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Abstract

Methodology for fusing multiple segmentations to pro-
duce an improved result has been useful in computational
anatomical studies. Although obtaining segmentations of
anatomy having a particular topology are essential to stud-
ies using diffeomorphic deformation based analyses, no
methods of label fusion presented to date have incorporated
information regarding the topology of the anatomy. In this
paper, we introduce “Topology STAPLE”, a novel method
that statistically fuses multiple rater segmentations into a
topologically correct segmentation. We evaluate the method
on both simulated data and real delineations of the cerebel-
lum produced by human raters.

1. Introduction
The computational study of anatomy [8, 17] has flour-

ished since the advent of high-resolution magnetic reso-
nance imaging (MRI). The variability in the size and shape
of different anatomical structures has been studied in both
normal and diseased populations [15, 13]. These studies
rely on the accurate and precise delineations of the struc-
tures of interest. Delineations are often done by human
raters, but have also been produced by automatic and semi-
automatic segmentation algorithms.

The delineation of anatomy is vital to methods involv-
ing deformation-based morphometry (DBM) [1], statistical
shape analysis [6], and atlas construction using diffeomor-
phic mappings [10]. DBM type analyses can localize dif-
ferences in the size and shape within the structure of inter-
est. Specifically, DBM methods reveal these local differ-
ences by studying the deformations that map each instance
of that anatomy to a common, stereotactic space. Statisti-
cal shape analyses also study the differences in shape, but
do so by studying the differences in shapes that result after
a coarse registration. Diffeomorphic mappings have been
widely sought after in the field of registration and atlas con-
struction because they have the property that a one-to-one
correspondence exists between points in the original and
deformed space. This is desirable because it gives a one-to-
one mapping from one subject’s anatomy to any other sub-

ject’s anatomy. One can equivalently say that the anatomy
of every person is topologically equivalent. Naturally, the
stated assumption may be invalid for structures that are
complex and highly-varying between individuals (e.g., vas-
cular structures), in which case these methods should be
avoided. Nevertheless, when applicable, DBM and statis-
tical shape analysis also operate under this supposition.

The pervasiveness of this assumption in many analysis
methods underscores the importance of ensuring that the
delineations of anatomy produced by human raters or au-
tomated methods have a particular topology. In fact, the
one-to-one mapping that is assumed does not exist when the
objects under consideration differ topologically. Automated
segmentation methods that enforce topology have been pro-
posed [12, 3], but human raters can only be encouraged to
produce smooth results as part of a manual protocol. To
our knowledge, no manual protocols for the delineation of
structures mention object topology. In fact, topological de-
fects are likely to be observed when analyzing human drawn
segmentations due to the challenges of delineating highly
complex and convoluted structures in three dimensions, es-
pecially given the requirement of working with one two-
dimensional slice at a time.

A number of methods have been introduced to estimate
both rater performance and the true underlying parcellation
[18, 14]. It has been shown that the delineation produced
by combining the results of raters is more reliable than a
single rater’s result [14]. Recently, multiple atlas registra-
tion methods have proven to be an efficient tool for seg-
mentation, when many atlases are combined [11]. While
these methods usually include a mechanism for encourag-
ing smoothness in the resulting segmentation, such as a
Markov random field, none explicitly enforce a particular
topology. In fact, enforcing a particular topology yields
smooth labels inside of objects, without oversmoothing ob-
ject boundaries and is especially important when dealing
with objects with boundaries of high curvature.

In this paper, we describe “Topology STAPLE”, a
method for estimating rater performances and the true,
topologically correct, underlying segmentation. The de-
tails of our method are described in section 2, and include
a brief summary of the STAPLE algorithm [18] on which
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it is based. Our method is then tested on simple, simulated
data to demonstrate the effectiveness of the algorithm, the
results of which are described in section 3. We then applied
our method to a set of 22 real, hand-drawn delineations of
the human cerebellum to illustrate its relevance and appli-
cability in the context of a research or clinical study.

2. Methods

In this section we describe our methodology, which fol-
lows the framework established in the STAPLE algorithm
to produce a maximum-likelihood estimate of the rater per-
formance parameters. It is a special case of the expectation-
maximization (EM) algorithm, and estimates the fixed but
unknown true segmentation (the “hidden” data) as well.
Our methodology is nearly identical in formulation and sim-
ilar in execution, adding an important topological constraint
on the unknown true segmentation. We first introduce our
notation.

