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Motion Estimation from Tagged MR
Image Sequences

Jerry L. Prince, Member, IEEE, and Elliot R. McVeigh

Abstract—A method to reconstruct motion from sequences of
tagged magnetic resonance (MR) images is presented. MR tagging
is used to create a spatial pattern of varying magnetization so
that objects which may otherwise have constant intensity are
textured, which reduces the motion ambiguity associated with
the aperture problem in computer vision. To compensate for the
decay of the tag pattern, a new optical flow algorithm is developed
and implemented. The resulting estimated velocity field is then
used to recursively update the implied motion reference map over
time, thereby tracking the motion of individual particles. If a
segmentation of the object is known at the time the tag pattern
is created, then an object may be selectively tracked, using the
estimated reference map to update the object’s position as time
progresses. Results are shown for both simulated and actual MR
phantom data.

I. INTRODUCTION

ETAILED measurement of cardiac motion is an impor-
Dtant goal in medical imaging since motion parameters
can be used to indicate abnormal heart function [1]-(3].
In particular, it has been noted that evidence of reduced
transmural strain and left-ventricular torsion may both be
important indicators of myocardial ischemia [4]-[6]. Although
many methods have been proposed to automatically detect
the motion of the epicardium and endocardium using echocar-
diography [7]-[10], motion within the myocardium is much
more difficult to observe in echocardiograms since these
images are dominated by speckle [11]. Transmural motion
is also difficult to observe in standard computed tomography
(CT) and magnetic resonance (MR) images since there is
relatively little image contrast within the myocardium [12], [4].
Thus, the development of new imaging methods to visualize
and measure motion within the myocardium has become an
important goal in cardiac imaging.

The current “gold standards” in cardiac motion imaging
use either implanted metallic (or radiopaque) markers together
with X-ray imaging [13], [14], or implanted sonomicrometers
[15], [16]. While these techniques are very important in cardiac
motion research, they are rarely used clinically because of their
extreme invasiveness. Direct MR velocity imaging, originally
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invented for imaging blood flow [17], has recently yielded
cine velocity images of the heart [18]. However, because of the
extra time required to generate the flow-compensation gradient
pulses, these images tend to be very sensitive to higher order
motion components (such as acceleration) which are prevalent
in the heart. Thus, although faster gradient coils will improve
this situation in the future, direct velocity images of the heart
are currently quite noisy and full of artifacts, especially in
oblique planes (which are required for short-axis ventricular
images).

MR tagging has recently been introduced for cardiac motion
imaging [19]-[21]. In MR tagging, a spatially varying pattern
of longitudinal magnetization is encoded in the body prior
to each phase-encoded data acquisition cycle of a spin-echo
imaging sequence. This pattern is revealed in the complete
image as a texture or pattern in the tissue; motion occurring
between the tag pulse sequence and the image pulse sequence
results in a distortion of the tag pattern. Methods to analyze the
motion of the tag pattern have been reported in the literature
[22], [23]. These methods, however, match points between
images, and therefore give relatively sparse information. In
contrast, in this paper we describe an approach based on the
methods of optical flow, which provides a motion estimate for
each pixel within the image.

Optical flow (OF) is a method for analyzing the motion of
pixels between image pairs [24]. It is based on a differential
analysis of the images—requiring estimates of both the spa-
tial gradient and spatial time derivative at each pixel—and
requires regularization to produce a unique solution. In the
approach of Horn and Schunk [24], which we follow closely
in this paper, this regularization is provided using a variational
approach that includes smoothness of the velocity field as a
priori knowledge. Application of OF methods to MR tagged
images requires an additional modification, however. Since the
tag pattern fades away in time (see Section II) the standard
assumption used in OF —that the material time derivative of
all points within the field-of-view is zero—is violated. Hence,
our OF method, which we call variable brightness optical flow
(VBOF) uses the MR imaging equation for tagged images to
provide an estimate of the material time derivative, which can
be used for optical flow calculations using a slight modification
of the standard OF approach.

Because MR tagging creates patterns within the tissue,
VBOF can be used to track motion within relatively ho-
mogeneous regions such as the myocardium. Thus, motion
that may be completely invisible (such as the rotation of
a homogeneous disk) can be imaged by this approach. The
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problem of measuring motion so obscured has been called the
aperture problem in the computer vision literature [25], and
has been a frequently cited reason against using optical flow in
motion analysis from image sequences. Approaches that have
used optical flow methods using standard medical imaging
modalities where large regions of relatively homogeneous
brightness—CT [26] and ultrasound [11]—have been limited
by the aperture problem. In fact, the motion of the interior
portions of the muscle must be largely inferred from the
motion of the nearest walls. Thus, although it is not shown
in these papers, it is likely that the rotational component of
motion is completely missing. In our approach, however, such
global aperture problems are eliminated; only local ambiguity
remains (see [25]), and this we have in common with all optical
flow methods.

This paper is organized as follows. In Section II we provide
models for the MR tagging process and for motion, and in
Section Il we develop the optical flow and motion-tracking
algorithms. Section IV presents experimental results for com-
puter simulations and actual MR data, and Section V provides
a conclusion. Parts of this work have been previously reported
in conference papers [27]-[29]; this paper, however, contains
a complete discourse and presents new results.

