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ABSTRACT

In this paper we present a method that simultane-
ously identifies the central layer of the human cortex
and maps it onto the interval [0,1] of the real axis.
Statistical and geometric information is incorporated
into a global variational problem, whose solution is ob-
tained iteratively. The method is evaluated on a set of
magnetic resonance (MR) images, acquired with a pro-
tocol that optimizes the contrast between the cortical
grey matter and the underlying white matter.

INTRODUCTION

Since the advent of outstanding anatomical and
functional imaging methods, such as magnetic reso-
nance imaging and positron emission tomography
(PET), respectively, interest in the development of a
map of the human cortical surface has sharply increased
for several reasons. First, a large amount of anatom-
ical information that has been published for several
decades in the neurophysiology literature can be placed
in a common reference frame: the mapped surface.
Second, superposition of functional information that is
extracted from PET or magnetoencephalography data
can be superimposed on the map, revealing interrela-
tions of the brain functions. Third, geodesic and area
measurements on the cortical surface are made possi-
ble. Finally, this map is expected to become part of a
diagnostic tool for brain abnormalities.

Various segmentation techniques have been devel-
oped in the past; however, none of them is suitable to
our problem. Popular techniques like statistical seg-
mentation, relaxation labeling, Markov random fields
or region growing, can successfully yield a set of points
which belong to the cortex; but they don’t provide a
map. Previous attempts to map the cortical surface
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suffer from either the need for strong human interven-
tion [1], or the requirement of a triangularization of
the surface [2], which assumes that we already have a
reconstructed surface and a (non-regular) grid on it.

In contrast to these methods, we pose a global opti-
mization problem and solve it numerically, minimizing
human intervention. We show that under certain con-
ditions this problem has a unique solution and that our
iterative solution converges to it. Our current results
apply only to the mapping of the contours of the cross-
sections of the cortex. However, the algorithm can be
easily extended to the three dimensional case, in which
the cortical surface is mapped to the unit square.

VARIATIONAL FORMULATION

Our approach is a variational approach which takes
into consideration the geometry of the cortex. In par-
ticular, we model the cortex as a thick sheet that is
“sandwiched” between cerebrospinal fluid and white
matter (see Fig. 1). We also assume that its thickness

Figure 1: An MR image of a cross-section of the human
brain.

is relatively uniform and its statistics are known and
are distinct from those of the other tissues present in
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the brain. Given these statistics, we define the corti-
cal mass function to be the posterior probability that
an image point belongs to the grey matter given the
image intensity I(z, y):

m(z,y) = Pr(z,y)€ GM|I(z,y)] (1)
— _f(I(::, y)l(z, y) € GM)P"{GM](Z)
fI(=z,y))
3
FI(z9) = Y f(I(=zu)Ix)Pr(x) (3)
i=1

with {1, Az, \s}={GM, WM, BG}, and GM, WM, BG
denoting the grey matter, white matter and background
respectively. The conditional distributions f(I(z, y)[A;)
are assumed to be Gaussian. We define the exact so-

lution to the contour reconstruction problem to be the

central layer of this cortical mass. Incorporating this

geometric model into a variational formulation, we in-

troduce an energy functional that forces the contour

points to balance whenever they sit on the center of

cortical mass within a circular neighborhood around

them. We also introduce a regularization term, inher-

ent to inverse problems of this kind, which reduces the

effects of noise and large voxel size by favoring curves

which are smooth and can elastically deform. This reg-

ularization term favors a solution in which the points

are equidistantly distributed along the curve, which in

turn yields an isometric mapping of the curve to the

unit interval.

We formally state the problem as follows. Let F C
IR? be the image of the curve to be reconstructed and
N be a circular néighborhood of radius R around the
point (z,y) € F. We identify (c.(z, ), ¢y(z,y)) as the
center of the cortical mass included in A, as shown in
Fig. 2. We seck a map M : [0,1] — IR? which maps

Figure 2: The mass and center of mass functions

the point s € [0,1] to M(s) = (z(s),y(s)) € F and
define our estimate of this mapping by the following
minimization problem:
(2(s), 9(s)) = argmin€ = argminp + £5  (4)
v

¥y

tr= [[e-ail + @-a@0)l]d (5

wen [ @] o

subject to the boundary conditions:
z(0)=a , 2(1)=8, y0)=7 , y1)=6 (7)

For simplicity we have set z = z(s), y = y(s). The &p
term forces the points of the curve to follow the center
of the mass that is within their neighborhood, while
the &g term forces them to be uniformly distributed
along the curve. From now on we will refer to the
above variational problem as (CVP).

The solution to (CVP) must satisfy the (necessary)
Euler equations, given by

@-e)(1-52) (- B2 -5 L2 20 )

o-a)(1-52) G- 2 -xE 0 9

In addition, the boundary conditions specify the end
points of the curve.

The above formulation yields a curve that behaves
like a snake [3]. It deforms under the presence of exter-
nal and internal forces; the former leading the curve to-
wards the central layer of the cortical surface contours,
the latter maintaining its elastic behavior. This elastic
behavior is necessary in order for the curve not to cross
itself and to be as isometric as possible. These forces
are the physical equivalent of the Euler equations (8)
and (9), which imply that the total sum of the forces
applied on each point has to be equal to zero at a min-
imum energy curve. The deformations of the curve are
the physical equivalent of the iterative method, which
we apply in order to solve equations (8) and (9), as
discussed in the next section.

NUMERICAL SOLUTION

To solve (CVP) numerically, we discretize the curve,
sampling it with N + 1 points. Let (2o, %0), (£1,¥1),
<oy (ZN, yn) be the samples of the curve and

d= (21,23, ey TN=1, Y1) ¥3) oous yv-1)-
The discrete form of the Euler equations is then:

E,N*Ad + ¢(d) = K,N*b (10)
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where

N-1
®(d)= ) (2 ~ calzs w))* + (% — o (21, ))?]

