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ABSTRACT

Inner product probe measurements are defined for to-
mographic reconstruction of 3-D vector fields. It is
shown that one set of measurements is required to re-
construct an irrotational field, two are required to re-
construct a solenoidal field, and special probes are re-
quired to reconstruct the components of an arbitrary
field.

1. INTRODUCTION

In recent years there has been a growing interest in to-
mographic reconstruction of vector fields. The primary
driving force has been the realization that certain ap-
plications such as ultrasonic imaging, flow imaging, and
ocean acoustic tomography have measurements that
are inherently line integrals of the inner product of the
vector field with a fixed unit vector. Norton [1] laid the
groundwork for a theoretical treatment of this problem
by showing that through a decomposition of the vector
field into its irrotational and solenoidal components,
conventional line integral projections — i.e., where the
integral of the inner product of the field with a unit
vector parallel to the line of integration is measured
— can be used reconstruct the solenoidal component
only. Braun and Hauck [2] extended this result by also
considering measurements of the integral of the inner
product of the field with a unit vector orthogonal to
the line of integration. They showed that these data
are sufficient to reconstruct the irrotational component
of the 2-D vector field; thus, with two complete sets of
measurements, each using a different unit vector for
forming the inner product, the full vector field can be
reconstructed. Norton has also shown that boundary
measurements can be used to recover the irrotational
component [3].

This paper generalizes this previous work by in-
cluding a more general type of measurement, which we
call inner product probe measurements, and by includ-
ing three-dimensional vector fields. General conditions
and formulas for reconstruction of an arbitrary vec-
tor field are given, as are the conditions and formulas

for fields known to be either irrotational or solenoidal.
We also develop formulas to extract the irrotational or
solenoidal component of an arbitrary vector field using
special inner product probe measurements. In order
to use some standard results from the theory of the
Radon transform (cf. [4]) we restrict the analysis to
vector fields whose elements belong to either the space
of rapidly decreasing C* functions or the space of com-
pactly supported C*® functions. Thus, some of the de-
tailed issues associated with boundary conditions (cf.
{2, 3]) are avoided.

The use of inner product measurements has several
potential advantages in the imaging of vector fields.
First, as pointed out by Braun and Hauck [2], forming
the inner product has the effect of performing a deriva-
tive on the measured data, normally the first step in
numerical inversion. Thus the measurement process
itself performs an operation which is normally prone
to numerical instability. Second, if a field is known to
be either irrotational or solenoidal, then fewer measure-
ments than are required to recover a general vector field
may be used to recover just that component alone. This
saves measurements and potentially reduces the effects
of noise. Finally, some properties of the field, such as
vorticity, can be calculated from a single component of
the field [5]. Thus, if such a property is desired, it may
be found from a smaller number of measurements than
would be required to reconstruct the full vector field.
We discuss these issues further in the conclusion.

2. PRELIMINARIES

A. The Radon Transform

Since we consider both 2-D and 3-D vector fields in this
paper, we use a unified version of the inverse Radon
transform formulas for functions defined on IR™, where
n=2orn =3 Let f be a real scalar function de-
fined on IR™ belonging to either the class £ of rapidly
decreasing C* functions (Schwarz space) or the class
D of C* functions with compact support. The n-D
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Radon transform of f can be written as [4]
ftw)=Rs= [ f960x-w—thax. (1)
RY&

where t € R!, w € S"!, and 6(-) is the 1I-
D Dirac delta function. We define the Radon
transform of a 3-D vector field q = q(z,y,2) =

(u(z,y,2),v(,y,2), w(z,y, 2)) as
4(t,w) = (4(t,w), i(t,w), W(t,w)), )

where we assume here and throughout this paper that
the elements of q belong to either £ or D. The follow-
ing properties of the Radon transform can be readily
verified [see [4] for (a) and (b)]:

ofy _ _of .

R{B_J: = w,at, (3)
Ri{p-Vf} = p-wg—{, (3b)
Rip-(Vxa) = (pxw) 2. (3

Here, f and a are scalar and vector fields respectively
and p is a vector which may depend on ¢ and w.

