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Abstract Mapping brain structure in relation to neurologi-
cal development, function, plasticity, and disease is widely
considered to be one of the most essential challenges for
opening new lines of neuro-scientific inquiry. Recent devel-
opments with MRI analysis of structural connectivity, ana-
tomical brain segmentation, cortical surface parcellation,
and functional imaging have yielded fantastic advances in
our ability to probe the neurological structure-function rela-
tionship in vivo. To date, the image analysis efforts in each
of these areas have typically focused on a single modality.
Here, we extend the cortical reconstruction using implicit
surface evolution (CRUISE) methodology to perform effi-
cient, consistent, and topologically correct analyses in a
natively multi-parametric manner. This effort combines
and extends state-of-the-art techniques to simultaneously
consider and analyze structural and diffusion information
alongside quantitative and functional imaging data. Robust
and consistent estimates of the cortical surface extraction,

cortical labeling, diffusion-inferred contrasts, diffusion trac-
tography, and subcortical parcellation are demonstrated in a
scan-rescan paradigm. Accompanying this demonstration,
we present a fully automated software system complete with
validation data.

Keywords Brain . MRI . Cortical surface .White matter
parcellation . Fiber tracking . Sub-cortical segmentation

Introduction

Understanding the relationship between structure and func-
tion in the brain is a crucial goal in neuroscience, and the
role of imaging technology has been an important part of
this research process for well over 20 years (Pechura &
Martin 1991). Over this time period, image acquisition
capability has expanded tremendously from the core
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technologies of structural MRI and functional PET imaging
(blood flow and metabolism) to now include functional MRI
(fMRI) and diffusion weighted MRI (DW-MRI). Image
processing algorithms originally struggled to segment tissue
types and align functional and structural images, but are
now routinely delineating and labeling structural MRI data,
deformably registering populations of individuals to atlases,
and computing patterns of anatomical connectivity through-
out the brain. These techniques have in turn enabled popu-
lation studies using sophisticated statistical analyses from
voxel based morphometry (Ashburner & Friston 2000) to
small world network analyses (Sporns et al. 2004). Because
of these advances, we stand at a new threshold, one that
looks for new discoveries in ever increasing imaging data
sources and ever increasing numbers of subjects and/or
patients under study (e.g., (Thambisetty et al. 2010), (Mueller
et al. 2005)). Beginning now and continuing into the future,
neuroscientists will require more routine analysis of increas-
ingly larger populations with algorithms that have certified,
reliable capabilities and limited need for human involvement
for manual verification.

Numerous packages for quantitative brain image analysis
are publicly available, including BrainSuite (Shattuck &
Leahy 2000), BrainVisa (Cointepas et al. 2001), BrainVoyager
(Brain Innovation 2007), Caret (Van Essen et al. 2001), FSL
(Smith et al. 2004), FreeSurfer (Fischl et al. 1999; Dale et al.
1999), the NA-MIC kit (Pieper et al. 2006), and SPM (Friston
2006). Each of these packages offers different capabilities and
tools for performing various types of analyses such as seg-
mentation, registration, functional image analysis, and
diffusion-weighted image analysis. An advantage of the
availability of such diverse image analysis packages is that
capabilities from competing packages are frequently comple-
mentary. Each of these packages may possess algorithms that
are more ideally suited for different applications, and each has
a user interface that may appeal to different users. Increasing
the landscape of neuroimaging analysis packages benefits not
only neuroscientific users of the software, but also developers
who gain additional resources for benchmarking new algo-
rithms. The emergence of common, research-oriented file
formats (e.g., NIfTI) has enabled the interoperability of these
major packages and custom designed tools. JISTencapsulates
MIPAV’s extensive image file format libraries for and sup-
ports over 70 common and proprietary data structures. For
complete details, please see the MIPAV documentation
(http://mipav.cit.nih.gov/pubwiki/index.php/Supported_
Formats).

This paper describes a new pipeline for the multimodal
analysis of neuroimaging data, the System for Integrated
Neuroimaging Analysis and Processing of Structure
(SINAPS). The elements of this pipeline have been reported
elsewhere in work of both our own group and others—e.g.,
(Bazin & Pham 2007a; Han et al. 2004; Mori et al. 1999).

Here, we describe incorporation of improvements to these
algorithms as well as a previously unpublished dura removal
stage aimed at making the elements of the analysis work
well together in a fully automated manner. The SINAPS
suite of computational tools (illustrated in Figs. 1 and 2)
includes the (1) automatic extraction of brain tissue and
exclusion of non-brain tissue, (2) segmentation of cortical,
subcortical, and white matter lesion tissues, (3) cortical
surface reconstruction, (4) gyral labeling, and (5) white
matter tract segmentation.

