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ABSTRACT

We propose a fully automatic method to segment the dentate

nucleus using diffusion weighted images (DWI). Initialization

of the dentate nucleus is produced by combining the informa-

tion from tractography results on the diffusion tensor images

(reconstructed from DWI) and b0 images. A geometric de-

formable model (GDM) with generalized gradient vector flow

(GGVF) is then applied on the b0 image to generate the seg-

mentation by evolving the level set function. Experiments

have been carried out on real data and quantitative compari-

son shows that our segmentation results agree well with ex-

pert manual delineations and produce accurate results.

Index Terms— segmentation, dentate nucleus, diffusion

weighted images, geometric deformable model, generalized

gradient vector flow

1. INTRODUCTION

The dentate nucleus is a structure located in the cerebellum

that plays a significant role in the communications between

the cerebellum and the rest of the brain [1]. It receives affer-

ent projections not only from the cerebellar cortex but from

outside the cerebellum as well, such as the spinal cord. It

also outputs signals to other components of the nervous sys-

tem [2]. The dentate nucleus is responsible for functions such

as planning, initiation and control of volitional movements

[3]. Numerous studies on its structure [4], function [5] and

diseases related to the dentate nucleus [6] have been carried

out. A number of studies [7, 6, 8] have demonstrated that

magnetic resonance images (MRI) provide enough contrast

to perform manual segmentation. However, manual delin-

eations are subject to variability and are time-consuming. An

automatic method to segment the dentate nucleus could dra-

matically advance research.
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the China Scholarship Council
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Fig. 1. Axial view of (a) MP-RAGE and (b) b0 image in the

same slice. Images are zoomed into the cerebellum.

To the best of our knowledge, there exist no automatic

methods to segment the dentate nucleus. Although with an

atlas [8], segmentation is possible using the segmentation-

by-registration approach, more refined segmentations for pre-

cise volume quantification or for alternative atlas generation

need more accurate and fully automatic methods. In this pa-

per, we propose a fully automatic method for segmenting the

structure using diffusion weighted images (DWI). The con-

trast of the dentate nucleus on MRI is usually low or even

non-existing. For instance, as is shown in Figure 1(a) on an

MP-RAGE image, the dentate nucleus is not visible. The den-

tate nucleus is visible on T2 weighted images, but contrast is

typically poor. Similar contrast is found on b0 images in DWI

where no gradient directions are applied, which is shown in

Figure 1(b). Low level methods such as K-means or fuzzy C-

means (FCM) clustering and region growing are difficult on

T2 or b0 images for two main reasons. Firstly, it is necessary

to begin with anatomical information. Simply using cluster-

ing will end up with too many structures that have similar

intensities as the dentate nucleus. Edge information is also

ignored in clustering. Secondly, because of this low contrast,

methods such as region growing can easily extend out of the

dentate nucleus and a threshold is hard to determine. Thus,

we make use of anatomical connectivity information provid-

ed by tractography for initialization and apply a geometric
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deformable model (GDM) which includes both edge and in-

tensity information to segment the dentate nucleus. Since we

will use DWI to reconstruct the diffusion tensor images (DTI)

to perform tractography and b0 images are part of DWI, the

GDM is applied on b0 images. An example of our segmen-

tation result is shown in Figure 2(a). Based on the fact that

(a) (b)

Fig. 2. An oblique view of the segmentation of the dentate nu-

cleus and the superior cerebellar peduncles (SCP) shown to-

gether with the brainstem (purple) and the cerebellum (trans-

parent). Orange/yellow volume: left/right dentate nucleus;

blue/green fibers: left/right SCP. (a) Without SCP. (b) With

SCP.

the superior cerebellar peduncles (SCP) originate from the

dentate nucleus [3], we use the diffusion oriented tract seg-

mentation (DOTS) algorithm [9] together with tractography

to automatically obtain the SCP fibers. With the help of the

SCP, it is possible to get an initialization of the dentate nu-

cleus on b0 images. Then we apply a GDM combined with

generalized gradient vector flow (GGVF) [10] on b0 images

to accomplish the segmentation. The experiments on real data

demonstrate that the method achieves accurate segmentation

of the dentate nucleus.

2. METHODS

2.1. Labeling of the SCP Fibers

DOTS [9] is an atlas-based algorithm for white matter tract

segmentation that directly labels each voxel within a Markov

random field (MRF) framework. Computed fibers can also

be automatically labeled by tract given the underlying DOTS

voxel labels [9]. Here we first reconstruct tensors from DWI

using CATNAP [11] and then apply DOTS on the DTI. Fibers

from FACT [12] are labeled using DOTS results [9]. An ex-

ample of the labeled SCP fibers is displayed in Figure 2(b).

Note that the left SCP and right SCP are labeled separately.

In this example, we can see that the method produces a rea-

sonable labeling of the SCP fibers and that most SCP fibers

originate from the dentate nucleus.

2.2. Initialization of the Dentate Nucleus

To obtain an initialization of the dentate nucleus, we com-

bine the information from the SCP fibers and b0 images as

the SCP originate from the dentate nucleus [3]. We extract

the end points of the SCP, and then separate the end points

of the SCP fibers into two groups and select the one nearest

to the dentate nucleus. This is done by choosing the group

that has more points inside the cerebellum mask generated

by TOADS, a whole brain segmentation algorithm [13], on

an MP-RAGE image of the same subject, because the oth-

er side is expected extend out of the cerebellum. Because of

noise and the choice of parameters in tractography, some end

points may not end in or near the dentate nucleus. Therefore

we limit our selection to the end points in the center of the

point cloud. For each point, the sum of the Euclidean dis-

tances to all others is calculated. Then we sort the points in

ascending order by the sum and choose the first 10%. This

process is performed for left and right SCP separately.