II. MR TAGGING AND MOTION MODELS

Tagged MR images of a slice of the heart at a particular
cardiac phase can be obtained using electrocardiographic gat-
ing [19]. A timing diagram showing the sequence of events
required to obtain the tagged MR images used in this paper
is shown in Fig. 1. This pulse sequence is described in detail
in Section IV and in Appendixes A and B. At end-diastole
(just before contraction starts), the tissues are tagged by
selectively tipping the resting spins through angles varying
between 0 and 180° in a specific spatial pattern. During one
cardiac cycle, a single phase-encoding of a standard spin-echo
image is taken. This two-step procedure—a tagging pulse
sequence followed by an imaging pulse sequence —is repeated
in subsequent cardiac cycles until all the phase-encodings
have been obtained. Full 3-D time-sequences are obtained by
acquiring different slices using various time intervals between
the tagging pulse-sequence and the imaging pulse-sequence.

Each point p in the body possesses three parameters that
are significant to MR imaging: the longitudinal relaxation
time T, the transverse relaxation time Th, and the spin
density Do. The pixel intensities within tagged MR images,
however, are determined not only by tissue parameters, but
also by the initial spatial tag pattern and the motion that
occurs between the time the tag pattern is created and the
time the image is taken. We assume that the cardiac cycle is
perfectly repeating and that as the tissue moves in time, its MR
parameters do not change. Therefore, a collection of images
obtained over many cardiac cycles by electrocardiographic
gating can be viewed as having been obtained in one cardiac
cycle (except that the effects of Tr must be taken into
account in the development of the imaging equation). Also,
a particle having a unique intensity could, in theory, be
tracked through successive images. Unfortunately, without
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Fig. 1. A pulse-sequence timing diagram for obtaining tagged MR images.
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tagging, tissues within the myocardium have nearly the same
intensity; consequently, tracking motion in this case does not
permit both accurate and high-resolution motion estimates. MR
tagging, however, allows the introduction of spatial gradients
where none may otherwise exist, and both high-resolution and
accurate estimates become possible. To capture the behavior
of the combined effect of tagging and motion, we introduce
a mathematical model of motion taken from the theory of
continuum mechanics [30] and a phenomenological model of
MR imaging derived using the Bloch equation [31].

A motion, as shown in Fig. 2, is a mapping which takes
points in the body, called material points, and specifies where
these points move in time. We write r = r(p, ) to indicate
that material point p has moved to spatial coordinate r at time
t; and taking end-diastole to be ¢t = 0, we set p = r(p,0),
for all p. There exists an inverse mapping called the reference
map which gives the material point for each spatial coordinate
at any given time (see Fig. 2). Here, we write p = p(r,t).
Our overall goal is to track the motion of myocardial tissues;
determining r(p, t) for all points p which fall within the my-
ocardium is an equivalent mathematical statement of this goal.
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A tag pulse-sequence, initiated at ¢ = 0, tips the magne-
tization vectors between 0 and 180° in a prespecified spatial
pattern. A spoiler (or crusher) gradient is then used to dephase
the magnetization vectors, eliminating any significant signal
from the initial pulses. The effect of the tagging is to spatially
modulate the magnetization, which partially determines the
intensities in a spin-echo image—but this effect is transient
since it decays with T;. Using the Bloch equation and the
assumption that 7o <« T, the spin-echo image brightness
function % (r,t) is the sum of an untagged image vo(r.t)
and an image 7 (r,t) which is due solely to the tag pulse-
sequence (see Appendix A):

(. t) = o(r.t) + r(r.t) &
where
do(r,1) = Do(p)e™ T/ (1 — e TR/TP)) - (2a)
vr(r.t) = Do(p)e”"E/ P (g(p) - 1)
: (e—t/mp) - e—TRm(p))’ (2b)

In these equations the material point p is defined by the
reference map as p = p(r,t) and the function £(p), which we
call the spatial tag pattern, is equal to the cosine of the tip-
angle at p required to produce the pattern. In the development
presented here, we assume a maximum tip-angle of 90° so that
&(p) is always in the range of 0 to 1. Generation of a specific
tagging pattern is discussed in Section IV and in Appendix B.

We refer to (1) as the MR imaging equation. It describes
the change in image brightness over time as a function of the
MR parameters, the motion, and the initial tag pattern. The
correct way to interpret (1) is as follows. The coordinates
of an arbitrary pixel within an image represent the spatial
coordinate r. If the reference map p(r,t) were known (or
estimated), then the material point p that resides at r at time
t is also known (or estimated). Then using (1), the brightness
of this point is known and more importantly for our purposes
in the following section the time rate of change of brightness
of that point is also known. A key assumption to being able
to use this equation in this way is that both the tag pattern
and the MR parameters—that is, T, T5, and Dy—over the
entire field of view at end-diastole must be known. Since we
generate the tag pattern ourselves through a tagging pulse-
sequence, we know the pattern. Similarly, in the simulation
studies and the phantom experiment in this paper we use
known and measured MR parameters, respectively. In more
general studies, however, such as in vivo cardiac studies, we
will have to either measure the MR parameters over the entire
end-diastole image (a daunting prospect, at best), measure the
parameters over a portion of the myocardium and assume
that they are constant over the entire myocardium, or simply
assume constant MR parameters that are typical across a large
population. The consequences of measuring or approximating
the MR parameters must be considered for in vivo studies, but
is not of primary concern in this paper.
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III. METHODS

A. Variable Brightness Optical Flow

Optical flow algorithms use differential techniques to esti-
mate a velocity vector for each point in an image given two
images of a scene at different times [24]. Let the partial deriva-
tive of brightness holding p constant—that is, the material
time derivative of brightness—be denoted by w(r,t). Then
the chain rule for differentiation gives [30]

P(r,t) = Vp(r.t) - V(r,t) + ¢u(r,t) 3)

where ,(r,t) is the spatial time derivative of brightness
(which is the partial derivative of brightness holding r con-
stant), Ve(r. t) is the spatial brightness gradient, and V(r,)
is the spatial velocity field, which we are trying to determine.