SINAPS features several desirable properties for neuro-
scientific applications. First, the algorithms are designed to
take advantage of multiple MR contrasts. For example, the
use of both a structural T1-weighted contrast and a FLAIR
contrast, which provides lesion enhancement, can be used in
combination to obtain whole brain segmentations that in-
clude delineation of white matter lesions. Second, topology
preservation is obtained not only for the cerebral cortex, but
for most major brain structures. This allows the results of the
algorithms to be readily utilized for group shape analyses
that employ high-dimensional diffeomorphic transforma-
tions (Beg et al. 2005). Third, a full DW-MRI pipeline is
married to this foundation by careful independent process-
ing of the DW-MRI (including motion correction of the
separate gradient images) followed by deformable registra-
tion of these data to the structural data in order to remove
geometric distortion caused by EPI acquisitions and mag-
netic susceptibility. Deterministic tractography is carried out
and a novel white matter tract labeling method provides
labels of the spatial volumes that are occupied by the major
white matter tracts (Bazin et al. 2011). In order to accom-
modate and measure white matter lesions commonly found
in older subjects, lesions are automatically segmented and
quantified for determining lesion load measures. Fourth, the
algorithms have been designed to be reasonably efficient,
enabling results to be obtained on the order of hours rather
than days. The cortical reconstruction algorithm, in particu-
lar, employs a level set deformable surface model that is
known to possess computational advantages over parametric
deformable models (Han et al. 2004). Therefore, SINAPS is
ideally suited for the simultaneous study of anatomical
structure including white matter lesions together with diffu-
sion MRI including conventional diffusion contrasts as well
as tractography.

The core algorithms have been validated individually
elsewhere using comparison to manual raters, repeatability
experiments, and simulations. Therefore, the accuracy
against a gold standard in each of the elements of the
algorithm have been (in most cases) previously determined.
The new pipeline reported here is validated in a repeatability
experiment involving 21 subjects scanned twice each at 3T
(Landman et al. 2011). The objective of this study is aimed
therefore at demonstrating new analytic capabilities that
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become possible with integrated multimodal analysis and to
provide the necessary statistical data for determination of
effect size requirements in new neuroscience studies that
would look to study structural and connectivity differences
or changes in a population.

Methods

The follow sections detail the modules which compose the
SINAPS pipeline. The data dependencies between the mod-
ules are explained in Table 1. Modules have been evaluated
in the form captured by Toads-CRUISE Release R3c

(March 23, 2012) with MIPAV 5.4.1. Details of all non-
default parameters are included below. All tools have been
released freely as open-source software. These tools support
standard file formats and data structures, permitting interop-
erability with other available packages using the Java Image
Science Toolkit (JIST) (Lucas et al. 2010) and the Medical
Image Processing and Visualization (MIPAV) software.
JIST provides the ability to visualize algorithms and proce-
dures through high level block-diagrams along with classi-
cal dialog box and command line user interfaces (Covington
et al. 2010, 2011).

JIST Details: The combined tissue segmentation and
cortical surface estimation pipeline is wrapped in a single

Fig. 1 Illustration of
processing steps in SINAPS.
First, all data within each
session (including FLAIR to
highlight lesions, MPRAGE for
structural detail, and DTI for
WM structure) are
co-registered. Then, the cortical
and sub-cortical anatomies are
inferred from the structural
scans while local orientation
properties are inferred from the
DTI data. The cortical surface is
labeled into anatomical
divisions while the DTI data are
segmented into tract structures.
Finally, the cortex characteris-
tics are summarized with
thickness and shape metrics

Fig. 2 Screen shot of JIST
Layout with color overlaying
indicating functionality of sub-
layouts: a CATNAP, b
CRUISE, c co-registration, d
gyral-labeling and segmenta-
tion, and (E) lesion
segmentation
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module: “TOADS-CRUISE (1.7T)” Module. In this work,
each component was run separately.

Brain Extraction

Brain extraction (a.k.a., skull stripping or brain isolation), is
equivalent to a whole brain segmentation which separates
gray matter (GM) and white matter (WM) from other tissues
such as cerebrospinal fluid (CSF), skull, meninges, etc. The
primary difficulty in this task is the lack of discernible
contrast between many of the tissues types that compose
the extra-cerebral tissue and the brain. SINAPS uses the
Simple Paradigm for Extra-Cerebral Tissue Removal
(SPECTRE) (Carass et al. 2011) module to extract brain
from non-brain tissue by combining elastic registration with
atlas-based priors, tissue segmentation, and morphological
techniques (guided by a watershed principle). SPECTRE
was specifically designed to include a thin layer of CSF
surrounding the cortical surface thus avoiding unnecessary
removal of any cortical gray matter, which would adversely
affect cortical reconstruction.