We denote the rater data as Di = Dir, where i ∈
{1, 2...N} indexes the voxels and r ∈ {1, 2...R} indexes
the raters, where R is the number of raters. In this pa-
per, theory is described only for binary labelings, imply-
ing that Dir ∈ {0, 1}, although the method can be gen-
eralized as demonstrated in section 3.3. The performance
of the rth rater is parameterized by the true positive and
true negative rates, denoted θr11 and θr00, respectively. The
perfect rater will therefore be parameterized by θr00 =
θr11 = 1, (i.e., the rater’s true positive and true negative
rates equal one). This subscript notation was chosen to
emphasize that these parameters may be interpreted as the
conditional probabilties: θr11 = p(Dir = 1 | Ti = 1)
and θr00 = p(Dir = 0 | Ti = 0) where Ti denotes the
true label at voxel i. The probabilities of error are there-
fore θr10 = 1 − θr00 = p(Dir = 1 | Ti = 0) and
θr01 = 1 − θr11 = p(Dir = 0 | Ti = 1). The performance
of all raters are summarized by the 2R vector Θ = θrss,
where s ∈ {0, 1}.

Maximum-likelihood estimation of the rater parameters
is performed using the expectation-maximization (EM) al-
gorithm. The E-Step is performed as in STAPLE and es-
timates the underlying, true segmentation. Next, this seg-
mentation is projected onto the topologically correct space
using a topology correction algorithm [2]. Finally, the ML
estimates of the rater performance are computed in the M-
Step. This procedure is described in detail below.

2.1. E-Step

The E-Step of the EM iterations estimates the probability
that the object is present at each voxel, and is computed by
taking the conditional expectation of the complete data log
likelihood, p(Θ,T ), where T = Ti gives the true label at
each voxel i. After some manipulation, weight variables for

the iteration k, W
(k)
si can be computed using:

W
(k)
si = p(Ti = s|Di,Θ(k)) (1)

=
p(Ti = s)

∏
r:Dir=s′ θ

(k)
rss′∑

s p(Ti = s)
∏

r:Dir=s′ θ
(k)
rss′

. (2)

the details of which can be found in [18] or [14] and where
s ∈ {0, 1} as above. The result is a measure of the condi-
tional probability that the object is present at each voxel i
given the rater data Di and the estimated rater performances
Θ. These probability maps are likely to be topologically
defective, as the conditional probabilities are measured lo-
cally. A Markov random field (MRF) can be applied to en-
courage homogeneity, but does not guarantee that a partic-
ular topology results. To remedy this, we apply a topology
correction algorithm on the probability maps.

2.2. Topology Correction

We posit that the topology of the true, underlying object
is known a priori and enforce that topology on our estimate
of the segmentation. A topology correction algorithm using
a fast-marching method [2] is applied directly to the object
probability map computed as part of the E-Step. The re-
sult of this correction is a new probability map that approx-
imates the original, but for which all isocontours or isosur-
faces have the desired topology. Forming a hard segmenta-
tion of an object by thresholding this corrected probability
map at any isovalue will result in an object with the correct
topology. Before delving into the details of the methodol-
ogy, we review some basics of digital topology.

Elementary topological changes to discrete objects in-
volve the addition or removal of a point from the object.
Points that do not affect the object’s topology when added or
removed are called “simple points.” In fact, whether a point
is simple or not may be determined from the point’s local
neighborhood [4]. In this application, we seek to correct
the topology of probability maps, and so make use of gen-
eralized simple points for scalar fields [5]. For a scalar field,
a point x is simple if Nn(x) = Np(x) = 1, where Nn(x) is
the number of connected regions in the neighborhood of x
with intensities less than or equal to the intensity at x. Like-
wise, Np(x) denotes the number of connected regions in the
neighborhood of x with intensities strictly greater than the
intensity at x. The topology correction methodology used
in this work successively detects and removes non-simple
points for all isovalues of the input scalar field.

The process begins with an initialization with the desired
topology which is propagated through successive isovalues
using a fast-marching approach, the details of which can
be found in section 2.2 of [2]. The points in the boundary
around the initialized object are sorted by intensity and or-
ganized in a binary tree. At the kth iteration, the first point is
removed from the tree and added to the object if it is simple.
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If the point x has been labeled as non-simple, its value is set
to g(x) = miny∈Gk−1∩N(x) g(y) where N(x) denotes the
neighbors of x and Gk−1 denotes the object at the k − 1th

iteration.
The correction can be done in two ways, “upward” or

“downward.” The former is initialized in regions of high
probability and raises areas of low probability, whereas the
latter flattens regions of high probability and is initialized
in regions of low probability. Figure 1 shows a simple 1D
example of topology correction on scalar functions.