In standard optical flow, ¥(r, t) is assumed to be zero, which
implies that as points move through space their brightness
remains constant. This assumption is not true in tagged MR
images since the brightness component ¢r(r(p,t),t) may
change in time when p is held constant. Equation (3) may be
put in the form of a standard optical flow equation, however,
by defining

P(r.t) = P(rt) — P(r.t), 4)

which leads to the following variable brightness optical flow
equation:

0= V(r,t) - V(r.t) + d(r.t). 5)

If, at a given pixel, V4 and + are measured or estimated
(described below), then (5) gives a single equation, which is
linear in V. Since V is a two or three dimensional vector,
however, the system is underdetermined, which implies that
an infinite number of feasible solutions exist. Therefore, some
type of regularization must be used in order to guarantee a
unique solution.

The optical flow approach due to Horn and Schunk [24],
regularizes the problem by assuming that the velocity field is
smooth. We now briefly review this approach and note that
the only difference between our approach and the original
is that we use 1 instead of 1,. Dropping from our notation
the explicit spatial dependence and time dependence of the
various functions and letting r = (x,y), the spatial velocity
field V = (u,v) is selected to minimize'

I=a? // (ue)? + (uy)® + (v2)* + (vy)° de dy
+// (d)zu-#wyv-l—d)dedy 6)

where the = and y subscripts denote partial derivatives in the
z and y directions, respectively. The regularization coefficient
o? provides a tradeoff between the amount of noise in the
calculations of the gradient and time derivatives and the
expected smoothness of the velocity field. Rougee, Levy, and
Willsky [32] make the selection of o? a rigorous consequence

I'We note that, although at this point we restrict our development to two

dimensions, everything presented in this paper may be easily extended to three
dimensions.
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of having modeled both the noise and the velocity as Brownian
processes on the plane. In our work, o? is chosen empirically.

In order to minimize (6) V must satisfy the coupled partial
differential equations [24]

V2u = = (6 ko)
Vi = -(3—2 Wy (1]; + Pru+ ¢yv>

(72)
(7b)

where V? is the Laplacian operator. To estimate V we first
estimate Vi = (5, vy) and ¢, using simple local derivative
approximations (see Appendix C). The material derivative P is
found using an estimate of the reference map to determine the
material point p for each spatial point r and then differentiating
(1) with respect to ¢, yielding

_M — ~Tg/T2(P) ,—t/T1(P)
2B ) - e TP )

where p = p(r,t), an estimate of the reference map (see next
section). Finally, we solve (7a) and (7b) numerically using
the local relaxation algorithm described in Kuo ef al. [33],
described for this application in Appendix C. We call this
approach variable brightness optical flow (VBOF).

p(r.t) =

B. Motion Tracking

_ The main difficulty with VBOF is that measurement of
(r. t) requires knowledge of the material derivative of bright-
ness, which in turn requires knowledge of or an estimate
of the reference map of the motion. Clearly, knowing the
reference map is equivalent to knowing the motion; and since
this is what we are trying to find, it appears that there is
an unsolvable dilemma here. We resolve this, however, by
using past optical flow calculations to provide an estimate of
the reference map for the first of two images in the current
optical flow calculation. The VBOF calculation then provides
an estimate of the motion from the first to the second image
and thereby permits an estimate of the reference map for
the second image. This procedure can then be repeated in a
recursive fashion over the full image sequence. We note that
this procedure estimates the motion of points within the body
at each time step and thereby tracks the points in the body.
In VBOF, however, tracking is not simply a byproduct of the
sequence of optical flow calculations; instead it is an inherent
part of VBOF itself, since it is required in order to produce
an estimate of ¢ for input to VBOF.

We now describe our approach to recursive tracking with
VBOF, a block diagram of which is shown in Fig. 3. Assume
that a sequence of images taken at times { = n7, n =0,1,---
is available.? Since by arrangement p = 7(p, 0), the reference
map at t = 0 is just p = p(p,0), the identity map. Hence,
given the first two images in the sequence, we may estimate the
velocity field between them using variable brightness optical
flow as described above, yielding V (r,0) = V(p,0). A simple
estimate of the motion at time 7 is then given by

i(p,7) =p+7V(p,0). )

>The assumption of equal time increments is not necessary, although it
simplifies the discussion.

241

A A
p(r,0) p(r.7) p(r.Nt)
Track Track (... Track ———
A A A
V(r,0) v(r,1) V(r,(N-1)1)
VBOF VBOF VBOF
Image J L Image J L Image J L Tmage
0 1 2 " N

Image Sequence

Fig. 3. Recursive motion tracking using variable brightness optical flow

(VBOF).