JIST Details: “SPECTRE 2012 (1.3R)” Module.

Brain Segmentation

The anatomy of the human brain has a rich structure, with
extremely convoluted and complex shapes like the cerebral
cortex or the ventricles. However, the topological properties
of the segmented brain structures are very simple, dictated
by the normal neurological developmental process. Neuro-
imaging research has focused on topology for the study of
the cerebral cortex; with a few simplifying assumptions, one

can model the cortex topologically as a hollow sphere. With
this model, the highly convoluted surface of the brain can be
flattened into a plane, a sphere, or a partially flattened
surface and structural or functional information can be vi-
sualized and analyzed more easily (Tosun et al. 2003;
Thompson & Toga 2002).

We extended topological constraints to describe multiple
object relationships in the segmentation of brain structures
using the TOpology-preserving Atlas Driven Segmentation
(TOADS) (Bazin & Pham 2007a). The TOADS topological
model extends the early work of (Mangin et al. 1995) to
maintain relationships between all the structures to be seg-
mented, while integrating features from tissue segmentation
methods (Pham & Prince 1999; van Leemput et al. 1999).
Topological constraints prevent holes from occurring in a
particular structure and therefore suppress anomalies stem-
ming from noise, making the method robust even without
spatial regularization. Because the topology is preserved dur-
ing the segmentation, no topology correction is required when
extracting the cortex. Segmented structures include cerebral
the cortical gray matter, cerebral white matter, cerebellar gray
matter, cerebellar white matter, brainstem, ventricles, caudate,
putamen, thalamus, and sulcal cerebrospinal fluid. Details on
the algorithm are given in (Bazin & Pham 2008).

JIST Details: “TOADS 2009 (1.6R)”Module. Parameter
notes: Output image: cruise inputs. This module was not used.
Rather, we used the robust variant described below.

Lesions in a Topology-Preserving Framework

Characterizing neuroimaging abnormalities plays an impor-
tant role in investigating both normal development/aging

Table 1 Data-dependency structure for SINAPS modules

Stage Method Module MPRAGE FLAIR DTI Brain
mask

Cortical
structure

Tensors Fiber
tracts

WM
labels

Data acquisition C C C

Pre-processing

Brian isolation SPECTRE U C

Brain segmentation Lesion-TOADS U U U C

Cortical surface estimation

Dura removal Remove dura M U

Sulci enhancement ACE U/M

Surface identification CRUISE U/M

Surface labeling Multi-atlas U U U/M

White matter labeling

Tensor estimation CATNAP U C

Tractography Fiber tracker U C

Tract segmentation DOTS U C

For each data processing step (rows): C indicates that a dataset is created, U indicates that the dataset was used, and M indicates that the dataset is
modified
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and disease processes. In particular, white matter lesions are
frequent findings which can be troublesome for automated
analysis methods. Lesions do not have a fixed topology, so
they cannot be directly incorporated into a TOADS topo-
logical atlas. However, since white matter lesions occur
within white matter, we can model them in a topological
framework by considering the union of lesion and normal
tissue as one object. From a topological point of view,
normal appearing structure and lesions together represent
the structure as it would appear in a normal brain. Intensity
based classification is used to identify lesions within the
white matter.

In a multi-channel framework, each MR input image
provides plausible contrast for only a subset of the desired
structures. These contrasts on different MR pulse sequences
can cause inaccuracy in the segmentation of both lesions
and brain structures, revealing the need for a more effective
use of the intensity information from each of the input
channels (Shiee et al. 2008). Although T2-weighted and
FLAIR images have the best contrast for lesions, the inten-
sity distribution of lesions has considerable overlaps with
those of healthy tissues in these types of MR images, mak-
ing the intensity based lesion segmentation techniques vul-
nerable to false positives. These types of misclassifications
are prominent especially at the boundaries of WM with
other structures (GM and ventricles). Thus, they can be
suppressed by penalizing the lesion membership in the
vicinity of the WM boundaries. We use a boundary distance
function re-weighting factor to remove the false positives
without hindering the detection rate of lesions close to the
WM boundaries (see (Shiee et al. 2010)).

JIST Details: “Lesion TOADS (1.5R)” Module.

Cortical Surface Estimation

Once the brain tissue has been classified into topologically
correct tissue objects, locating the cortical manifold, includ-
ing the pial surface, central surface, and inner gray matter
surface is, in theory, a simple matter of finding the
corresponding surfaces of the cortical gray matter object.
In practice, however, additional processing steps lead to
substantially improved accuracy and robustness. The brain
extraction method, SPECTRE, is designed to be conserva-
tive in the amount of tissue removed as to prevent algorith-
mically induced brain loss. A second-pass dura removal
step, described below, is used to refine the brain extraction
and reduce contamination of dura signal in the cortical
manifold. Subsequently, the brain segmentation techniques
produce tissue classifications topologically consistent at the
voxel-wise level, typically at millimeter resolution. Memory
and time constraints make imaging and direct analysis at
higher resolution impractical. However, using a feature en-
hancement technique and a topologically consistent

deformable model, we can capture sub-voxel characteristics
of the cortical manifold.