(a) (b)

Figure 1. An example of topology correction applied to a 1D scalar
function. Displayed in black are the original scalar functions and
in blue, the corrected function for both a) upward correction and
b) downward correction

Our method applies both topology correction schemes
and chooses the result for which the sum of squared dif-
ferences across all voxels is minimized. Formally, if Vu

and Vd denote the “upward” and “downward” topology cor-
rected probability maps, we choose our final probability
map V = Vi using:

V = arg min
Y ∈{Vu,Vd}

∑
i

(Wi − Yi)2. (3)

In this way, the resulting probability map is the closest
projection (with respect to Euclidean distance) of the orig-
inal on the space of topologically correct probability maps.
An experiment is shown in section 3.1 that highlights the
importance of approaching the problem in this way.

2.3. M-Step

Finally, the rater performance parameter Θ that maxi-
mizes the conditional expectation of the complete data log-
likelihood is computed. The details of the derivation can
again be found in [18] or [14], and result in the following
update equation

θ
(k+1)
rs′s =

∑
i:Dir=s′ W

(k)
si∑

i W
(k)
si

. (4)

Our use of the topology corrected probability map results
in higher performance parameter estimates for raters that
produced topologically correct objects and lower estimates
for those whose labels were topologically defective. This

translates into a higher weighting for the raters with correct
topology in the subsequent E-Step, resulting in a new prob-
ability map that is closer to the correct topology.

2.4. Overview

To summarize, Topology STAPLE carries out
expectation-maximization (EM) iterations with

1. E-Step - estimate probability of object at each voxel
2. Project the resulting probability map onto the subspace

of topologically correct probabilities
3. M-Step - estimate rater performance given the topo-

logically correct probability map
4. Check for convergence

Convergence is detected by measuring the normalized
trace of Θ between subsequent iterations. The normalized
trace averages the true positive and true negative fractions
across raters and is computed by 1

2R

∑R
r=1 tr(θr). Since

the topology corrected probability maps and hard segmen-
tations are of interest in this study, the E-Step and topology
correction were performed once more after the final rater
performances were computed.

2.5. Measuring Topology

The topological characteristics of the raters and the rater
fusion results are described using the number of object
parts, the number of object cavities, the number of object
handles, and the Euler characteristic. The number of ob-
ject parts (P ) is the number of connected components of
the object. The number of object cavities (C) is the num-
ber of connected components of the background completely
enclosed within the object. A torus or coffee mug are ex-
amples of objects with one object handle (H). The Euler
characteristic of defined by χ = V − E + F where V is
the number of vertices, E is the number of edges, and F
is the number of faces of polygonization of the object [7].
It is also related to the number of object parts, cavities and
handles by: χ = 2P + 2C − 2H .

In most of the studies described here, the true object is
presumed to have spherical topology (that is, P = 1, C = 0,
H = 0, and χ = 2). Three types of topological “defects”
can occur in three dimensions. The object may have mul-
tiple disjoint pieces, resulting in P > 1. The object may
contain cavites, resulting in C > 0. Finally, the object may
possess “handles,” resulting in H > 0. The Euler character-
istic is reported along with these three quantities whenever
the topology of objects is reported.

3. Experiments
This proposed method was applied to both simulated

and real data to gauge its efficacy and effectiveness. For
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all experiments, the reported topology measures used 6-
connectivity for the object, and 18-connectivity for the
background, though similar results were obtained using
other connectivity rules. The STAPLE algorithm was ini-
tialized with θrjj = 0.9999 ∀r, j. The algorithm was de-
termined to have converged when the difference of the nor-
malized trace (see Section 2.4) between iterations was less
than 1× 10−5.

3.1. Simulations

Topology STAPLE and STAPLE were run on simple ex-
amples to demonstrate the efficacy of the topology correc-
tion methodology. A shape resembling a gray matter gyral
crown and sulcal fundus was created to mimic a situation
in which errors in topology are likely to occur. Five syn-
thetic raters were created by perturbing the boundary of the
shape. Figure 2 shows (a) the true segmentation, (b) one ex-
ample rater, (c) the STAPLE hard segmentation, and (d) the
Topology STAPLE hard segmentation. From these results,
it is evident that our method does indeed enforce the correct
topology on the resulting hard segmentation.

