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Abstract

We present a projection-space approach for reconstruction from
projections. This approach uses the known convex support of the
object both as a penalty term in a variational problem defined
in projection-space and as a guide to the specification of optimal
smoothing coefficients that may vary spatially. Partial consis-
tency of the sinogram is provided by including mass and center-
of mass constraints in the variational formulation. We provide
an outline of the general approach and calculations for a specific
example. Computer simulations are provided for evaluation of
the performance in this special case.

1. Introduction

In many tomography applications, measured projections may be
noisy or incomplete or both [1]. In these cases, the already ill-
posed reconstruction problem becomes even worse, and regular-
ization must be used [2]. Regularization, or imposition of prior
knowledge, is used to provide either a unique solution, or at
least one that meets all the constraints implied by the available
prior knowledge. In this paper, we examine two commonly used
constraints: 1) that the projections must be consistent with some
object and 2) that the object lies within a known convex region
of support. We also assume the object to be reasonably constant
over its convex support, although other assumptions about the
object profile may be made also.

The requirement of consistent projections has been dealt
with in two ways in the past. In the first approach, one has in
hand a method to perform the forward problem on test objects
— i.e., reprojection — and seeks objects whose reprojections
match the data in some defined sense. In the second, one uses
a mathematical statement of consistent projections and seeks
projections that are mathematically consistent. The object is
then reconstructed using ordinary methods such as convolution
backprojection, the Fourier method, or algebraic reconstruction
techniques [3,4]. The former approach is an iteration-between-
spaces approach while the latter is a projection-space approach.

Iteration-between-spaces approaches have the advantage
that constraints and other information may be applied in either
domain (object or projection) with ease, with the disadvantage
that optimality in the object domain is difficult to maintain
since the noise structure is quite complicated. Furthermore, as
the iteration proceeds numerical error (in reprojection) often

increases. Projection-space approaches have the disadvantage
that it is difficult to apply information about the object in the
projection space, but the advantage that the noise structure is
easily defined and thus optimality is guaranteed.

In previous work [5,6] we have reported a projection-space
approach which applies information about the convex support
of the object, consistency of projections, and smoothness of
sinograms! as regularization. The approach solves a variational
problem defined on sinograms which results in a partial differ-
ential equation (PDE) that is solved numerically. It was shown
that the numerical solution of this problem is equivalent to that
which would solve a maximum a posteriori (MAP) estimation
problem for sinograms that are characterized a priori by a cer-
tain Markov random field (MRF) [6].

In this paper, we show that by slightly increasing the gen-
erality of the variational objective function, we can specify a
variational formulation (and hence an implied Markov random
field model) which has a specific object as its most likely prior
object. We solve this problem for the special case of the disk of
radius R with constant value in the interior. Computer simula-
tions are shown for this special case and we provide a discussion
of the more general approach to arbitrary convex objects.

II. Projection-Space Approach
The 2-D Radon transform of an object f(z) is given by

9(,0) = /zem f(2)8(t — w-z) dz, o

where w = (cos#, sin §) is the unit vector orthogonal to the lines
of integration and () is the Dirac delta function. Viewed as a
function of ¢ for fixed 8, g(t,0) is called a projection of f(z).

The 2-D Radon transform obeys the periodicity condition
g(—t,8) = g(t,0 + 7) and the integral constraints

/::g(t,0) dt

- i tdt
_ g())

B, (2)

¢(9), (3)

where ¢(0) = acosf + bsinf for some real numbers a and b.
These two equations are known as the mass and center-of-mass

! A sinogram is an image of the projections.

CH2872-0/90/0000-0543 © $1.00 1990 IEEE



constraints, respectively. They describe the two lowest order
consistency conditions prescribed by the Ludwig-Helgason con-
ditions [7,8]. In this paper we consider a sinogram to be con-
sistent if it satisfies these conditions; we also insist on knowing
p and that @ = b = 0. In another paper [5], we describe an
approach that considers higher moments without requiring this
specific prior knowledge.

Restricting our attention to objects f(z) that are zero out-
side a disk of radius T centered at the origin, we see that
g(t,0) = 0 for [t| > T. Hence, a 2-D Radon transform is
completely characterized by the values of g(t, 8) over the domain
Y={@1,0)| —-T<t<T,0<80<x} Wecall Y the sinogram
domain, and an image of g(t,8) over this domain is called a
ginogram.

Measurements are given by y(t,6) = g(t,0) + w(t,8) where
w(t,8) is a zero-mean white Gaussian random process with noise
intensity 2. The measurements are presumed to be available
only over a subset of projections Y, C Y. We then define the
sinogram estimate to be the sinogram that minimizes

= A 2
I = ffyaw(y 9 dtd€+//gfcg dt do

+ //y [ﬁ(t,s) (g—i)z+7(t,a) (%)z] dtds,

subject to the equality constraints
T
[

1 T
- t,0)tdt.
”/_Ty( )

(1)

Jp =u= g(t,0)dt, and

J2

1l
<)

(5)
In addition, the boundary conditions

9(T,6) 9(-T,0)=0 and

9(2,0) 9(-t,7) (6)

must also be satisfied. In (4) the region § over which the
second integral is taken is the complement of the region § in
the sinogram, which corresponds to the convex support of the
object. This term allows one to include information pertaining
to the convex support of the object directly in projection-space.