JIST Details: The combined cortical surface estimation
pipeline is wrapped and was evaluated as a single module:
“CRUISE (1.2T)” Module. Each component is also available
to run separately.

Dura Removal

Brain extraction with SPECTRE occasionally fails by leav-
ing wedges of dura with similar contrast to that of gray
matter. To remove these artifacts, we developed a second-
pass dura removal procedure which runs after an initial
tissue segmentation. The union of the GM and WM mem-
berships is topologically correct. Using the inner component
of this union (i.e., the WMmembership) as the initialization,
we then run a topology-preserving geometric deformable
(TGDM) surface model (Han et al. 2003) between the
topologically corrected WM membership and the union of
the GM and WM memberships. Here we include an addi-
tional force to regularize the thickness between the two
memberships. The regularizing force effectively prunes seg-
ments of dura that might be attached to the gray matter via
irregular or thin connections using fast marching topology
correction of membership (Bazin & Pham 2007b). The
resultant pial surface level set is used to generate a final
brain extraction mask, which is then applied to the original
image.

JIST Details: “Remove Dura 2009 (1.6 RC)” Module.

Sulci Enhancement

Partial volume effects limit the achievable resolution at
which the cortical manifold may be studied due to apparent
inconsistencies in surface morphology/topology when data
are viewed at voxel resolution. The problem is most acute in
sulcal regions where the cortical gyri are “back-to-back”
with a subvoxel gap between neighboring tissue groups.
Other groups have used cortical thickness constraints to
produce reasonable results in these regions, cf. (MacDonald
et al. 2000; Zeng et al. 1999). We use the anatomically
consistent enhancement (ACE) procedure to modify the
initial GM segmentation to create a thin, digital separation
between sulcal GM banks (Xu et al. 1999; Han et al. 2001).
This is done so as to separate sulcal GM from opposing
banks allowing for the generation of accurate central and
outer surfaces. ACE automatically locates the exterior skel-
eton of the GM/WM interface and reduces the GM mem-
bership value on the skeleton, thus changing this local GM
values into CSF. Use of a conventional Euclidean skeleton
will “gouge” the GM indiscriminately, regardless of the
presence of actual CSF. ACE incorporates the presence of
CSF in the definition of the distance used to compute the
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outer skeleton, where a weighted distance measure leads to a
more appropriate division. A similar approach was also
described in (Riviere et al. 2002). In sulci where there is
no evidence of CSF, the distance will default back to the
Euclidean definition, and the gyral banks will be split equal-
ly—a reasonable assumption given a lack of external
information.

JIST Details: “Gray Matter Enhance (1.3 RC)” Module.

Surface Identification

The previous steps have set the stage for the estimation of
the three cortical surfaces (i.e., outer pial surface, central
surface, and inner GM/WM surface) using a deformable
surface model method, which we refer to as nested cortical
reconstruction using implicit surface evolution (CRUISE).
The heart of the deformable method is a topology-
preserving geometric deformable (TGDM) surface model
(Han et al. 2003). TGDM distinguishes itself from paramet-
ric deformable models and standard geometric deformable
models (GDMs) in that it preserves the topology of the
evolving shape using a subtle but important modification
to the standard level set implementation (Sethian 1999). The
resulting narrow band algorithm remains computationally
efficient, requiring only a 7 % time penalty in order to
maintain object topology during evolution.

The surface estimation follows the original CRUISE
presentation (Han et al. 2004). The inner cortical surface is
initialized with the topologically correct binary WM seg-
mentation. An outward curvature force drives the boundary
surface to the 0.5 isosurface of the continuous WM mem-
bership density function while maintaining topological con-
sistency. The outer cortical surface is found by driving
toward the 0.5 isosurface of the sum of the continuous
WM and GM membership functions. Finally, the central
surface is found as the topologically consistent surface with-
in the GM membership and sitting between the WM and
CSF membership functions.

JIST Details: “Nested TGDM (1.3 R)” Module.

Surface Labeling

Cortical labels corresponding to traditional neurological
definitions are estimated through multi-atlas registration,
label fusion, and topological correction. First, a collection
of atlases derived from the OASIS dataset (Marcus et al.
2007) are non-rigidly registered to a subject’s structural
image. Labels are transferred from cortical atlases through
deformation of the label fields. Differences between the
atlas labels in subject space are reconciled using statistical
fusion techniques.