After a simple modification of a standard formula
(6], the inverse Radon transform can be written as

f=R*K'Pf. (4)

where R* is the adjoint operator defined by

R0 = [ otc-ww)o,

and
9 n-2
e W (6—{) for n Odd,
9 n-2
W (m) for n even,
0
P o= 5

Here H is the Hilbert transform operator. For no-
tational convenience the subscript ¢ will be used to
denote partlal denvatlve with respect to ¢t — e.g.,

= 0f/ot =

B. Helmholtz’s Theorem
According to Helmholtz’s Theorem, a vector field
q(z,y, 2) can be uniquely written as [7]

q = qr + qs, (53)
a = Vy, (5b)
qs = Vxa, (5¢)

where V -a = 0. The scalar function 1 is called the
scalar potential and the vector function a is called the
vector polential. Since Vx q; = 0, the component q; is
called irrotational; since V - qs = 0 the component qg
is called solenoidal. If q(z,y) is a 2-D vector field then
Helmholtz’s theorem states that a(z,y) = q(z,9,0) =
Vi(z,y) + V x ¢(z,y)k, where k is the unit vector
pointing in the z-direction.

3. INNER PRODUCT MEASUREMENTS

We define the inner product measurement of the vector
field q with respect to “probe” p as

Pew)= [ pasxw-iax, (@

where the probe vector p may depend on t and w but
not on x. Now consider the measurements acquired

from m probes pi,...,pm. In matrix notation these
measurements can be written as

gt w) = A(t,w)q(t,w), (7)
where g(t,w) = [¢P1(¢, w) .gPm(t,w)]T and
At,w) = [p1(t,w) ... pm(t, )"

If m = n and A is invertible for all ¢ and w then
the complete Radon transform of the vector field q is
easily recovered from the inner product measurements

using
q(t,w) = A7t w)E(t w) ®)
and the vector field itself can be recovered using the
inverse Radon transform as
=R*K'NPA™'g.

q(x) =R~ {A7!(t,w)g(t,w)}
9

If m > n then the problem is overdetermined and one
or more redundant equations can be removed until the
reduced matrix is square and can be inverted. (Obvi-
ously, under noisy conditions one would seek some type
of least squares estimate that uses all of the available
data.) If m < n then in general an arbitrary vector
field cannot be recovered. The following section fo-
cuses on two special cases, however, in which the full
field can be recovered from fewer than n inner product
measurements. It should be noted that if m = n and
A is not invertible for all ¢ and w, full reconstruction
may still be technically possible through limited data
methods [8], but ill-posedness is a serious problem in
these cases.

4. IRROTATIONAL AND SOLENOIDAL
FIELDS

Many fields are restricted by physical laws to be either
irrotational or solenoidal fields. For example, an elec-
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trostatic field generated by a collection of charged par-
ticles is irrotational, and a magnetic field is solenoidal.
In this section we determine what inner product mea-
surements are needed to allow perfect reconstruction
when the field is known to be a particular one of these
two types of fields.

A. Irrotational Fields

In this section the total field is assumed to be irrota-
tional and is denoted by q;. Since qr = V1 where ¢
is a scalar field then from (3b)

P =R{p-a}=R{p - V¥}=p-wiy. (10)

Therefore, provided that p-w # 0, v, can be recovered
from this measurement via

. gP
==L 11
b= 2L (1
Then since ¥; = P, the inverse Radon transform for-
mula given in (4) combined with (11) yields

1Y
=Rk’ I ‘w#0. 12
ar — pw# (12)
The special case where p = w is what Braun and
Hauck [2] call the transverse measurements, and this
leads to the especially attractive formula:

qr = VR*K'g? . (13)

But (12) is a more general result which shows that any
single inner product measurement g?(t,w) can be used
to reconstruct an irrotational field provided that the
probe direction satisfies p -w # 0 on S*~! x R!. Fur-
thermore, both (12) and the special case (13) are valid
in any dimension provided that q; is the gradient of
some scalar function v defined on IR™.

B. Solenoidal Fields
In this section the total field is assumed to be solenoidal

and is denoted by qs. Since qs = V x a it follows from
(3c) that

gg’ =R{p-qs}=R{p-(Vxa)} = (pxw) -a&. (14)

Since a is solenoidal it follows that V -a = 0, and
hence R{V -a} = 0. But it can be easily shown using
(3a) that R{V -a} = w - &, which implies w - &; = 0.
Therefore, a; is contained in the subspace orthogonal
to w; hence, in 3-D only two probe measurements are
required to determine &;. Denoting these probes by p;
and p; we have

gs = Ba,, (15)

where
o (P1 x w)T
gs=| ¢¥° and B=| (pz xw)T
0 wT

Hence, the solenoidal field can be reconstructed using
qs =V xR'K'B7gs. (16)

It is easy to show that B is invertible — and there-
fore that complete measurements are available — if and
only if p;, p2, and w are linearly independent.

