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Abstract

We present a method to reconstruct images from finite sets
of noisy projections which are available only over limited or
sparse angles. The method solves a constrained optimiza-
tion problem to find a maximum g posteriori (MAP) esti-
mate of the full 2-D Radon transform of the object, using
prior knowledge of object mass, center of mass, and convex
support, and information about fundamental constraints
and smoothness of the Radon transform. This efficient
primal-dual algorithm consists of an iterative local relax-
ation stage which solves a partial differential equation in
Radon-space, followed by a simple Lagrange multiplier up-
date stage. The object is reconstructed using convolution
backprojection applied to the Radon transform estimate.

I. Introduction

Although limited angle tomography has been widely dis-
cussed in the literature, adequate imagery is still not ob-
tainable in discplines in which there are both restricted
viewing angles and low signal to noise ratios (cf. [1] and
references). The problem is fundamentally one of inverting
the 2-D Radon transform given by

0(t0) = R{/@)} = [ St —wT)ds, (1)

where f(z) is a real function defined on the plane (which
we will assume to be zero outside the disk of radius T
centered at the origin) and w = [cosd sinf]T. Thus, the
2-D Radon transform g(t,6), for fixed ¢ and 0, is a line
integral of the function f(z) along the line with lateral
displacement ¢ and unit normal w.

When one obtains a large number of accurate measure-
ments of g(t,0) for t € [-T,T] and 6 € [0,7), then a
high-quality reconconstruction of f(z) may be made using
conventional techniques, e.g., convolution backprojection
[2]. However, when the line integrals are observed in noise,
and when the angular range is restricted to a subset of
[0,7) — i.e. either the limited- or sparse-angle situation
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— then these conventional techniques are not adequate.
Some of the methods in the literature designed to account
for the limited- and sparse-angle cases, and in some cases
the noise, include modified transform methods, iteration
between spaces, and finite series expansion methods (see
[1] and references). The methods most closely related to
our methods are those which seek to directly estimate the
full Radon transform such as in [3] and [4].

II. Consistency and Support

Certain mathematical properties of the 2-D Radon tran-
form are used to advantage in our reconstruction method.
The first property is one of consistency: not all functions
g(t,0) are Radon transforms of some function f(z). A
full discussion of the consistency conditions required of
a 2-D Radon transform may be found in [5]. What we
require in this paper is the periodicity condition given by
g(t,0) = g(—t,0 + ), and the two moment constraints
given by

T
/_Tg(t,o)dt=m, )

and r
= [ sq(t,0) e = <), (3)

where ¢(f) is a cosinusoidal function in . Both m and
¢(#) may often be estimated quite accurately [6],[7], so that
we may use these two equations as constraints on the full
Radon transform to be estimated. We assume in what
follows that a pre-processing stage scales and shifts the
measurements so that m = 1 and ¢(§) = 0.

The second mathematical property of the 2-D Radon
transform is one of support: the convez hull of the support
F of the function f(z) has a one-to-one correspondence to
the support G of R{f(z)}, where by support we mean the
set of points where the function is non-zero. Therefore, if
we knew hul(¥) a priori, we would insist that any estimate
of g(t,0) be zero for (t,0) ¢ §. Our approach, instead,
assumes that we have only an estimate of hul(¥) (produced



k perhaps by the methods in [7]), and therefore that g(t,6)
should-be small where (t,6) ¢ §.

II.

Consider the problem, which we refer to as (V), to mini-

o // —(v-9) dtd0+/f kg dt df
-, [ﬂ () 42 (3)] e

subject to the equality constraints given by (2) and (3) and
boundary conditions ¢(T,8) = ¢(~T, 0) = 0 and ¢(t,0) =
g9(—t,x) where &, 8, and ~ are positive constants. Here,
Yor={(t,0)| —-T<t<T,0<8<nx}and Yo is a subset
“of Yr over which (noisy) measurements y are available, and
§=Yr-§.
The first term in I represents a penalty which seeks to
keep the estimate close to the observations. The second
term is a penalty for non-zero values outside the support
- of the Radon transform, and finally, the third term penal-
_izes large derivatives in both the vertical and horizontal
~direction, and is therefore a smoothing term.
A necessary and sufficient condition for g(t,6) to be a
solution to (V) is that is satisfy the following second order
partial differential equation (PDE) [7]

Variational Formulation

(4)

(oo 1 g &g
'(2’°X" + EX")Q T o M5
1
2Xvy = M(0) - X (0)t  (5)

and the additional boundary condition dg(t,0)/dt
8g(—t,m)/dt, where Xz and Xy are the indicator func-
tions for § and Yo, respectively. In addition, g(¢,6) must
. satisfy the. original constraints and boundary conditions.
It is important to note that (5) contains three unknown
functions: ¢(t,8), and two Lagrange multiplier functions
A1(8) and A;(6) (one for each constraint).

