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Abstract

A major problem in cardiac imaging is the measure-
ment of cardiac motion for identification of ischemic
and infarcted tissues. O’Dell et. al. have recently
proposed a method that uses magnetic resonance tag
patterns to measure the 3D displacement field of the
myocardium. The measurements are sparse, however,
and interpolation is required to reconstruct a dense dis-
placement field. In this paper, we propose a method for
computing a dense displacement field on a regular 3D
lattice from sparse displacement measurements. This
method uses a multidimensional stochastic model for
the true displacement field and the Fisher estimation
framework to estimate a displacement veclor al each
point the lattice. Simulation results are presented that
demonstrate the accuracy of our technique.

1 Introduction

A major problem in cardiac imaging is the measure-
ment of cardiac motion for identification of ischemic
and infarcted tissues. Magnetic resonance tagging has
shown great potential for noninvasive measurement of
the motion of the beating heart. Tagged images ap-
pear with a spatially encoded pattern that moves with
the tissue and can be analyzed to reveal the motion
of the myocardium from which measures of local con-
tractile performance such as strain can be extracted.

The use of planar tags has been studied by several
researchers [1, 2, 3, 4, 5, 6, 7, 8, 9]. In the approach
of Zerhouni et al [1, 2], thin sheet tags are placed to
pass through the long axis of the LV at different an-
gular orientations. Images taken orthogonal to this
axis appear to have a tag “starburst” pattern ema-
nating from the cardiac chamber. After identifying
inner and outer contours and the tag “spines” through
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image analysis techniques [5], the motion can be char-
acterized by matching points of intersection of tags
with contours. Another technique for embedding tags
within the myocardium is based on the method of spa-
tial modulation of magnetization (SPAMM) [3, 4, 7],
which produces a grid-like array of tag stripes. These
methods are efficient since many tags can be placed
within the tissue in a very short time. Several methods
have been proposed to track the tag grid intersections
over the cardiac cycle and compute quantities such as
strain {10, 11].

O’Dell et. al. [12] have proposed a method for us-
ing parallel planar tags to image the 3D displacement
field of the myocardium. In their method, a set of
tag planes orthogonal to the z-axis are applied to the
heart at end-diastole. A stack of 2D short-axis im-
ages is acquired at both end-diastole and end-systole.
The tag lines, which appear straight in the reference
image, appear curved in the deformed image (as de-
picted in Figures 3 and 4). The positions of points
along these curved lines are then determined using a
semi-automated tracking method (see [13]). The dis-
placement of the heart in the z-direction can be mea-
sured by comparing the locations of the reference and
deformed tag lines. The y-displacement can be mea-
sured by applying a set of tag planes in the orthogonal
direction and acquiring another set of short-axis im-
ages. Applying tag planes orthogonal to the z-axis and
acquiring a set of long-axis images is used to measure
the z-displacement.

In effect, this method measures the 3D displace-
ment field of the heart one component at a time. The
displacement measurements, however, are sparse; in-
terpolation is required to reconstruct a dense displace-
ment field from which strain can be computed. O’Dell
et. al [12] proposed fitting a high order polynomial
to the displacement measurements. The choice of a
polynomial basis function is arbitrary, however, and



the correct order of the interpolating polynomial is
not known. Young and Axel [11] proposed fitting dis-
placement measurements from grid-tagged images to
a finite-element model of the heart.

In this paper, we propose a method for recon-
structing the heart’s displacement field on a regular
3D lattice from sparse displacement measurements.
This method uses a multidimensional stochastic model
for the displacement field and the Fisher estimation
framework [14] to estimate a displacement vector at
each point on the lattice. Simulation results are pre-
sented that show an estimation accuracy comparable
to other proposed methods. Our method has two main
advantages. First, the displacement field model makes
a fairly weak assumption on the specifics of heart mo-
tion. Second, the Fisher estimate provides an a pri-
ori error covariance that can be used to determine
the minimum number of tag lines needed to achieve
a given estimation accuracy.

This paper is organized as follows. In Section 2 we
present some background on the geometry of planar
tagged images and establish some notation. In Sec-
tion 3 we derive our reconstruction method. In Sec-
tion 4 we present simulation results to demonstrate
the accuracy of our method. In Section 5, we pro-
vide a discussion of our results and some directions
for future work.

2 Background
2.1 Notation

In this paper, scalars are designated by lower-case
letters (e.g. x, a), and 3D vectors are designated by
lower-case bold letters (e.g. u, r). Lexicographically
ordered vector fields and matrices are designated by
upper-case letters (e.g. U, V).