Five brains from the OASIS dataset with labels from the
Desikan protocol (32 labels per hemisphere) were used as

atlases. The atlas registrations are performed via a multi-
channel deformable registration technique (Chen et al.
2010) based on the adaptive bases algorithm (Rohde et al.
2003). This technique takes an intensity based approach
using normalized mutual information as the similarity met-
ric, which has shown to be advantageous in registrations
across different modality (Maes et al. 1997; Viola & Wells
1995). The algorithm constructs a deformation map as an
accumulation of radial basis functions under a hierarchical
schema. By using compact support RBFs, non-overlapping
regions in the image can be optimized locally, hence reduc-
ing both computational complexity and run time. We ac-
count for the multiple image channels as weighted
contributions within the deformable registration framework
through a vectorized calculation of the difference metric.
Incorporating information from multiple channels allows the
final deformation to represent anatomically variability that
may only be discernible in certain image contrasts, thus
making the most of all available image channels.

To fuse the atlas labels together on the cortical surface of
the subject we have developed an extension (Bogovic et al.
2010) to the STAPLE algorithm (Warfield et al. 2004).
STAPLE simultaneously estimates a true segmentation and
a reliability characterization for each atlas in a collection and
was originally presented on voxel level data that included a
Markov random field to model spatially correlated struc-
tures. Our extended approach operates on surface labels
with a mesh-based Markov random field to account for
spatial consistency of multiple labels on a mesh. After
estimation, a secondary topological correction step is
performed in which holes in the label definitions are
filled.

JIST Details: “Surface Labeling via Multiple Atlases
(1.5 alpha)” Module.

Surface Assessment

We use level set subtraction to estimate cortical thickness as
described in (Han et al. 2001). In this approach, cortical
thickness is computed from the image volume using dis-
tance transforms from the inner to the outer surface. A
thickness value is assigned to each voxel in the volume
between the two surfaces and is defined as the sum of the
distances from the voxel to each of the two surfaces. The
reconstructed cortical surface is generated in the same coor-
dinate space as the image volume, which means that each
vertex of a surface mesh can obtain image values by directly
mapping into the image data in the volume. Accordingly, we
obtain measures of cortical thickness at each surface vertex
using trilinear interpolation applied in the image volume
containing estimates of cortical thickness at volumetric grid
points.

JIST Details: “Thickness (1.3R)” Module.
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White Matter Tract Labeling

In the SINAPS pipeline, we integrate DTI and structural
processing by assimilating CATNAP (Landman et al.
2007). To process the DW-MRI data, images are co-
registered to account for motion and distortion, the gra-
dient tables are corrected for the anatomical position
relative to diffusion sensitization, and diffusion tensor
sand tensor contrasts are computed. A significant chal-
lenge in the use of DTI measures in conjunction with
anatomical T1 and T2 scans is the presence of eddy-
current and susceptibility induced distortions in diffusion
weighed images acquired with echo planar imaging
(EPI). A number of strategies have been shown to be
useful in correcting for these distortions: registration
(Rohde et al. 2004), reverse-gradient (Andersson et al.
2003), and field-mapping methods (Jezzard & Balaban
1995; Jezzard et al. 1998). With SINAPS, we use the
mutual-information registration approach since, unlike
reverse-gradient or field mapping techniques, registration
methods do not require additional MR image acquisitions
(which are typically highly idiosyncratic to a scanner or
institution). Specifically, the undistorted anatomical MR

modalities (usually MPRAGE) are used as registration
targets to correct the geometry of the distorted EPI
diffusion weighted acquisitions. This scheme simulta-
neously corrects geometric distortion and co-registers
the diffusion-weighted images to structural images, tight-
ly coupling the two and facilitating the computation of
measures derived from both modalities. Note that the
distortion correction is currently not constrained to be
in the phase-encode direction.

JIST Details: ‘CATNAP (1.3 beta)’ Module. Note that
the individual processing steps that make up the CATNAP
module are also available separately.

Tractography

The rise of DW-MRI has been, in large part, attributed
to the ability to infer the presence of large-scale oriented
tracts within apparently (on traditional MRI) homoge-
neous white matter (Mori et al. 1999). A recent review
of diffusion imaging and tractography is given by Derek
Jones (Jones 2008). Herein, we illustrate use of the
SINAPS platform to combine diffusion and structural
information. In this illustration, we use the cortical labels
as targets for the underlying fiber tracts.

JIST Details: ‘Fiber Tracker (FACT) (1.4 RC)’ Module.