A convenient pair of probes p; and p; can be de-
fined by creating a particular orthonormal frame. Let i,
3, and k denote unit vectors in the z, y, and z directions
respectively. Now let M be an orthogonal matrix with
the properties that detM = +1 and w = Mk. The
two probes p; = pj = Mj and p; = p; = —Mi are
orthogonal to w and to each other and clearly satisfy
the above conditions. Furthermore, after evaluating
the cross products it can be shown that B = MT, and
since M~! = MT the full reconstruction formula is

s = VxR K'Mgs . (17)

Only one probe is required to reconstruct a 2-D
solenoidal field provided that the probe is not a multi-
ple of w. A particularly convenient choice for this probe
is p = & = (sinf, — cos§,0), which is a unit vector in
the z,y plane orthogonal to w = (cos §,sin@,0). This
special case gives the longitudinal measurements de-
fined by Braun and Hauck [2]. In this case §{ x w =k,
which together with (14) implies that gg =k-.a =
Oa,/8t. Since Helmholtz’s theorem for 2-D vector fields
gives a with only a z-component, this measurement
permits direct reconstruction of the vector potential
without forming gs and doing a matrix multiplication.
Accordingly, the 2-D solenoidal field is reconstructed
directly from gg using

as(z,y) =V x R‘)C’gg(t,w)fc. (18)

C. Irrotational and Solenoidal Components
Braun and Hauck [2] discovered that the irrotational
and solenoidal components of a 2-D vector field can be
imaged separately using the transverse and longitudi-
nal measurements, respectively. This result has a clear
analogy in 3-D except that two measurements are now
required to reconstruct the solenoidal component. This
result was anticipated by Norton [1].

By linearity, the inner product measurement of an
arbitrary vector field q = qs + qy is given by

P =gP+47. (19)
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It follows from (14) that g% = 0. Therefore, g¥ = g%
and qy can be reconstructed using (12). Similarly, it

follows from (10) that g?i = gf‘] = 0; hence qs can be
reconstructed using (17). Therefore, the irrotational or
solenoidal component of an arbitrary 3-D vector field
can be reconstructed separately using only one or two
inner product measurement sets, respectively.

5. CONCLUSION

Previous efforts to develop the tomography of vector
fields have focused on specific fixed vectors through
which the inner product measurement is taken. We
have generalized this concept to arbitrary inner prod-
uct “probe” directions where these probes can depend
ont and w. We have shown very general conditions un-
der which an arbitrary vector field can be reconstructed
from probe measurements through a matrix inversion
at each ¢ and w followed by standard inverse Radon
transform methods. We have also shown how fields
known to be either irrotational or solenoidal can be re-
constructed using fewer inner product measurements
than is required for an arbitrary 3-D field. For these
special cases, the probe directions are virtually unre-
stricted, which represents a much more general imaging
scenario that has been previously reported in the 2-D
case. Finally, we have shown how the irrotational or
solenoidal component of an arbitrary vector field can
be recovered separately using one or two inner product
measurements, respectively.

Through generalization of the measurements to in-
ner product probes and through extension of previous
developments to three dimensions, we can now answer
several questions that have been posed in the litera-
ture. For example, Norton [1] noted that standard
line integral measurements can be used to recover the
solenoidal component in 2-D vector fields, but not in
3-D fields. He suggested that one additional constraint
— i.e., some a priori knowledge about the field — would
be necessary to determine the second independent com-
ponent that would arise in three dimensions. We have
shown, however, that another measurement will suffice,
using another linearly independent probe taken from
within the plane of integration. Norton [1, 3] also noted
that the irrotational component of a vector field can be
recovered from measurements on the boundary. Braun
and Hauck [2] showed in the 2-D case, however, that
an inner product measurement using probe w (using
our terminology) allows one to reconstruct the irrota-
tional component. We have now generalized this result
by showing that it is true in any dimension; thus, the
reconstruction of an irrotational field requires only one
inner product measurement, regardless of the dimen-

sion.

Several investigators have shown how to reconstruct
various properties of 2-D vector fields such as the vor-
ticity vector [5] and the index of refraction [9] using par-
ticular inner product measurements. Since these quan-
tities can often be derived from the potentials rather
than the full vector field it may be sufficient to recon-
struct only ¢ or a, depending on what property is de-
sired. Therefore, the requirement of taking a derivative
— the divergence in the case of the irrotational com-
ponent and the curl in the case of the solenoidal com-
ponent — is eliminated [see Equation (12) and (16)).
Since the inner product measurement itself has the ef-
fect of taking the initial derivative itself, and since this
last derivative is not required, there is potential for sig-
nificant improvement in the signal to noise ratio of the
reconstructed vector field property over other recon-
struction methods.
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