Also, the estimated reference map p(r, ) at time ¢t = 7 should
satisfy

p(r,7)=1— TV(;é(r. 7),0). (10)

Now, assume that at time ¢ = n7 reference map estimate
p = (r.n7) is available. To update the estimated reference
map at time £ = (n + 1)7 we begin by estimating the velocity
field V(r,n7) using VBOF with inputs p(r,nt), ¥(r.n7),
and ¢ (r,(n+ 1)7). Solving

fp(re(n+)1)=71r— TV(ép(r, (n+1)7),n7) an

for 6p(r,(n + 1)7) provides an incremental reference map
estimate é’;,(r. (n + 1)7), which describes the (inverse) motion
between images n and n + 1. Then the full reference map is
estimated using

p(r.(n+ 1)7) = p(é})(r. (n+ 1)7’).7n). (12)

In principle (11) and (12) provide the required recursively
updated reference map estimate, the block labeled “Track”
in Fig. 3. This update is computationally burdensome as is
stated, however. The main problem is that solution of (11)
requires knowledge of the displacement leading to a particular
pixel’s coordinates at time (n + 1)7; but we do not have this
since the previous optical flow calculation gives velocities
of the pixels at time n7. If we assume the optical flow
algorithm to be symmetric in time, however, then there is
a computationally straightforward method to estimate the
reference map. Assuming time symmetry implies that given
the same two images an optical flow calculation leading to
V(r,n7) in the forward time direction would produce the
estimate —V (r,(n+ 1)7) in the backwards time direction.
This being the case, it is much more computationally efficient
to estimate the reference map (in the forward direction now)
using

plr.(n+ 1)) = ﬁ(r —7V(r,n7), nT). (13)

This calculation requires only a simple interpolation over
the lattice, which we do using bilinear interpolation (paying
careful attention to the image boundary conditions). Although
we use (13) in the simulations presented below, it is not
equivalent to (12), since VBOF is not time-reversible (although
standard optical flow is time-reversible). This is because our
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estimate of 1/1 applies at the first time only, since this is when
we actually have an available motion estimate.

C. Tracking Objects

The optical flow criterion of (6) imposes a smoothness
condition on the underlying velocity field (see [32]) which may
be undesirable. For example, when an object moves across a
stationary background the velocity field should have a sharp
discontinuity at the object’s boundary. In this case one would
like to allow for such discontinuities as part of the estimation
process. In this section, we present an approach to track objects
through an image sequence given an initial segmentation, and
to “break” the smoothness criterion across object boundaries.

Let I(r,t) € {0,1,2,---,N — 1} be an integer label that
segments the field-of-view into N objects. We assume that an
initial segmentation of the image is available, and is given
by I(p,0). At a later time, the label of an arbitrary point 7 is
estimated using the estimated reference map as

i(r.t) = U(p(r.1).0). (14)
An estimate of the characteristic function of object n at time
t is then given by

S.(t) = {r|i(r,t) - n} (15)

To account for object boundaries, we modify our numerical
methods so that local derivatives—that is, the z, y, and
t partial derivatives—are estimated using only pixels with
common object labels. Since label estimates are available only
for the first of two images in each optical flow calculation, we
assume—and this is a possible source of error, especially at or
around object boundaries—that the same labels exist within
the second image as in the first.

IV. EXPERIMENTAL RESULTS

Three studies are presented; the first two use simulated data
and the third uses phantom data. The first study demonstrates
the performance of variable brightness optical fiow (VBOF) on
image pairs. The second study demonstrates the performance
of VBOF combined with tracking applied to image sequences,
and the third study demonstrates the performance of the
combined algorithm on actual MR data obtained from a
rotating phantom.

In both the simulations and the experiments, the spatial tag
pattern is given by

&(p) = (cos? § — sin” f cos k,p, ) (cos? § — sin” 6 cos kypy ).
(16)

Here, k. and k, are radial spatial frequencies in the = and y
directions, respectively, p = (p;,py), and 6 = &, /2 where
&m € [0,1] is a parameter, which we call the tag modulation
coefficient, controlling the intensity of tag modulation. In
experiments involving changes in the spatial frequency of the
tag pattern, the coordinate frequencies are reported using the
cyclic spatial frequencies f, = k./2m and f, = k,/2~.
The spatial tag pattern in (16) can be generated on an MR
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scanner using a spatially modulated magnetization (SPAMM)
pulse-sequence as follows (see also [20] and Appendix B).
First, a nonselective #-degree RF pulse is generated and
followed immediately by a phasing gradient in the z-direction.
Another non-selective #-degree RF pulse is then generated
and followed with a spoiler pulse to dephase any remaining
transverse magnetization. The integral of the phasing gradient
determines the spatial frequency k.. This procedure is im-
mediately repeated using the y-gradient coil and the resulting
tag pattern is given in (16). In our phantom experiments, we
actually turn on the x and y gradients simultaneously, first with
positive = and y gradients, then with positive z and negative
y gradients, which causes a 45° rotation of the pattern in (16).