White Matter Tract Segmentation

While fiber tracking provides information about the connec-
tivity between remote regions of the brain, the segmentation
of fiber bundles or tracts that correspond to known anatom-
ical atlases requires additional grouping, trimming, and la-
beling (Maddah et al. 2007; El Kouby et al. 2005; Lawes et
al. 2008; Mori et al. 2005). There are a few alternative
methods based on level sets (Lenglet et al. 2006), non-
parametric fuzzy classification methods (Awate & Gee
2007) for the segmentation of a given bundle from a set of
initial regions of interest (ROIs) or using atlases in voxel-
based classification techniques (Maddah et al. 2008) and in
parametric deformable models (Eckstein et al. 2009). These
methods often consider a single fiber bundle or region at a
time, without explicitly addressing the fiber crossing prob-
lem. We developed a tract segmentation method to classify
white matter voxels according to the name of the tract or
tracts passing through them following a Markov Random
Field (MRF) modeling approach. The algorithm, referred to
as Diffusion Oriented Tract Segmentation (DOTS) (Bazin et
al. 2011), defines a Markov field directly on the diffusion
tensors to separate the main fiber tracts at the voxel level. A
given voxel may represent multiple tracts, thereby charac-
terizing tracts crossing within a voxel. A prior model of
shape and direction guides the segmentation, and the brain
gets fully segmented into 1) known fiber tracts, 2)

Fig. 3 Reproducibility of cortical surfaces. Average overlap of gyral
regions defined on independent scan-rescan dataset was greater than
0.8 Dice (a), while the mean surface distance between the scan-rescan
cortical surfaces was less than a millimeter (b)
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additional, unspecified fibers, and 3) regions of isotropic
diffusion. An atlas describing the probability of tracts
throughout the WM voxels was constructed using the un-
derlying data of the Mori and Wakana digital atlas (Mori et
al. 2005; Wakana et al. 2007) augmented to include up to 39
different tract labels.

JIST Details: ‘DOTS’ Module.

Inter-Subject Reproducibility Analysis

To compare findings across subjects, inter-subject registra-
tion on partially inflated brains was used. The inflated
surfaces are acquired by smoothing the surface with a re-
laxation operator (described in (Tosun et al. 2004)). The
amount of inflation is controlled by a stopping criterion
based on the L2 norm of mean curvature (herein, set to 2).
MPRAGE images of the repeated scans were registered by
affine registration (the ‘Optimized Image Registration 3D’
Module). Transforms were applied to the FLAIR images
with the ‘Transform Volume’ Module). Average distance
between the original surfaces was computed to evaluate
the difference between the cortical surfaces generated by
two repeated scans.

Results

Scan-rescan multi-modal MRI sessions on 21 healthy vol-
unteers (no history of neurological disease, 11 M/10 F, 22–
61 years old) were acquired from the Multi-Modal MRI
Reproducibility Resource (Landman et al. 2011). Imaging
modalities included whole head acquisitions using
MPRAGE (1x1x1.2 mm), FLAIR (1.1×1.1×1.1 mm), and
DTI (2.2×2.2×2.2 mm). Scan acquisitions details are pro-
vided in the reference. SINAPS was run using the three MRI
modalities to extract cortical, sub-cortical, and white matter
structure (Fig. 1) independently for 42 scan sessions.

Cortical Surface Reproducibility

The cortical surfaces are one of the essential end-stage
products of the SINAPS pipeline (Figs. 1 and 2) and are
the results of multi-stage processing (Sections Brain Extrac-
tion to Surface Assessment). The average scan-rescan Dice
similarity measure between CRUISE surface labels was
0.81 (Fig. 3a). To remove the confounding effects of label-
ing variability, the following point-wise surface statistics are
reported within atlas defined regions. For atlas labeling, the

Fig. 4 Mean and variability of
surface metrics by gyral region.
Mean cortical thickness ranged
(a) from 1.9 to 4.9 mm with a
maximum mean absolute
difference of 0.74 mm and an
intra-region standard deviation
of 0.97 mm. Shape index (b),
curvedness (c), and mean
curvature (d) showed similar
patterns where mean absolute
difference was much less than
the intra-region variability
(on average 20.7 %, 36.7 %,
40.3 %, 24.3 %, respectively)
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surfaces were partially inflated and registered. After inter-
scan registration, the average distance within a region be-
tween the estimated cortical surfaces after rigid body regis-
tration was 0.29±0.28 mm. The least reproducible regions
were the entorhinal cortex and lingual gyri (0.41–0.54 mm)

while 44 of 70 regions exhibited less than 0.29 mm surface
differences (Fig. 3b).