B0 images provide sufficient contrast to distinguish the

dentate nucleus from the neighboring voxels. A two-class

FCM [14] is applied on the b0 image masked to include on-

ly the cerebellum. It can be observed in Figure 3(a) that the

hard segmentation result includes parts of the dentate nucleus

together with structures far from it. Therefore, we first par-

tition the hard segmentation into isolated components with

26-connectedness. Then we calculate the sum of the distance

from the end points extracted above to each component and

select the one with the smallest sum of distance to be the ini-

tialization. Since we label left and right SCP separately, the

initialization of the dentate nucleus can discriminate left and

right side, as shown in Figure 3(b).

(a) (b)

(c) (d)

Fig. 3. An axial view of intermediate results. (a) FCM

hard segmentation. (b) Final initialization (orange/yellow:

left/right dentate nucleus) overlaid on contrast enhanced b0

image. (c) FCM membership. (d) Edge map.
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2.3. Segmentation Using GDM

With the initialization described above, a more accurate den-

tate boundary is found by using a GDM. The partial differen-

tial equation for the GDM level set is

φt + F0|∇φ|+ Fext · ∇φ = εκ|∇φ| (1)

where φ is the level set function, κ is the curvature, F0 is the

region force and Fext is the external force [15]. The region

force assures that the level set expands inside the dentate nu-

cleus and shrinks outside it. The region force is defined by

membership obtained in the FCM result. Figure 3(c) gives an

example of the membership. An empirical threshold τ(< 0.5)
is set such that the region force is positive where the member-

ship is above τ and negative otherwise (Equation 2).

F0(x) =

{
α, M(x) > τ

−α, otherwise
(2)

Here α is the strength of the force, x is the coordinate of the

voxel and M(x) is the membership at voxel x. We set Fext

as the GGVF force. The GDM using GGVF has a large cap-

ture range and can converge into boundaries with concavities

[16]. It also gives good results with the existence of weak

edges [16]. To obtain the GGVF, an edge map is produced

by applying 3-D Sobel operator on the Gaussian smoothed b0

image and then thresholding the result to get a binary map.

An example is shown in Figure 3(d). Then the GGVF is cal-

culated with the edge map by solving Equation 3 [10].

Fext = argmin
f

∫
Ω

g(|∇f |)|∇�v|2 + h(|∇f |)|�v −∇f |2dω
(3)

where g(|∇f |) = e−|∇f |/K , h(|∇f |) = 1 − g(|∇f |), and �v
is the gradient field of the edge map. Note that the although

the edges in the map are thick due to the low contrast between

the dentate nucleus and its surroundings, with our definition

of the region force and the ‘medial’ property of GGVF, the

zero level set will not stop at the inner boundary. Instead it

will stop between the inner and outer boundary as a result

of the interaction of Fext and F0. With the forces defined

above, the segmentation of the dentate nucleus is achieved by

evolving the level set function using Equation 1.

3. EXPERIMENTS

Experiments are carried out on real data. The diffusion

weighted images were acquired using a multi-slice, single

shot EPI sequence. Each sequence had one b0 image and

used 32 gradient directions. The images were obtained on

a 3T MR scanner (Intera, Philips Medical Systems, Nether-

lands). The DWI were then co-registered to corresponding

MP-RAGE images resampled to 1 mm isotropic resolution.

Segmentation of the dentate nucleus is performed as we

described above. Experiments are carried out on 4 subjects.

Fig. 4. Axial views of 3-D renderings of the segmentation

result overlaid on b0 images on 4 subjects. B0 images are

cropped to show the cerebellum. Orange/yellow volume:

left/right dentate nucleus.

The results are shown in Figure 4 by overlaying the 3-D ren-

derings of the segmentation on intersecting b0 images in an

axial view. Axial and coronal cross sections are shown in Fig-

ure 5 for better appreciation of the details. Here the b0 image

is displayed in a window and level chosen to better display the

contrast between the dentate nucleus and its surroundings.

(a)

(b)

Fig. 5. Detail views of the contour of the segmentation

for one subject overlaid on the contrast enhanced b0 image.

Orange/yellow: left/right dentate nucleus. (a) Axial view. (b)

Coronal view.

We have also compared our segmentation with manual de-

lineations of the dentate nucleus. The left and right dentate

nucleus are combined for comparison. The measurements are

displayed in Table 1. In our segmentation result, the volume

of the dentate nucleus is approximately 1 cm3. Given the

small volume, the Dice coefficient and average surface dis-

tances indicate very good agreement between our automatic
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Table 1. Comparison between automatic segmentation and

manual delineations

Subject 1 2 3 4

Dice coefficient 0.88 0.89 0.88 0.86

Average surface distance (mm) 0.31 0.42 0.37 0.36

segmentation and manual delineations and show that the pro-

posed method segments the dentate nucleus accurately.

4. CONCLUSION

In this paper, we presented a fully automatic method to seg-

ment the dentate nucleus using DWI. Diffusion weighted im-

ages are used in two ways. First, we combine diffusion in-

formation with high-level anatomical connectivity models in

order to locate the dentate nucleus. Then this initialization

allows us to segment the dentate nucleus directly on the b0

maps with a robust level set approach. Experiments show that

despite the small size of the structure, the method produces re-

sults that agree well with manual labeling. Future work may

include validation of the method on a larger cohort and appli-

cation to the studies of the involvement of the dentate nucleus

in neurodegenerative diseases.
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