Two error criteria are used in the results described below:
average percent velocity error and average tracking error.
Average percent velocity error is used to characterize the
performance of velocity estimation between image pairs using
standard optical flow (SOF) or variable brightness optical flow
(VBOF). Given the true velocity V = (u,v) and an estimate
vV = (%, 0) for a particular pixel, we calculate the percent
error as

%Error = 100 x E <M + IU;Ul) 17
2 u v
where |z] gives the absolute value of x. Only pixels that fall
within the central portion of the rotating ring phantom are used
to calculate the average error that we report. We make this
limitation to avoid known artifacts produced at the boundaries
of the object.
The tracking error, defined in terms of the true motion and
the estimated motion of a particle, is given by

Tracking Error = |jr — 7| (18)

where ||z|| gives the euclidean length of z, r is the actual
motion of p, and 7 is the estimated motion of p. We report
this error in pixels, and again, the average is taken only over
pixels falling within the central portion of the ring. In all
simulations and experiments, the object is labeled and tracked
so that derivatives are not computed across object boundaries
(see Section II-C). Accordingly, a (true) segmentation of the
initial image into the object and its background is provided as
input to each algorithm.

The simulated phantom is a ring centered at the origin with
inner radius 2.5 cm and outer radius 4.5 cm, digitized onto a
150 by 150 pixel image whose side has length 11.7 cm. The
material within the ring has constant 77, 75, and Dy, and the
motion is a pure rotation in the counterclockwise direction with
frequency of rotation f. The spatial tagging pattern is placed
at t = 0 and simulated noise-free images are taken at times
t=nrforn=0,1,---, N —1. A full sequence of 10 images
in which the phantom rotates by approximately 15° is shown
in Fig. 4. Note that for this particular object and motion, the
motion cannot be observed without tagging.

A. Study 1: Optical Flow Performance

1) Effect of Tag Modulation: In this simulation study, we
consider a sequence of just two images and consider the
performance of optical flow velocity estimates for different
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Fig. 4. Proceeding left to right across the top and then the bottom is a
simulated tagged MR image sequence for a rotating ring phantom. Here, the
spatial frequency of the tag pattern is f, = f, = 0.75 cm™?.

Error vs. Tag Modulation

100.0 T T T T

Average Percent Velocity Error

1§

0.0 L I R L R 1
0.00 0.10 0.20 0.30 0.40

0.50

Tag Modulation Coefficient £,

Fig. 5. Optical flow performance as a function of the tag modulation

coefficient.

tag modulation coefficients. Here, we make 7 very large so
that there is no difference between VBOF and SOF. As shown
in Fig. 5, when there is no tag modulation, i.e., &, = 0.0, there
is 100% error (indicating, in this case, complete obscurity of
motion caused by the aperture effect). The error decreases with
increasing &, up to &, = 0.1 and then gradually increases
with increasing &,,. We speculate that this increase is due
to the increasing prevalence of near-zero brightness gradients
across the tag pattern as &,, increases. This creates velocity
ambiguities that are not present in the pattern at &, = 0.1.

2) Effect of Ty: We now use just two images to compare
SOF with VBOF while varying T7. Fig. 6 shows a plot of the
average percent error in velocity estimation versus T; for both
algorithms. Clearly, both algorithms degrade with decreasing
T (going from right to left in Fig. 6), but SOF does so much
more dramatically. The most important observation to make
here is that over standard diagnostic ranges of T} in heart
muscle (from about 0.5 s to 1 s at 1.5 T) the average percent
error for VBOF is about 1/10 that of SOF. We conclude that
VBOF must be used in place of SOF to track motion in tagged
MR images.

To demonstrate the striking difference between the two al-
gorithms, Fig. 7 shows the results of variable OF and standard
OF for 77 = 0.5 s using a needle diagram. In each of these
figures, every Sth pixel of the first image of the pair is overlaid
with a “needle,” indicating the estimated displacement of each
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Fig. 6.

pixel. Visually, it is clear that VBOF produces estimates that
are generally consistent with our knowledge of the motion—a
rotation—while SOF produces a somewhat chaotic appearing
displacement field.

3) Effect of Tag Spatial Frequency: We now use a sequence
of two images to measure the performance of variable bright-
ness OF as a function of the tag pattern spatial frequency.
As in our study of the tag modulation coefficient, T} is made
very large so that there is no difference between VBOF and
SOF. Fig. 8 shows two image sequences of the simulated
ring phantom tagged with different spatial frequency patterns.
Fig. 9 shows the average percent velocity estimation error
versus the rotation angle between images for the three different
tag pattern spatial frequencies shown in Fig. 4, 8(a), and 8(b).
Here we see an interesting behavior. At the smallest rotation
angle, the tag pattern with the highest spatial frequency per-
forms the best. As the rotation angle increases from its smallest
value, the performance improves in all three cases. At a certain
point the performance reaches its peak (minimum percent
error) and degrades with higher rotation angles. In this range,
however, the lower spatial frequency pattern achieves the
best performance. The fact that at this point the performance
degrades most rapidly with the higher spatial frequencies is
indicative of an inherent ambiguity as the motion between
frames is a large fraction of the period of the tag pattern.
Therefore, the actual performance of VBOF—and, indeed, of
SOF as well—depends on both the underlying size of the
motion and the spatial frequency of the tag pattern. No precise
expression relating the performance to the motion and spatial
frequency of the tag pattern is known at present.