The difference between this formulation and that given in
[5] and [6] is that here, the positive coefficients multiplying the

Il

squares of the two partial derivatives of g(t,8) are allowed to
vary with ¢ and 4. In the previous work, these coefficients
were constant and this was justified on the heuristic grounds
that objects tend to have line integrals that are nearly the same
when displaced either in lateral position or rotational angle. In
the following section we present an approach to the selection of
B(t,0) and ~(t,0) that has a precise definition, although it may
be difficult to solve in the general case.

III. Inverse Variational Problem

If one knows the convex support of the object, this information
can be directly included in the variational formulation described
above. However, it is reasonable that this information should
also affect how one selects the smoothing coefficients (¢, #) and
B(t,0). In this section we explore the criterion that these coeffi-
cients should be chosen so that a particular specified object has
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a sinogram that minimizes I with Y, = @, subject to the given
equality constraints and a new boundary condition provided
by the convex support. We will develop the general approach,
calculate a specific example, and present results to demonstrate
the performance on a simulated object for this special case.

As a specific example of our approach, suppose that within
the convex support of the object we expect (a priori) that the
object will be reasonably constant. We now seek 7(t,4) and
B(t,8) so that the sinogram g*(¢,8) of this constant object min-
imizes I in the absence of observations, and with the boundary
conditions such that g(¢,8) = O when (t,8) € §. The second
integral of I is zero since g*(t,8) = 0 when (t,0) € §. Therefore,
the goal is to find ~(¢,6) > 0 and B(t,8) > O such that g*(t,0)
minimizes

L= /fy [ﬂ(t, 9) (g—f)z +1(t,6) (—g—%)z} dtdf (7

subject also to the constraints in (5) and the new boundary
condition provided by §. We refer to this variational problem
as (V2).

It is tempting at this point to set g(¢,8) = g*(¢,6) and find
~4(t,0) and B(t,8) that minimize Iz, but this is wrong. We really
face an inverse problem here, that of deducing what coefficients
in the variational problem would give rise to the stationary
function g*(t,8). We proceed by finding the necessary conditions
for g(t,0) to minimize (or maximize) I and then substitute

in g*(¢,0) to see what equation S(t,0) and «(t,8) must satisfy.
There is no reason to expect a unique answer, although the form
of the variational problem does restrict the class of solutions
dramatically.

The General Case

In the general case, the stationary function g(¢, ) must satisfy
the Euler-Lagrange equation (cf. [9])

2 126(6,0)0:t,0)]+ 55 222, )as(2,0)] - 2a(6)~Ma(0)t = O (8)

where g¢(t,6) and g4(t, 6) denote the partial derivatives of g(t, §)
with respect to ¢ and 8, respectively. The two functions A;(6)
and Az(f) are unknown Lagrange multipliers, corresponding to
the two constraints, which may vary with 6, in general. After
substituting g*(¢,8) for g(t,0) in (8), we find that the resulting
equation is a first order PDE in both f3(t,6) and +(t,6) and can
be solved by any number of techniques, analytically or numer-
ically. We do not explore the general case any further in this
paper, but instead focus on a specific case which we can easily
solve and contrast to the case of constant 4(t,8) and (¢, 4).

A Specific Case

Suppose the convex support is a disk of radius R centered at
the origin, and suppose that the true object is expected to be
reasonably constant in the interior and has mass y. We now find
B(t,0) and ~(t,0) so that the object that is ezactly constant on
this disk, has mass u, and is zero outside the disk has a sinogram
which is a stationary function of (V'2).

Because of the rotational symmetry g*(t, #) does not depend
on 6, and since the boundary conditions are periodic in §, we may
select 4(t,8) = 70, a constant. Also, since g}(t,8) = 0, and X;(f)



and A;(f) do not depend on § in this case, the Euler-Lagrange
equation now depends only on the variable ¢. To simplify the
following we rewrite the Euler-Lagrange equation as

2 eB@a(®) - M~ dat =0. (©)

Then, after integrating and rearranging, we find that

2X1 + Agt2 +2C
)=

where C is a constant of integration.
The disk of radius R centered at the origin with mass u has
the projection (at any angle)

% ETa
——VR?-12 —R<t<R
g*(t)={ R sts

0
Considering on the region of convex support |t| < R, taking
the derivative, and substituting the result into (10), yields after
simplification

(10)

(11)

otherwise

TR?

B(t) = R? -2 (2/\1 + At + ?) . (12)
Since B(t) must be nonnegative for ¢t € [~ R, R| it must be true

that A; = C = 0. Setting A\; = ~4fou/xR3 (which is arbitrary)

yields
At = %\/R2 -, (13)

which turns out to be proportional to the projection g*(t). How-
ever, this is a coincidence and not the general rule as we see in
the following development.

