Difference between revisions of "Resources"

From IACL
Jump to: navigation, search
m
(Update. Point to REPLICA on NITRC.)
Line 14: Line 14:
 
{{h3|MGDM}}
 
{{h3|MGDM}}
 
* Source code and demonstrations for the Multiple-object Geometric Deformable Model (MGDM) can be found on the [http://www.nitrc.org/projects/mgdm/ MGDM project page] hosted by NITRC.
 
* Source code and demonstrations for the Multiple-object Geometric Deformable Model (MGDM) can be found on the [http://www.nitrc.org/projects/mgdm/ MGDM project page] hosted by NITRC.
* A [http://iacl.ece.jhu.edu/~john/mgdmMov.avi movie demo] of the decomposition and evolution of MGDM.
+
* A [https://iacl.jhu.edu/~john/mgdmMov.avi movie demo] of the decomposition and evolution of MGDM.
  
  
Line 35: Line 35:
 
* The temporal filtering of longitudinal MR images of the brain described in {{pub|author=S. Roy, A. Carass, J. Pacheco, M. Bilgel, S.M. Resnick, J.L. Prince, and D.L. Pham|title=Temporal filtering of longitudinal brain magnetic resonance images for consistent segmentation|journal=NeuroImage: Clinical|number=11:264-275|when=2016|doi=doi:10.1016/j.nicl.2016.02.005}}
 
* The temporal filtering of longitudinal MR images of the brain described in {{pub|author=S. Roy, A. Carass, J. Pacheco, M. Bilgel, S.M. Resnick, J.L. Prince, and D.L. Pham|title=Temporal filtering of longitudinal brain magnetic resonance images for consistent segmentation|journal=NeuroImage: Clinical|number=11:264-275|when=2016|doi=doi:10.1016/j.nicl.2016.02.005}}
 
* Matlab executables are {{iacl|~roy/softwares/4dfilter_Feb19-2016.zip|available}}
 
* Matlab executables are {{iacl|~roy/softwares/4dfilter_Feb19-2016.zip|available}}
 
 
{{h3|Subject Specific Dictionary Learning (S3DL)}}
 
* S3DL described in {{pub|author=S. Roy, A. Carass, J.L. Prince, and D.L. Pham|title=Subject Specific Sparse Dictionary Learning for Atlas Based Brain MRI Segmentation|conf=mlmi2014|doi=10.1007/978-3-319-10581-9_31|period=}} and {{pub|author=S. Roy, Q. He, E. Sweeney, A. Carass, D.S. Reich, J.L. Prince, and D.L. Pham|title=Subject Specific Sparse Dictionary Learning for Atlas Based Brain MRI Segmentation|journal=IEEE Journal of Biomedical and Health Informatics|number=19(5):1598-1609|when=2015|doi=10.1109/JBHI.2015.2439242}}
 
* Matlab executables are {{iacl|~roy/softwares/S3DL_withlesion.zip|available}}.
 
  
  
Line 45: Line 40:
 
* The PET attentuation correction method described in {{pub|author=S. Roy, W.-T. Wang, A. Carass, J.L. Prince, J.A. Butman, and D.L. Pham|title=[[PET Attenuation Correction using Synthetic CT from Ultrashort Echo-time MRI|PET Attenuation Correction Using Synthetic CT from Ultrashort Echo-Time MR Imaging]]|journal=Jrnl. of Nuclear Medicine|number=55:1-7|when=2014|doi=10.2967/jnumed.114.143958}}
 
* The PET attentuation correction method described in {{pub|author=S. Roy, W.-T. Wang, A. Carass, J.L. Prince, J.A. Butman, and D.L. Pham|title=[[PET Attenuation Correction using Synthetic CT from Ultrashort Echo-time MRI|PET Attenuation Correction Using Synthetic CT from Ultrashort Echo-Time MR Imaging]]|journal=Jrnl. of Nuclear Medicine|number=55:1-7|when=2014|doi=10.2967/jnumed.114.143958}}
 
* Matlab executables are {{iacl|~roy/softwares/CTsynthesis.zip|available}}.
 
* Matlab executables are {{iacl|~roy/softwares/CTsynthesis.zip|available}}.
 
 
{{h3|MIMECS}}
 
* MIMECS is described in: {{pub|author=S. Roy, A. Carass, and J.L. Prince|title=[[Magnetic Resonance Image Example Based Contrast Synthesis|Magnetic Resonance Image Example Based Contrast Synthesis]]|jrnl=tmi|number=32(12):2348-2363|when=2013|doi=10.1109/TMI.2013.2282126|pdf=/proceedings/iacl/2013/RoyxTMI13-MIMECS.pdf}}
 
* Code and sample data is available on our NITRC Project Page titled [http://www.nitrc.org/projects/image_synthesis/ Image Synthesis].
 
  
  
Line 60: Line 50:
 
* The Progression Score Model Toolkit, including the expectation-maximization (EM) algorithm for fitting the nonlinear mixed effects model, can be obtained from [http://www.nitrc.org/projects/progscore/ the NITRC project page].
 
* The Progression Score Model Toolkit, including the expectation-maximization (EM) algorithm for fitting the nonlinear mixed effects model, can be obtained from [http://www.nitrc.org/projects/progscore/ the NITRC project page].
  