B. Study 2: Motion-Tracking Performance

This simulation study involves tracking a set of images
over time. We use the sequence of 10 images shown in
Fig. 4 and compare three OF approaches: SOF, VBOF, and
EVBOF. EVBOF, which stands for exact VBOF, uses exact
knowledge of the reference map at each time step when
calculating the material time derivative 1 instead of using an
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(2)

(b)

Fig. 7. Needle diagram overlaying the first of two images showing the

displacement estimate for (a) SOF and (b) VBOF.

estimated reference map as in VBOF. Thus, EVBOF provides
a measure of the increasing error incurred by VBOF due to
errors in tracking alone. One can also think of EVBOF as
being equivalent to SOF when there is no 7 decay, because,
in this situation, the material time derivative is known (and is
equal to zero). EVBOF, however, can never be used in practice
since the material time derivative is only known exactly for
the first image pair.

Fig. 10(a) shows the average percent velocity estimation
error between pairs of images in the sequence. As expected,
the best performance occurs with EVBOF. In fact, the per-
formance of EVBOF improves with time, a consequence
of the tag pattern becoming more favorable for gradient
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Fig. 8. Image sequences with (a) f, = f, = 0.5 cm™! and (b) f. =
fy=125cm™L
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Fig. 9. Performance of variable brightness optical flow for different tag

spatial frequencies as a function of the phantom rotation angle.

calculations (see Fig. 5). [Although this is not shown in the
figure, ultimately as the tag pattern disappears, all gradient
information will disappear and therefore the average percent
error for all three methods will approach 100%.] The worst
performance in Fig. 10(a) is achieved by SOF, although it
too improves with time. SOF improves in time because the
net difference in brightness between each successive pair of
images decreases, cffectively reducing the deleterious effects
of Ty decay (see Fig. 6). Lying between these two extremes is
VBOF, which achieves the same error between the first pair
of images as EVBOF but develops reference map errors over
time, leading to poorer performance. At a certain point (not
shown in the figure), VBOF has worse performance than SOF,
indicating that the reference map is no longer reliable.

For the same time series, Fig. 10(b) shows the tracking
error over time for each of the three methods. Here, we
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Fig. 10. (a) Optical flow performance and (b) average tracking error for the
image sequence shown in Fig. 4 given different model assumptions.

use the estimated velocities computed by each method to
determine the total motion over time. Since velocity is the
derivative of displacement, the curves in Fig. 10(b) should
be approximately equal to the integral of the corresponding
curve in Fig. 10(a), which we see is approximately true. We
see that even though the performance of VBOF degrades with
time, the total tracking error over the entire image sequence
is approximately one half that of SOF. This is because of the
large errors incurred by SOF due to Ty decay at the beginning
of the sequence.

Fig. 11 shows the first tagged image overlaid with path
lines for various points as estimated by SOF and VBOF,
representing motion through all ten images. We see that SOF
generates path lines for the darker tagged regions that converge
to the darkest point on the final image—and this is clearly in
sharp disagreement with the true motion, which is a rotation.
VBOF, in contrast, produces path lines which are more nearly
representative of the true motion. The two superposed rays,
which emanate from the center of the phantom indicate the
total rotational motion of the phantom over the full image
sequence. We see that SOF tends to overestimate the total

(b)

Fig. 11. The first tagged image of the image sequence in Fig. 4 is overlaid
with various estimated path lines estimated using (a) SOF and (b) VBOF.

rotation while VBOF tends to underestimate the true total
rotation. In preliminary investigations, we have shown that
this bias is a function of both the tag pattern and the amount
of motion. In particular, for small tag modulation coefficients,
both SOF and VBOF will underestimate the total rotation; for
larger tag modulation coefficients and small rotations, SOF
will overestimate the total rotation while VBOF continues to
underestimate it; and, finally, for both large tag modulation
coefficients and large rotations, both SOF and VBOF will
overestimate the total rotation. This problem may represent
an inherent limitation to optical flow methods, but it deserves
further investigation before drawing this conclusion.

C. Study 3: Rotating Ring Phantom

For our experiments involving actual MR data, we used
a gelatin “ring” phantom with the same dimensions as the
simulated ring phantom. The gelatin within the ring has
measured 77 = 1.65 s and 75 = 0.9 s and is surrounded by
air; the phantom was rotated in the counterclockwise direction
with frequency f, = 0.5 rotations/s. A sequence of 10
tagged images, separated by 0.175 s, starting at ¥ = 23 ms
was acquired and is shown in Fig. 12. The measured spatial
frequencies are f, = 1.117 em™! and f, = 1.145 cm ™!,

Since the actual motion of the phantom is known, we were
able to produce tracking error statistics for both SOF and
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Fig. 12. Sequence of actual tagged images.

VBOF. As shown in Fig. 13(a), VBOF clearly outperforms
SOF during the initial portion of the image sequence and pro-
duces correspondingly better tracking performance, as shown
in Fig. 13(b). As VBOF develops tracking errors, however,
its performance degrades to approximately the same level
as SOF. The erratic behavior of both SOF and VBOF in
Fig. 13(a) is due to motion artifacts appearing in the image
sequence. Fig. 14 shows path lines for each method indicating
an overall qualitative improvement with VBOF. Upon careful
examination, however, one sees that while SOF causes dark
pixels to converge to a point, in some cases VBOF is causing
bright pixels to converge to a point. The reason for this is
that the brightest pixels in the first image of this data set
are fading slightly throughout the image sequence; this is in
direct contradiction to our MR imaging equation, which causes
an error in the calculation of the material time derivative at
each time step. Hence, VBOF is overcompensating due to a
modeling error.