The Constant Coefficient Case

We now have that the constant disk of radius R, centered at the
origin and with mass u, has a sinogram which is a stationary
function of the variational problem (V2) for 4(t,0) constant
and B(t,0) as in (13). A natural question to ask is what is
the sinogram that solves (V2) when both 7(t,8) and 8(t,8) are
constant, as was the case in previous work we have done [5,6].

Proceeding as above, we see that a constant (¢, §) together
with periodic boundaries in # assures a solution that has the
same projection at all angles and is an even function of ¢. How-
ever, the boundary condition g(7,0) = ¢(—T,0) = 0 together
with the mass constraint and center-of-mass constraints will not
generate the projection of a constant object over the disk of
radius T centered at the origin. In fact, solving the forward
variational problem produces the projection

2
(‘ -(z) ) -
The two projections (11) and (14) are compared in Fig. 1
for T = R = p = 1. The solid line shows (11) and the dashed

_

9() = 7 (14)

curve shows (14). One can see by contrasting these projections
that the optimal object for 8(t,8) and ~(t,8) constant has larger
magnitude at the origin than near the boundary of the disk. In-
tuitively, the reason for this is that the constant coefficient model
smooths across the boundary, which is set to zero. On the other
hand, the varying coefficient model has a smoothing coefficient
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Fig. 1. Optimum prior projections for different variational
formulations.
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Fig. 2. (a) Disk object with radius 0.5 and value 1.0. (b)
Reconstruction from a 15.0dB noisy sinogram using CBP.

which goes to zero as it hits the boundary, and therefore does
not smooth across it.

In the general case this property of the derived coefficients
should become important. For example, given a known convex
support, we can force the estimated sinogram to be zero outside
this region by setting x in (4) to be large. However, if one uses
constant coefficients, the boundaries will tend to be blurred and
the values near the boundaries will be low. In contrast, the
derived coefficients effectively decouple the object values from
the boundary values. We demonstrate this effect in simulations
in the following section.

Iv.

The disk object shown in Fig. 2a has radius B = 0.75, value 1.0,
and is centered at the origin. Eleven smaller disks of radii 0.1
and 0.06 are removed from its interior. The object is shown, as
are all objects in this paper, using an 81 by 81 pixel image. We
obtain 60 true projections evenly spaced in angle with 81 values
per projections, also uniformly spaced. Pseudorandom indepen-
dent zero-mean Gaussian noise is added to each line-integral so
the effective signal-to-noise ratio (SNR) is 15.0 dB. A straight
reconstruction from this data using convolution backprojection
(CBP) is shown in Fig. 2b.

Simulation Results



Using the noisy sinogram data, we solve the Euler-Lagrange
equation of (8) numerically (see [5]) for the two cases

Case 1:  p(t,0) = fo,
Case 2: f(t,0)= %9\/ R -2,

Correct support information is used in all simulations with K =
10,000, Bo = 0.1, and 7o = 0.2. The mass and noise variance
were estimated from the data in all cases, however, the center-
of-mass was simply presumed to be at the origin (which it isin
this case).

Fig. 3 shows the reconstructed images for the two cases,
and Fig. 4 shows horizontal and vertical profiles of each of the

(18)
(16)

resulting images, together with the true profile. One can see
in Fig. 3 evidence that the boundary of the object is crisper
for Case 2, as we would expect from our development, and we
can verify this in the profiles of Fig. 4. The profiles also show
the smoothing effect of Case 1 actually propagates well into the
object, creating a loss of contrast in the internal features as well.

One disadvantage to the spatially varying coefficients of Case
2 is evident from these experiments. In Fig. 3 one can see that a
bright noise spike near the boundary of the object in one of the
projections appears as an arc in the image. This is because the
spike does not get smoothed much in the ¢ direction since the
vertical smoothing coefficient ((t,8) is approaching zero; the
horizontal coefficient is still the same, however, giving rise to
this arc. The very fact that we allow the projections to change
more rapidly near the disk boundaries to accommodate the more
rapidly changing disk shape allows them to also change more
rapidly in the event of a noise spike.

V. Discussion

We have described an approach to object modeling in the sino-
gram domain which leads to a projection-space procedure for
object reconstruction. It is based on knowledge of the convex
support of the object and a prior estimate of the object’s values
within its convex support. The convex support was required to
specify boundary conditions in the variational formulation while
the prior estimate served to generate a sinogram which serves
as a minimizer of a variational formulation devoid of measure-
ments. Consistency of the sinogram is assured up to the first
two moments of the Ludwig-Helgason conditions, although other
methods are available to increase the order without requiring
additional prior information. The simulation results are con-
sistent with our expectation — that objects may be estimated
with less boundary smoothing — but the effects of noise near the
boundaries may overwhelm this benefit, requiring a compromise.
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