: The numerical solution to (5), which we describe be-
low, is found on a discrete lattice system in Yr. It turns
“out that this solution, which seeks of a finite number of
variables denoted by the vector g, is ezactly the maximum
a posteriori (MAP) estimate of g, when g is described
by a certain Markov random field prior probability, and
when the noise is given by additive independent, zero-mean
Gaussian random variables with variance o? [7].

IV Local Relaxation Algorithm

To solve (5) we must find both g(t,) and the two Lagrange
- multiplier functions, A;(6) and A;(f), so that the PDE itself
- is satisfied and the mass and center of mass constraints are
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satisfied as well. Since for fized A;(6) and );(6), the PDE
is elliptic in g(t,8), we may solve it numerically on a dis-
crete lattice system. This suggests a primal-dual approach
where we solve the PDE in the primal stage for fixed ),
and Ay, followed by a dual stage which updates \; and Az
We use a very efficient local relaxation algorithm (which
may be implemented in parallel) due to Kuo et. al. 8] to
solve the PDE in the primal phase, and a simple Lagrange
multiplier update stage (see [9]). Fortunately, the value
of the final Lagrange multipliers may often be estimated
to high accuracy. before beginning the iteration, which
speeds up converegence dramatically [7). We summarize
the algorithm below.

Local Relaxation Algorithm:

. Estimate final Lagrange multipliers A{(8) and 3(4).
. Set A3(6) = X1(8) and X3(9) = 33(6).

.Set k=1and ¢°=y.

. Solve PDE numerically to yield gk,

. Does g* satisfy the constraints?

SO W N

. If not, update Lagrange multipliers according to
Mia m—/Tg"(t,ﬂ)dt

T
Mta (0 - /_T tg*(t,8) dt)

Setk<—k+1andgoto4. :

ALF(0)

1

0

7. Otherwise, we are done and § = g*.

This algorithm Converges to the globally eptimum so-
lution provided that « is chosen small enough [9].

V. Experimental Results

In this section, we present the results of two experiments,
designed to show the overall performance of the algorithm
on a limited-angle case and on a sparse-angle case. The
object that is used in these simulations is an ellipse with
the letters M I T in its interior, shown in Fig. 1 using an
81 by 81 discretization. -Fig. 2 shows a noisy sinogram
(SNR=10.0dB), consisting of 81 rows (sampling t) and
60 columns (sampling ), created by adding independent
samples of zero-mean Gaussian noise with variance o? to
each element of the true sinogram (not shown).

Fig. 3 shows an objéctf reconstruction using convolu-
tion backprojection (CBP) in which only the first 40 of
60 (leftmost) projections of the sinogram in Fig. 2 were
used. A reconstruction obtained after processing using the
local relaxation MAP algorithm described in Section IV is
shown in Fig. 4. In this case, the support § and the mass
m of the Radon tranform were estimated using methods
described in {7] and [10], while the center of mass was



Fig. 1. Original MIT ellipse.

(correctly) assumed to be zero. The coefficients «, v, and
B were set to 5.0, 0.05, and 0.01, respectively.

Fig. 5 shows an object reconstruction using convolution
backprojection (CBP) in which only 10 evenly spaced pro-
jections of the sinogram in Fig. 2 were used. A reconstruc-
tion obtained after processing using the same coefficients
as above is shown in Fig. 6.

One can see from these two experiments a dramatic
improvement in the reconstructions. The limited-angle
case shown in Figs. 3 and 4 shows most clearly how sup-
port information — which was estimated from measure-
ments in this case — can improve the definition of the
object boundaries. The sparse-angle case shows consider-
able improvement resulting primarily from the horizontal
smoothing effects and constraints. The intermediate re-
sult (not shown) in each case is a smoothed, interpolated,
and feasible (with respect to the mass and center of mass
constraints) sinogram.

VI.

We have demonstrated in this paper a method based on
estimation principles for reconstructing images from their
noisy and limited-angle or sparse-angle Radon transforms.
We have shown that including certain types of prior knowl-
edge can lead to improved reconstruction over convolu-
tion back-projection applied directly to the measurements.
A hierarchical algorithm described in [7], however, al-
lows much of this information to be estimated in previ-
ous stages; therefore, the method is largely self-contained.
Many extensions to this work are possible. One extension

Discussion
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Fig. 2. 10dB sinogram of MIT ellipse.

which we have explored in [7] is to incorporate more than
just two of the constraints inherent to the Radon trans-
form.
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Fig. 3. Limited-angle reconstruction using CBP.

Fig. 4. Limited-angle reconstruction after processing.

Fig. 5. Sparse-angle reconstruction using CBP.
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Fig. 6. Sparse-angle reconstruction after processing.
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