The expetimental results shown in Fig. 13 are qualitatively
similar to the simulation results shown in Fig. 10; however,
it is important to note that the spatial frequency of the
tag pattern, the MR parameters, and the incremental angular
rotation between images are different. (The simulations are
more typical of the MR parameters and motion expected in
the left ventricle.) Therefore, since the performance of both
SOF and VBOF depend on these parameters (as shown in
Figs. 5-9) we should expect numerical differences. Further-
more, the actual MR images contain noise due to additive
Gaussian noise at the receiver and to motion artifacts, which
degrades the performance of both SOF and VBOF. One feature
that Fig. 13(b) shows which is absent in Fig. 10(b) is the
degradation in tracking of VBOF to the point where SOF
outperforms VBOF. This degradation is an important property
of VBOF and must be considered in any application. It may,
however, be possible to reduce the influence of reference
map degradation by blending VBOF into SOF as the image
sequence unfolds.

V. CONCLUSION

We have presented a new optical flow algorithm called
variable brightness optical flow (VBOF) for estimation of
motion using MR imaging with tagging. We have shown that
tagging can reduce the motion estimation errors caused by
the aperture problem, and that variable brightness optical flow
is markedly superior to standard optical flow on such tagged
image sequences. We have also developed a simple method to
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Fig. 13. (a) Optical flow performance and (b) average tracking error for the
image sequence shown in Fig. 13 using SOF, VBOF, and EVBOF.

track both particle motion and the associated reference map,
an essential step in the proper operation of VBOF over image
sequences. Because of the dependency of VBOF on previous
estimates of motion, its performance degrades with each new
image; ultimately, standard OF outperforms VBOF. In the
carliest images, however, average tracking error using VBOF
is significantly smaller than the standard optical flow result.
Moreover, the severe pathline convergence artifacts present
when standard optical flow is used for tracking are virtually
absent in the VBOF results.

Overall performance of VBOF is dependent upon many
parameters of the imaging process including the natural bright-
ness variations of the MR images themselves, the tag pattern
imposed within these images, accurate knowledge of the initial
MR parameters, the amount of motion, the observation noise,
and the spatial and temporal sampling intervals. At present,
there is no known relationship between these parameters and
the overall motion estimation performance. This paper shows
evidence, however, that given a specific motion the spatial
frequency of the tag pattern strongly affects the performance.
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(b)

Fig. 14. The first tagged image from the MR phantom data is overlaid with
various path lines estimated using (a) SOF and (b) VBOF.

We are confident that a tag pattern design principle which is
based on having partial knowledge of the imaging parameters
can be developed in the future.

APPENDIX

A. MR Imaging Equation

In this section we derive the imaging equation for MR
tagged images. Throughout this section we assume that the
motion is exactly periodic with period Ty and that a tag
pulse-sequence and an imaging pulse-sequence, which reads
one phase of a standard phase-encoded spin-echo image, are
generated every period. We further assume that T > T,
everywhere in the sample, which guarantees that the transverse
component of net magnetization component dies out between
phase acquisitions. Assuming no tag pattern and Ty > T3,
the resultant image is given by?

¢ = Doe Te/T

19

where Tr is the time between the 90° pulse and the spin
echo in the imaging pulse-sequence. Since T; > Tr is not a
good assumption in cardiac imaging, we must incorporate the
fact that the spin system may not reach equilibrium before the

3For notational convenience, we suppress the spatial dependency of all
quantities in this and subsequent appendixes.
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next imaging sequence begins. Again assuming no tag pattern
is generated it is easily shown that

W = Dye~Te/T: (1 - e_T"/T‘). (20)

which is a standard result, and may be found in several texts
(see, for example, [34]).

Now consider the effect of a tag pulse sequence generated at
t = 0 and assumed to be of negligible duration (< T; or T3).
This pulse-sequence tips the spins @ radians off the z-axis
and crushes the transverse magnetization (see Appendix B),
yielding an effective spin density of

Dy = Dy cos . (21

Since the imaging pulse-sequence is not initiated until after
the delay time ¢ = Ty, the spin-system has a chance to relax
after the tag pulse, yielding another effective spin density

D! = Dy [1 + (cos — 1)e~ ‘f/T'] 22)

at the time of the imaging pulse-sequence. Therefore, assuming
Tr > T the tagged image is given by

W = Doe~T#/T2 [1 + (cosf — 1)~ AI/TLJ. (23)

As before, the case in which Tp > Tj is not a good
assumption must be considered. Here, the spin-density just
prior to the tag pulse-sequence is Do (1 — e(Tr=7a)/T1) This
spin is tipped by the tag pulse-sequence and crushed, which
yields the image

& = Dge~Te/T2 {1 + [(1 - e*(TR*TWT') cos b — 1]

T (24)
Adding and subtracting Doe™7#/T2¢=T#/T1 yields the imag-
ing equation given in (1) and (2).

B. Tag Pattern Generation

In this section we show how the tag pattern given in (16)
can be generated. Let M(t) = [u(t)v(t)w(t)]T denote the
net magnetization at time ¢ and My = [ug vo wo |  denote
the net magnetization at time ¢ = 0. We assume that the tag
pulse-sequence is generated rapidly, so that the effects of both
longitudinal and transverse relaxation are negligible, and for
convenience we sometimes drop the explicit time dependence
in our notation.