(a) (b)

(c) (d)
Figure 2. Simulation experiment - sphere/gyrus a) True label
configuration b) Sample Rater c) STAPLE hard segmentation d)
Topology STAPLE hard segmentation

These results demonstrate the ability of Topology STA-
PLE to produce topologically correct segmentations in the
presence of rater error. Notice that object was “cut” rather
than the handle filled. This is because our algorithm
chooses the topology correction method that results in a
probability map “closer” to the computed conditional prob-
abilities, as described in section 2.2.

Finally, we note that it is possible to recover non-
spherical topologies using our method, and demonstrate this
ability with another simple example. This synthetic exam-
ple resembles the white matter of the spinal cord and is
topologically equivalent to a torus, or doughnut. The key to
obtaining non-spherical topologies is to initialize the topol-

ogy correction step with a mask of the desired topology.
Figure 3(a) shows the truth model with toroidal topology,
(b), a sample rater in white and the initialization in red.
Note that the initialization is of the correct topology and is
“close” to the true segmentation, in the sense that the cavity
of the initialization encloses the cavity in the truth model.

(a) (b) (c)
Figure 3. Simulation experiment - tous/spine a) True label con-
figuration with a toroidal topology b) Sample Rater (white) and
initialization (red) d) Topology STAPLE hard segmentation

Again, the segmentation produced from Topology STA-
PLE has the correct topology, whereas most raters and
therefore, the STAPLE segmentations are topologically de-
fective.

3.2. Real Data

Both Topology STAPLE and STAPLE were applied to
real labelings produced by human raters. Four raters labeled
the human cerebellum for 22 subjects from MP-RAGE MRI
scans. The subject pool consisted of both control subjects
and patients diagnosed with cerebellar degeneration. These
four delineations for each subject were inputs to both STA-
PLE and Topology STAPLE. Table 1 shows several topo-
logical properties for all human raters, as well as for the
resulting STAPLE and Topology STAPLE segmentations.
The measures of topology described in section 2.5 were
computed for each of the rater segmentations and for the
STAPLE and Topology STAPLE segmentations. We note
that none of the input raters have spherical topology as evi-
denced by the measures shown below. While in some cases,
the STAPLE segmentation improves upon the rater results,
as evidenced by fewer object parts and cavities, many topo-
logical defects remain. Topology STAPLE produces a seg-
mentation with the correct topology for all cases.

Figure 4 shows a coronal slice of the segmentation one
subject from all four raters, STAPLE, and Topology STA-
PLE. It is evident the segmentation from all four raters con-
tained a topological error in the form of a cavity in the mid-
dle of the cerebellum. As a result, the labeling produced
from the maximum a posteriori label probability obtained
from STAPLE contains this hole as well. By enforcing our
prior knowledge that the cerebellum has spherical topology,
Topology STAPLE produces a segmentation estimate free
of any cavities or handles.
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Table 1. Topological Characteristics of Raters, STAPLE (ST) results, and Topology STAPLE (TST) results

Sub. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

E
ul

er
C

ha
r. 1 44 100 40 36 76 108 142 106 150 96 48 166 66 46 18 104 20 66 96 64 104 272

2 14 18 -38 48 22 30 42 -4 40 16 28 126 -4 32 22 28 -48 68 14 22 12 -22
3 14 -8 42 76 50 26 98 52 114 52 26 120 22 42 20 60 -38 50 28 44 66 98
4 28 42 8 40 26 96 66 46 62 30 50 136 10 66 6 32 -34 28 -2 18 6 6

ST 10 12 -24 60 26 76 40 44 42 36 46 112 2 38 6 40 -18 40 6 26 12 56
TST 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

O
bj

ec
tP

ar
ts 1 48 78 99 55 56 47 82 58 63 71 42 52 81 44 10 51 44 46 90 46 37 178

2 3 22 8 6 7 3 10 5 7 5 4 7 5 9 1 3 3 2 3 2 4 7
3 10 24 64 40 28 23 65 26 22 22 14 18 21 35 8 31 35 10 38 34 42 74
4 8 42 31 10 9 21 22 16 18 20 14 23 32 20 1 6 13 4 6 7 1 38

ST 7 29 15 12 9 17 14 18 10 22 14 9 13 15 1 9 12 8 18 9 7 58
TST 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