= (11)
¢(d) = V@(d)l

b ={q,0,..,,0,8,7,9,...,0,6]T,
and A is a block tridiagonal matrix.

We solve (10) using the Gauss-Seidel iterative
method, after precalculating the mass and center of
mass functions for the whole image, which drastically
decreases the computational time.

CONVERGENCE

Any solution to the discrete Euler equations (10) may
be either a local or global minimum, depending on both
the geometry of the cortex and the regularization con-
stant K,. However, if the energy function, which in
discrete form is

&(d) = K,N3(dTAd — 2b7d) + 28(d) (12)

is locally convex and the curve is placed sufficiently
close to the global minimum, then the iterative pro-
cess will converge to it. The following theorem gives
a condition under which the problem is guaranteed to
have a unique solution.

Theorem: Let Dy, be the mazimum distance of
the curve from the cortical mass. If Dnax < R (the
neighborhood size), and the regularization constant K,
is chosen such that

2min{nin{k;,i=1,..,N -1}
- 13
Ka > Nz)‘min ( )

then the energy function is convez and, hence, any so-
lution to the Euler equations is a global minimum. In
(13), Amin is the minimum eigenvalue of the matriz
A, n; is the distance of point (=i, %) from the cen-
ter of mass included in its neighborhood, and x; is the
curvature of the cortical surface contour near (=i, %)-

EXPERIMENTAL RESULTS

The algorithm was applied to synthetic and real
data and the results are shown in Figs 3a and 3b re-
spectively. From Fig. 3a we can see that the curve
(which is superimposed on the data), captures the ba-
sic structure of the cross section of the synthetic cortex
and balances very close to the central layer of it. An
oversmoothing of the very sharp foldings is present,

(2) (b)
Figure 3: (a) Reconstructed contour of synthetic data.
(b) Reconstructed contour of real data.

Figure 4: A typical case in which the fixed control
point model fails, because the control points are not
close to the curve.

but is not severe. Fig. 3b, however, demonstrates the
inability of the curve to follow the very sharp foldings
of the human cortex. Although the reconstruction of
the outside of the cortex is a successful first step, it
is clear that it is not enough. In the next section we
will see how modifying the algorithm, can drastically
improve the results.

CONTROL POINTS

In order to remedy the oversmoothing problem, we
introduce the notion of the control points. These con-
trol points may be placed to the bottom parts of the
sharp foldings of the brain (called sulci), in order to
attract the curve towards them. However, this model
of the control points, which is similar to the springs
introduced in [3], is inadequate in the case of highly
convoluted contours. In Fig. 4 for example, the curve
is attracted by the wrong control point. In our for-
mulation, we allow the control points to move in con-
Jjunction with the curve, attracting it towards the deep
parts of the sulci. A global attractive force, originating
in the center of the brain, is exerted on each control
point, reflecting the natural tendency of the cortex to
fold towards the inside of the brain. Since the con-
trol points are not allowed to enter the white matter
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(see Fig. 1), they slide along the grey-white matter
interface and balance at the bottom parts of the sulci.

To incorporate this model of moving conirol points
we define m,, as the mass of the white matter that is
included in the neighborhood of the point (z,y). This
mass is a posterior distribution, defined similarly to
m(z,y) in (3). Let (cz0, ¢yo) be the center of the brain
(if the sample is centered during the data acquisition,
we can take the center of the image) and (¢, ¢}’) be
the center of m,,. The position of the control points is

updated in every iteration as follows:
2 = 2' 4 6 (oo — 2) +a(my, )6 (¥ —2)  (14)

¥ =y 46 (g0 —y) ta(mu)s (G —y)  (19)

where ¢ denotes the iteration number, a(m,,) is an in-
creasing function and 4 is a fixed step. This updating
formula forces the control points to move towards the
point (czo,cyo), but when they reach the grey-white
matter interface they slide along it, instead of pene-
trating it.

To incorporate the control points into the global
variational formulation, we modify the energy function
in (4) as follows:

(2(s),9(s)) = arg(xininé' = argéningi'-i-gz +E&cp (16)

K
Ecp =) 1 (17)
k=1
where /; is the minimum distance of the kth control
point from the curve and K is the number of control
points.

Experimental results with control points are demon-
strated in Fig. 5. The reconstruction of the contours
is clearly better. The curve, attracted by the control
points, folds towards the inside of the brain. However,
it is also clear that the final solution doesn’t reflect the
actual structure of the contours in the neighborhood
of some of the sulci.

CONCLUSION

We have developed an algorithm that reconstructs
the cross-sections of the central layer of the cortex,
and maps it onto the unit interval. We formulate a
variational problem which favors solutions that pass
through the central layer of cortex, and have samples
that are uniformly distributed. We have incorporated
two kinds of information into this formulation. The
first is geometric information about the structure of the

Figure 5: Reconstructed contour using control points.

brain. The second is statistical information, derived
from the image.

The algorithm performs satisfactorily in the recon-
struction of the outside of the contour, but it fails to
follow its very sharp foldings. Hence, this formulation
is inadequate for the complexity of the problem, al-
though in the case of smoother contours similar formu-
lations have proved to perform successfully (e.g. [4]).
We have extended it to include an energy term that fa-
vors solutions that include a set of points, called mov-
ing control points. These points travel towards the
inside of the brain, attracting the curve at the same
time, and finally balance at the deep parts of the sulci.

The performance of the algorithm improves dra-
matically with moving control points, but still does
not completely reflect the complexity of the cortical
surface. Future research will focus on the identification
of points that where a folding occurs and the convexity
of the augmented energy function.
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