds in all
cases with mean PE less than 1 mm. Among all the implanted
seeds, we classified only two seeds as mismatched because the
projection of them looked matched in some images but looked
ambiguous in others. Thus, the true detection rate was between
98.1% and 100%—in either case, it is a clinically excellent per-
formance. The computation time was less than 5 s for all cases.
Fig. 7(b) shows an example of fluoroscopy image onto which
the detected seeds were reprojected.

IV. DISCUSSION

A. Optimality

REDMAPS solves the reduced BIP by using linear pro-
gramming with relaxed fractional constraints. In an ideal case
when there is no calibration or tracking error of the imaging

system, the globally optimal solution of this reduced BIP can be
achieved as binary even though the constraints are fractional be-
cause all cost values that correspond to the correct seed matches
are zero and the objective function in (16) is bounded
below (i.e., 0). In reality, however, the optimal solution can
be fractional due to nonzero costs caused by image pose errors,
and this requires rounding to obtain a binary solution. We have
investigated our solutions (for realistic simulations, phantom
and clinical experiments) and observed that about 85% (with
three images) and 90% (with four images) of the LP solutions
were binary, which means that no rounding is necessary for
most of the cases and the resulting binary solution is already
globally optimal. Since rounding usually happens when some
of the image pose errors are relatively large, the optimality can
be improved by using a more accurately calibrated and tracked
imaging system (note that we used non-encoded, non-isocen-
tric, and XRII-based mobile C-arm).

B. Dimensionality Reduction

It may be asked whether dimensionality reduction is always
possible. In the prostate brachytherapy application, it is always
possible because the seeds are implanted with reasonable
spacing ( 5 mm) between adjacent seeds, and therefore wrong
correspondences will result in relatively large matching costs
compared to the correct correspondences that have near zero
costs. Considering the fact that there are about 100 implanted
seeds and at least three images are used, there are more than

possible combinations out of which we have to find
only 100 combinations. Among ( –100) incorrect com-
binations, a significant number will show very large matching
cost. The dimensionality reduction rate may vary depending on
the configuration of the implanted seeds, e.g., it may be smaller
when the seeds are implanted within a very small region, but
in our experiments, we observed that over 99% of the original
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variables could be eliminated and the optimization problem
could be solved with less than 1% of all variables.

C. Processing Time

The seed reconstruction process encompasses image acquisi-
tion, tracking, and seed localization. For successful clinical use,
the entire process time should be minimized in order to achieve
minimal effect on the clinical workflow. On a typical implant
configuration, the running time of REDMAPS with three im-
ages is less than 5 s, and the image acquisition with mobile
C-arm takes less than a minute. In our current system, seeds
and FTRAC segmentation is completely automatic [50] within
the image acquisition pipeline so that both seeds and FTRAC
are segmented in seconds as soon as an image is acquired while
a technician is rotating the C-arm to the next pose. Therefore,
the entire seed reconstruction process will add only a couple of
minutes at most to the current procedure.

Performance comparison with previously published seed
reconstruction methods is difficult because most of them are
not designed for handling hidden seed problem and are not
publically available. Also, many of them are based on circular
image acquisition geometry with a radiation therapy simulator,
and therefore cannot be directly used with non-isocentric
mobile C-arm systems. We have compared the performance of
REDMAPS with X-MARSHAL that is designed for general
X-ray imaging system use including non-isocentric mobile
C-arm with the capability of resolving the hidden seed problem
and is very fast and reliable [30], [34]. In the comparison
study, REDMAPS is equivalently fast, but more robust to the
pose tracking errors, thus allowing for more generous image
acquisition conditions.