O
bj

ec
tC

av
iti

es 1 16 33 47 52 17 50 38 41 81 46 24 102 31 33 6 48 28 31 34 18 39 37
2 12 35 53 53 17 21 35 34 56 30 27 73 36 24 11 32 42 55 59 30 17 23
3 17 43 64 55 20 30 51 42 83 47 27 71 46 33 5 49 18 30 29 26 18 37
4 27 35 57 57 18 45 32 46 48 22 29 65 35 25 4 32 34 30 44 21 14 36

ST 17 36 53 54 20 42 34 44 47 21 27 71 37 31 4 32 35 28 36 27 16 37
TST 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

O
bj

ec
tH

an
dl

es 1 42 61 126 89 35 43 49 46 69 69 42 71 79 54 7 47 62 44 76 32 24 79
2 8 48 80 35 13 9 24 41 43 27 17 17 43 17 1 21 69 23 55 21 15 41
3 20 71 107 57 23 40 67 42 48 43 28 29 56 47 3 50 72 15 53 38 27 62
4 21 56 84 47 14 18 21 39 35 27 18 20 62 12 2 22 64 20 51 19 12 71

ST 19 59 80 36 16 21 28 40 36 25 18 24 49 27 2 21 56 16 51 23 17 67
TST 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(a) (b)

(c) (d)

(e) (f)
Figure 4. Experiment with real rater delineations of the cerebel-
lum a) Rater 1, (b) Rater 2, (c) Rater 3, (d) Rater 4 delineations, e)
STAPLE hard segmentation f) Topology STAPLE hard segmen-
tation. The topology-corrected segmentation filled a number of
cavities and handles that were ignored by STAPLE.

3.3. Multi Label Data

Finally, an experiment was carried out for which four
raters annotated a volume with four object labels plus the
background label. The objects under consideration were
the anterior lobe, middle lobe, caudal lobe, and the cor-
pus medullare of the cerebellum. We seek an estimate of
the true label configuration for which all individual objects
have spherical topology. This was done using a “confu-
sion matrix” parameterization which generalizes the single-
object, true-positive, true-negative parameterization. Like-

wise, equations 2 and 4 were generalized to multiple objects
as shown in [14]. Topology correction was done individu-
ally on the probability maps for each object. Figure 5 (a)
shows a surface rendering of volumetric labels obtained us-
ing Topology STAPLE. Figure 5 (b) and (c) shows a close
up of part of the surface obtained from STAPLE and Topol-
ogy STAPLE results respectively. A handle is visible in the
former, but not in the latter.

(b)

(a) (c)
Figure 5. Multiple-label Topology STAPLE experiment. a) Topol-
ogy STAPLE result using four objects, (b) A close up of a handle
in one object of a STAPLE segmentation, (c) The same portion of
the surface obtained from the Topology STAPLE segmentation.

We emphasize that by topology correcting the probabil-
ity maps of each object individually, the resulting scalar
maps are no longer memberships or probabilities, as the
sum of the memberships are in general not equal to one.
Furthermore, a topologically correct hard segmentation is
not guaranteed when it is obtained by a max-membership
rule, even if all of the memberships are topologically cor-
rect. Therefore, though closer to the correct topology than
any individual rater or a STAPLE segmentation, the objects
obtained using the above strategy will not have spherical
topology in general, a challenge that will be addressed in
future work.
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4. Conclusion
This paper presents a novel method, Topology STAPLE,

for estimating the hidden, topologically correct, true seg-
mentation of an object and rater performances given rater
delineations. Topology STAPLE was demonstrated to pro-
duce a topologically correct label estimate on synthetic data
sets as well as on real cerebellar delineations from human
raters. We have shown that none of the human raters, nor
the STAPLE estimate applied on these results produced the
correct topology. We verified on these data that our method
produce a specified topology in practice. Our method was
also applied on a dataset with multiple object labels, by ap-
plying topology correction to each label individually and
updating probabilities accordingly.

Future work will study estimating the global, closest pro-
jection onto the topologically correct space. This could be
done using graph-based correction methods [9, 16], for ex-
ample, or by further development of the current fast march-
ing correction method. Past work in the topology of mul-
tiple objects has employed “topology templates,” or initial-
izations of the correct topology that are deformed accord-
ing to membership functions. We will investigate the use
of such templates and alternative techniques into a multi-
object, topology-preserving version of STAPLE. With this
tool we will be able to guarantee topological equivalence
between segmentations obtained by combining multiple
atlas-based labelings.
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