 +
 +
{{h2|IMAGE Synthesis}}
 +
{{h3|MIMECS}}
 +
* MIMECS is described in: {{pub|author=S. Roy, A. Carass, and J.L. Prince|title=[[Magnetic Resonance Image Example Based Contrast Synthesis|Magnetic Resonance Image Example Based Contrast Synthesis]]|jrnl=tmi|number=32(12):2348-2363|when=2013|doi=10.1109/TMI.2013.2282126|pdf=/proceedings/iacl/2013/RoyxTMI13-MIMECS.pdf}}
 +
* Code and sample data is available on our NITRC Project Page titled [http://www.nitrc.org/projects/image_synthesis/ Image Synthesis].
 +
 +
 +
{{h3|Subject Specific Dictionary Learning (S3DL)}}
 +
* S3DL described in {{pub|author=S. Roy, A. Carass, J.L. Prince, and D.L. Pham|title=Subject Specific Sparse Dictionary Learning for Atlas Based Brain MRI Segmentation|conf=mlmi2014|doi=10.1007/978-3-319-10581-9_31|period=}} and {{pub|author=S. Roy, Q. He, E. Sweeney, A. Carass, D.S. Reich, J.L. Prince, and D.L. Pham|title=Subject Specific Sparse Dictionary Learning for Atlas Based Brain MRI Segmentation|journal=IEEE Journal of Biomedical and Health Informatics|number=19(5):1598-1609|when=2015|doi=10.1109/JBHI.2015.2439242}}
 +
* Matlab executables are {{iacl|~roy/softwares/S3DL_withlesion.zip|available}}.
 +
 +
 +
{{h3|REPLICA}}
 +
* Regression Ensembles with Patch Learning for Image Contrast Agreement (REPLICA) described in {{pub|author=A. Jog, A. Carass, S. Roy, D.L. Pham, and J.L. Prince|title=Random Forest Regression for Magnetic Resonance Image Synthesis|jrnl=mia|number=35:475-488|when=2017|doi=10.1016/j.media.2016.08.009|pubmed=27607469}}
 +
* Code and sample data is available on our NITRC Project Page titled [http://www.nitrc.org/projects/image_synthesis/ Image Synthesis].
  
  

Revision as of 14:59, 25 September 2017

General Image Processing

GVF Software


JIST


MGDM

  • Source code and demonstrations for the Multiple-object Geometric Deformable Model (MGDM) can be found on the MGDM project page hosted by NITRC.
  • A movie demo of the decomposition and evolution of MGDM.


Brain

2015 Longitudinal MS Lesion Segmentation Challenge


Validation Data for Cortical Reconstruction Algorithms

  • The cortical validation resource for evaluation of cortical reconstruction algorithms on both normal subjects and subjects with White Matter lesions.


Cerebellar Lobule Segmentation using Graph Cuts

  • The graph-cut based segmentation of the cerebellum described in Z. Yang, C. Ye, J.A. Bogovic, A. Carass, B.M. Jedynak, S.H. Ying, and J.L. Prince, "Automated Cerebellar Lobule Segmentation with Application to Cerebellar Structural Analysis in Cerebellar Disease", NeuroImage, 127:435-444, 2016. (doi)
  • Cerebellar Lobule Segmentation Code can be used to parcellate the cerebellum into lobules given a T1w MRI image.


Temporal Filtering for Consistent Segmentation

  • The temporal filtering of longitudinal MR images of the brain described in S. Roy, A. Carass, J. Pacheco, M. Bilgel, S.M. Resnick, J.L. Prince, and D.L. Pham, "Temporal filtering of longitudinal brain magnetic resonance images for consistent segmentation", NeuroImage: Clinical, 11:264-275, 2016. (doi)
  • Matlab executables are available


PET Attentuation Correction


Rician Mixture Model

  • The Rician mixture model for segmenting the brain is described in S. Roy, A. Carass, P.-L. Bazin, S.M. Resnick, and J.L. Prince, "Consistent Segmentation using a Rician Classifier", Medical Image Analysis, 16(2):524-535, 2012. (PDF) (doi) (PubMed)
  • Matlab executables are available.


Progression Score Model

  • The Progression Score Model Toolkit, including the expectation-maximization (EM) algorithm for fitting the nonlinear mixed effects model, can be obtained from the NITRC project page.


IMAGE Synthesis

MIMECS


Subject Specific Dictionary Learning (S3DL)

  • S3DL described in S. Roy, A. Carass, J.L. Prince, and D.L. Pham, "Subject Specific Sparse Dictionary Learning for Atlas Based Brain MRI Segmentation", Fifth International Workshop on Machine Learning in Medical Imaging (MLMI 2014), Boston, MA, September 14, 2014. (doi) and S. Roy, Q. He, E. Sweeney, A. Carass, D.S. Reich, J.L. Prince, and D.L. Pham, "Subject Specific Sparse Dictionary Learning for Atlas Based Brain MRI Segmentation", IEEE Journal of Biomedical and Health Informatics, 19(5):1598-1609, 2015. (doi)
  • Matlab executables are available.


REPLICA

  • Regression Ensembles with Patch Learning for Image Contrast Agreement (REPLICA) described in A. Jog, A. Carass, S. Roy, D.L. Pham, and J.L. Prince, "Random Forest Regression for Magnetic Resonance Image Synthesis", Medical Image Analysis, 35:475-488, 2017. (doi) (PubMed)
  • Code and sample data is available on our NITRC Project Page titled Image Synthesis.


Cardiac

HARP

  • For MATLAB demonstration software send an email to Harp email.jpg and expect a reply within five business days. We also have a collection of frequently asked questions about our HARP software.


Retinal

AURA Tools

  • The AURA Tools software package allows for the automated processing and segmentation of Optical Coherence Tomography images of the macula cube. It is available from the NITRC website.