The tag pulse-sequence begins at + = 0 with an a-degree
pulse (taking duration 7,) about the y-axis, yielding net
magnetization

cosa 0 sina g
0 1 0 Vo
—sinae 0 cosa wo

M(,)

(25)

wp COS v + wp sin
Vo . (26)

—ug Sin @ + wq €os &

Immediately after the initial a-degree pulse, an z-gradient of
strength G, (t) and duration T, is applied. For gradient pulses
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of short duration, the solution to the Bloch equation is given
to good approximation by

acosk,r — vgsink,x

M(ro +Tp) = | asinkyx + v coskyz 27

b
where a = u cosa+w0 sina, b = —ug sin a + wq cos o, and
ky = 21y fo (7) dT where « is the gyromagnetic constant.

Next, a - degree pulse taking duration 73 is applied, yield-
ing
Mo +13+T,) =
acos Bcosk,z — vy cos Bsink,z + bsin 3
asin k. + vg cos k,x
—acos 3coskyx + vgsin Bsink,x + bsin 4
(28)

This equation is derived by using Equation (27) in place of the
vector [uovowg}T in (25). A crusher pulse is immediately ap-
plied (taking duration 7.), eliminating any effective transverse
magnetization, leading to

M(ra+13+Te +To) =
~0
=~ 0
—asinfcos k,x + vosin Bsin k. x + bcos 3
(29)

Since crushers are used after imaging pulse-sequences (and we
have made the assumption that T > T>) it is safe to assume
that ug = vy = 0. Therefore, upon substitution for a and b,
the z-magnetization may now be written

w(Te + 75 + Ty + T.) = wo( cos acos 3

—sinasinBcosk,z).  (30)

To generate the tag pattern in the y-direction, a sequence of
events identical to that given above follows at this point,
with the exception that a y-gradient of strength G,(¢) and
duration T, is applied between the a-degree and 3-degree
pulses. Since a crusher is used after the z-gradient sequence
(and since both sequences are assumed to be much faster than
both T> and T7), we find that the net magnetization after
the two sequences, including the trailing crusher, is just the
z-magnetization component, which is given by

w2t + 273+ 2T, + T, + T,) =
wg(cos accos B — sin asin B cos k, 1)

- (cosacos B — sinasin Bcos kyy) (31)

where k, = 27y fOTy Gy(7)dr. Letting « = 3 = 6 and setting
pz = = and p, = y, the spatial tag pattern of (16) results.

C. Numerical Methods

To solve the coupled Poisson equations of (7a) and (7b),
we implement the local relaxation algorithm described by Kuo
et al. [33], also implemented for optical flow by Rougee, et al.
[32]. The domain is a rectilinear lattice with n,, pixels in the
horizontal direction and n,, pixels in the vertical direction and
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with vertical and horizontal sample spacings of h, and h,,
respectively. Then, indexing the pixels by i and j for horizontal
and vertical, respectively, the coupled PDE’s may be solved
numerically by iteration first on the red points (i + j) even
and then on the black points (¢ + 7) odd, and repeating until
a convergence criterion is satisfied. The iterations are given
by the following.
Red points (i + jeven):

57 =l o, (4, ol 4ol

,] o
B T —%W])/
(32a)

(nt1 n (n )
2% ):(1"ng) ()"'“’ ( )1,j+vz(+)1] +”z(1; 1

n h2 n+1
+Ui(,j)+1 - a_gwy |:1/un( = =t +¢’])/

(32b)
Black points (i + jodd):

W = (1 wf)ul + o ( (o) (D) ()

+ T = 22 [T - v+ 4] ) / i,
(33a)

1(3“) (1 - w ) (n) + w ( (n+ ) + vfﬁﬁ) + vf'fﬂ)

ey _ (n+1) :

+uy - a—Z Py [7/&“1; — P + U’])/dzr

(33b)
Here, the coefficients d7 ; and d?ﬁj are given by
df; =4+ ylh2 /o’ (34a)
— 22 2

& =4+ 922 o (34b)

and wf; and w! '; are called the local relaxation parameters
and are given by
2
wa - T2 3 (353)
144/1- (pi’ ]-)
2
Wl = (35b)
1,7 ¥ 2
14+4/1- (pi’ j)
where
P 2 0S8 ——— + cos —~ (36a)
Pod = @ e + 1 ny+1)°
2 T m
- . 36b
i ti;”] (cos P + cos - ) (36b)
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The terms v, 1y, and 4, in (32a) , (32b) , (33a), and (33b) are
evaluated at pixel 4, j and are calculated using the following
local approximations:

Ve = (24 + 29 — 20 — 27)/4h, (37
’l/}y = (Zl + zZ6 — 25 — 2’10)/4hy (38)

Pe=(26+z7+2s+ 29+ 210— 21— 20— 23 — 24 ~ 23) /57

(39)
where

21 =9ioy,4(t) (40)
29 =i ;_1(1) (41)
z3 =i ;(t) (42)
24 = i (t) (43)
25 = Pit1,;(t) (44)
26 = i1(t+7) (45)
27 = wi,j—l(t + T) (46)
28 = 'l/)i’]‘(t-{-T) 47)
29 = P j41(t +7) (48)
210 = Pigp1,i(t+ 7). (49)
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