D. Registration Between Fluoroscopy and Ultrasound

REDMAPS reconstructs the 3-D positions of brachytherapy
seeds expressed in C-arm fluoroscopy coordinates. In the clin-
ical context, the reconstructed seeds must be transformed to
TRUS coordinates, i.e., fluoroscopy space must be registered
to TRUS space. In our current clinical implementation [17],
FTRAC is mounted to the needle insertion template in a pre-cal-
ibrated position, so its relative position to the template is known.
Because the template is registered to TRUS through a calibra-
tion process of the commercial brachytherapy treatment plan-
ning system, the transformation between the X-ray frame and
the TRUS frame is known. Following registration, a commer-
cial treatment planning system (Interplant, originally developed
by Burdette Medical Systems, Inc., Champaign, IL) calculates
the resulting dose distribution relative to the anatomy outlined
in TRUS and re-optimizes the remainder of the implant plan.

E. Missing and Spurious Seeds

In rare cases, additional “apparent” seeds can be introduced
from the anatomical background during the segmentation (spu-
rious seeds), and more often, implanted seeds can be migrated
from their implant site by entering into blood vessel or urinary
tract, resulting in missing seeds. Since REDMAPS currently uti-
lizes the knowledge of the number of implanted seeds to perform
correct seed reconstruction including hidden seeds, false assign-
ment may happen when this information is incorrect. However,

our current implementation provides visual validation so that
clinician can validate the reconstruction quality in the images
with reprojected seed centroids or in three different orthogonal
views of the reconstructed volume. Since false assignment usu-
ally creates a relatively large corresponding cost and the re-
sulting seed may be positioned far from the reconstructed seed
cloud, it can be detected at this stage.

Even though spurious and missing seeds do not occur very
frequently and can be detected by visual inspection, the clin-
ical workflow could benefit from automatic detection of false
assignments caused by spurious and missing seeds during the
reconstruction. By exploiting the fact that false assignments can
be detected by its relatively large matching cost and may even
be rejected by the pruning process, these problems can be effec-
tively addressed within the framework of REDMAPS, and this
is a subject of current research.

V. CONCLUSION

This paper presents REDMAPS, a computationally efficient
and clinically practical seed matching algorithm for prostate
brachytherapy seed reconstruction using multiple X-ray images.
REDMAPS solves the seed matching problem in reduced di-
mension and finds a solution in polynomial time. A pruning al-
gorithm allows for an efficient computation of cost coefficients
and in turn significant dimensionality reduction. It can automat-
ically solve the hidden seed problem by permitting a different
number of identified seeds in each image, i.e., it does not require
any manual intervention to identify overlapping seeds that are
not automatically separated.

In simulations, REDMAPS matched over 99% of the seeds
with a reconstruction error less than 0.5 mm on average using
three images when there are realistic calibration and pose er-
rors. Further simulations showed that REDMAPS is robust to
significantly large errors introduced to seed segmentation, cali-
bration, and pose estimation. REDMAPS was validated on five
phantom and 21 clinical datasets, and it localized the seeds with
the overall seed matching rate over 99% and reconstruction (or
projection) error less than 1 mm using only three images. Since,
in general, over 95% seed detection rate with less than 2 mm
reconstruction error is considered to be clinically acceptable,
the performance of REDMAPS (above 99% seed matching rate
and below 1 mm reconstruction error) is considered as clini-
cally excellent. If seed locations are accurate to about 1 mm,
there is no clinical difference in dosimetry (except perhaps at
the posterior border immediately adjacent to the rectum). Al-
though REDMAPS is formulated for any number of images, it
achieves this excellent seed reconstruction accuracy by using
only three images. In comparison with X-MARSHAL [34], a
fast and reliable seed matching algorithm that is able to recover
hidden seeds, REDMAPS was equivalently fast (in the order of
seconds) while being more robust to pose errors.

In summary, REDMAPS was found to be sufficiently accu-
rate, robust, and computationally efficient to enable intraoper-
ative dynamic, optimized brachytherapy. By compensating for
pose errors and resolving hidden seeds, REDMAPS aspires to
promote dynamic dosimetry in brachytherapy with conventional
low-end C-arms without altering the clinical workflow, thereby
allowing for wide-scale clinical deployment in the community



50 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 30, NO. 1, JANUARY 2011

care setting. REDMAPS is currently slated for prospective clin-
ical trial in the Johns Hopkins Hospital.
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