Reproducibility of cortical surface properties over all
subjects are reported in Fig. 4 by the mean over gyral
label, mean absolute difference point-wise, and the
standard deviation of the point-wise difference for (A)
cortical thickness, (B) shape index, (C) curvedness, and
(D) mean curvature. These metrics are discussed in
(Koenderink & van Doorn 1992). The average cortical
thickness was 3.26±0.97 mm (shown in Fig. 4a). For
all metrics the mean absolute different values (center
plots) were less than the within-region standard devia-
tion of the same metric metrics (right plots). The sup-
plemental material provides a detailed comparison of
reproducibility of each metric across 35 bi-lateral gyral
labels. Figure 5 illustrates representative cortical labels,
sub-cortical structure, and white matter structure for a
single subject.

Cortical Connectivity and Sub-Cortical Segmentation
Reproducibility

Both cortical-connectivity and sub-cortical segmentations
relay on multi-modal characterization of sub-cortical tissues.
Section “Brain Segmentation” covers anatomical parcella-
tion into white matter and gray matter structures; white
matter characterization is discussed in Section White Matter
Tract Labeling. Figure 6 examines reproducibility of cortical
connectivity maps estimated by combining cortical labels
and diffusion-inferred white matter tracts. Reproducibility
of volumetric brain segmentations was assessed based on
average Dice coefficient of rigidly registered scan-rescan
data. Reproducibility of T2 lesion volumes was approximately

Fig. 5 Illustration of spatial fusion information (top) from surface
classification (left), sub-cortical volumetry (center), and white matter
tract (right) analyses

Fig. 6 Tractography mapping
of cortical connectivity. The 35
bi-lateral cortical labels
(see Appendix A) that were
automatically identified were
used as target regions for
deterministic tractography.
Strength of connections in
terms of number of fibers per
region pair are graphically
illustrated in (a) and (b). c
presents the average pair-wise
regional connectivity between
the 21 subjects, while d
presents the reproducibility of
connectivity strength
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0.5 Dice and reflective of the high surface/volume ratio of the
identified lesions (so that small surface shifts resulted in
proportionally large volumetric changes) and the task difficul-
ty of distinguishing low contrast lesion boundaries. Note that
the reproducibility of the remaining structures remained high
despite the fact that variability in lesion classification is nec-
essarily reflected in label exchange with other structures.
Figure 7 presents scan-rescan Dice similarity between each
of the brain volumes estimated by lesion-TOADS. Note that
content of this figure is similar to Table 6 of (Landman et al.
2011), but using the lesion Toads in SINAPS as opposed to the
stand-alone TOADS algorithm. Finally, reproducibility of
tract structures was assessed via Dice overlap and is reported
in Fig. 8. Smaller and more variable structures have a lower
Dice (0.6–0.7), and more regular and larger ones yield supe-
rior results in the range (0.7–0.8). Dice overlap in the lesion
areas are particularly low as this a healthy population. One
possible explanation for the lower Dice overlap measures is
that these white matter tracts are of similar size or smaller than
sub-cortical structures and more elongated. Alternatively,

accuracy may simply be lower given increased task difficulty
(Fig. 7).

Discussion

SINAPS presents a consistent, open-source platform which
is well-positioned to examine the relationship between dam-
age to specific white matter tracts (as defined by the pres-
ence of lesions or other diffusion metrics) and changes in
subcortical or cortical geometry defined within specific
structural networks. SINAPS uses multiple MR images to
segment both normal brain tissue and white matter lesion
while preserving topology. The ability to segment white
matter tracts while being robust to crossing and kissing
fibers allows definition of meaningful regions of interest
within the white matter, as well as the ability to automati-
cally label tractography. This manuscript reviews the indi-
vidual software modules that are used to construct the
pipeline and characterize the reproducibility of the observed
measures.

Although the processing and analysis techniques de-
scribed here have been developed for multi-modality stud-
ies, the algorithms are modular, allowing a complete
analysis to be undertaken when a subset of the potential
modalities are available. Each of the processing steps in the
SINAPS pipeline may also be used in isolation or replaced
with a different algorithm with the same inputs and outputs.
The JIST structure permits open collaboration using a
shared-source archive (JIST), contributed modules from
third parties are automatically included for distribution. In
conclusion, SINAPS is one viable option of many that can
work with rich imaging data sets, offering diverse capabil-
ities under a single user interface.

The synergies between SINAPS and JIST provide strong
opportunities for community involvement in development
of related and derivative image processing pipelines. As
with other permissively licensed, open-source software

Fig. 8 Scan-rescan reproducibility of white matter tract segmenta-
tion resulting from DOTS by white matter tract structure. Inlays
illustrate representative tract locations in red: ATR anterior thalam-
ic radiation, CCF/CCP/CCS corpus callosum frontal/posterior/su-
perior, CG cingulum, CPT cortico-pontine tract, CST cortico-spinal
tract, FNX fornix, ICP inferior cerebellar peduncle, IFO inferior
fronto-occipital tract, ILF inferior longitudinal fascicle, MCP

middle cerebellar peduncle, ML medial lemniscus, OPR optic
radiation, OPT optic tract, PTR posterior thalamic radiation, SCP
superior cerebellar peduncle, SFO superior fronto-occipital fascicle,
SLF superior longitudinal fascicle, STR superior thalamic radiation,
TAP tapetum, UNC uncinate fascicle). Symmetric tracts are illus-
trated with one glyph, but reproducibility is show separately for
left (L) and right (R) divisions

Fig. 7 Scan-rescan reproducibility of volumetric segmentation result-
ing from lesion TOADS. Inlays show representative brain structure
volumes for each region of interest
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tools, users may modify, optimize and combine tools for
their particular research needs for both internal use and
redistribution. In contrast to many other platforms, pipe-
lines, modules, modifications, optimizations to JIST are
permitted (and encouraged) to be distributed with the pri-
mary analysis platform. The code base is accessible to any
NITRC user and plugins contributed to this library are
automatically deployed with the default release.

Information Sharing Statement

Source code and binary programs developed in this paper
are available via Neuroimaging Informatics Tools and
Resources Clearinghouse (NITRC: http://www.nitrc.org/
projects/jist). The ‘DOTS’ module is available separately
in open source from the DOTS WM tract segmentation
project at http://www.nitrc.org/projects/dots/. These tools
build upon the Medical Image Processing Analysis and
Visualization (MIPAV: http://mipav.cit.nih.gov/) platform.
All data are available via the Multi-Modal MRI Reproduc-
ibility Resource on NITRC (http://www.nitrc.org/projects/
multimodal). The modules described herein capture the
essential functionality. The details of software use and inter-
connections are detailed on the NITRC wiki at: http://
www.nitrc.org/plugins/mwiki/index.php/jist:MultiCRUISE.
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Appendix A

The regions indicated in Fig. 6 are as defined by (Desikan et
al. 2006) and indexed as follows. 1 : L-Subcortical Region,
2 : L-Banks of Superior Temporal Sulcus, 3 : L-Caudal
Anterior Cingulate, 4 : L-Caudal Middle Frontal, 5 : L-
Corpus Callosum, 6 : L-Cuneus, 7 : L-Entorhinal 8 : L-
Fusiform, 9 : L-Inferior Parietal, 10 : L-Inferior Temporal,
11 : L-Isthmus, 12 : L-Lateral Occipital, 13 : L-Lateral
Orbitofrontal, 14 : L-Lingual, 15 : L-Medial Orbitofrontal,
16 : L-Middle Temporal, 17 : L-Parahippocampal, 18 : L-
Paracentral, 19 : L-Pars Opercularis, 20 : L-Pars Orbitalis,
21 : L-Pars Triangularis, 22 : L-Pericalcarine, 23 : L-
Postcentral, 24 : L-Posterior Cingulate, 25 : L-Precentral,
26 : L-Precuneus, 27 : L-Rostral Anterior Cingulate, 28 : L-
Rostral Middle Frontal, 29 : L-Superior Frontal, 30 : L-

Superior Parietal, 31 : L-Superior Temporal, 32 : L-
Supramarginal, 33 : L-Frontal Pole, 34 : L-Temporal Pole,
35 : L-Transverse Temporal, 36 : R-Subcortical Region, 37 :
R-Banks of the Superior Temporal Sulcus, 38 : R-Caudal
Anterior Cingulate, 39 : R-Caudal Middle Frontal, 40 : R-
Corpus Callosum, 41 : R-Cuneus, 42 : R-Entorhinal, 43 : R-
Fusiform, 44 : R-Inferior Parietal, 45 : R-Inferior Temporal,
46 : R-Isthmus, 47 : R-Lateral Occipital, 48 : R-Lateral
Orbitofrontal, 49 : R-Lingual, 50 : R-Medial Orbitofrontal,
51 : R-Middle Temporal, 52 : R-Parahippocampal, 53 : R-
Paracentral, 54 : R-Pars Opercularis, 55 : R-Pars Orbitalis,
56 : R-Pars Triangularis, 57 : R-Pericalcarine, 58 : R-
Postcentral, 59 : R-Posterior Cingulate, 60 : R-Precentral,
61 : R-Precuneus, 62 : R-Rostral Anterior Cingulate, 63 : R-
Rostral Middle Frontal,64 : R-Superior Frontal, 65 : R-
Superior Parietal, 66 : R-Superior Temporal, 67 : R-
Supramarginal, 68 : R-Frontal Pole, 69 : R-Temporal Pole,
70 : R-Transverse Temporal
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