Two coordinate systems are used to describe the
location of points in space. A material coordinate
system is fixed on the left ventricle (LV), where end-
diastole is used as the reference state. A spatial co-
ordinate system is fixed in space, where the mate-
rial and spatial coordinate systems coincide at end-
diastole. The z-axis of the spatial coordinate system
corresponds to the slice select direction of the MR
imaging protocol for a short-axis slice of the LV. Typ-
ically, this axis runs through the center of the LV at
end-diastole from apex to base. The z and y axes are
orthogonal to the 2-axis and to each other. The z-axis
is parallel to the top and bottom edges of a short-axis
image.
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2.2 Geometry of planar tagged images

In the 3D displacement field measurement tech-
nique developed by O’Dell, et. al [12], the data is
composed of three sets of 2D images. The first two
sets are short-axis images taken at the planes depicted
in Figure 1. The third set consists of long-axis images
taken at the planes depicted in Figure 2. In each
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Figure 1: Short-axis image planes.
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Figure 2: Long-axis image planes.

image set, one component of the displacement field is
measured by comparing the positions of deformed and
undeformed tag planes. To measure the z-component
of the displacement field, a set of parallel tag planes
orthogonal to the z-axis are applied to the heart at
end-diastole, and a stack of short-axis images is ac-
quired immediately after tagging and at a later point
in the cardiac cycle. To measure the y-component, tag
planes orthogonal to the y-axis are applied and an-
other set of short-axis images are acquired. To mea-
sure the z-component, tag planes orthogonal to the
z-axis are applied, and a set of long-axis images are
acquired. We refer to tag planes orthogonal to the



z-axis as vertical tags, tag planes orthogonal to the
y-axis as horizontal tags and tag plane orthogonal to
the z-axis as long-axis tags.

A diagram of the LV in the reference state (end-
diastole) with vertical tags is shown in Figure 3. The
solid lines show the intersections of the tag planes with
the image plane. Figure 4 depicts the LV in a deformed
state (e.g. end-systole). The solid lines are the de-
formed tag lines, and the dashed lines are the original
tag lines. The dots on the deformed tag lines rep-
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Figure 3: LV at end-diastole (reference) with vertical
tags.
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Figure 4: LV at end-systole (deformed).

resent points identified by a tag tracking routine such
as the one proposed by Guttman, et. al [13]. Since
there is a one-to-one correspondence between the un-
deformed and deformed tag planes, a point identified
on the deformed tag line, r for example, must have
originated at a point on the undeformed tag plane.
All points on the jth undeformed tag plane have the
same z-coordinate, z;, and the z-coordinate of r is
known from the tag tracking routine. Therefore the
z-displacement of the point r on tag plane j is given
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by:

(1)
The y and z components of the displacement vector
u(r) = [us(r), uy(r), u,(r)]7 are unknown.

Thus, the fundamental information from a tagging
experiment comprises measurements of the displace-
ment field components. These displacement measure-
ments are sparse, however, and interpolation is re-
quired to reconstruct a dense displacement field from
which strain can be computed. This reconstruction
problem is addressed in Section 3. In addition, since
the points are specified in a spatial coordinate system,
the displacement vector measurements are defined in
spatial coordinates, and the reconstructed displace-
ment field will be a function of spatial coordinates.
The displacement field must be transformed into ma-
terial coordinates before strain can be computed. This
transformation problem is addressed in Section 3.4.

u(r) =r; — ;.

3 Reconstruction method

3.1 Measurement model

Our goal is to compute a dense estimate of the left
ventricle’s displacement field from the sparse measure-
ments provided by the deformed tag lines. A contin-
uous estimate of the displacement field is not feasible
because of the complex motion of the LV. As a result,
we compute an estimate of the displacement field at
each point in a Ny X Ny x N, grid Q like the one shown
in Figure 5. The grid is defined so that it contains the

=

A

€ ~ > Y

M/ y/
g

g

AN

\
N

/
L~

Figure 5: N; x Ny x N, grid Q.

entire LV. The grid spacing h can be arbitrarily small,
but should be on the order of the MR image pixel size.

As stated in Section 2.2., discrete points on the de-
formed tag lines are identified by a tag tracking algo-
rithm. Since these points will not in general be on a



grid point, we round the position of each tracked point
to the nearest grid point. This rounding will introduce
some additional error into the measurement model,
which we account for in the measurement noise vari-
ance described below. The extent of the error, how-
ever, will decrease with smaller grid spacings. More
accurate ways of interpolating displacement measure-
ments onto grid points are a subject of future research.

Let Q; denote the set of grid points where a z-
displacement measurement is defined, and Q, and Q,
be the sets of grid points where y and z-displacement
measurements are defined. Note that

Q:,80y,Q, CQ,

and Q,, y and Q, will, in general, have points in
common. We designate the cardinality of Q, 2y and
2, by M, My and M, respectively and let M = M.+
My + M,.

The displacement field measurements are described
mathematically by the equation

Ym(r) = e(r) - u(r) + vm(r), ()

where
e; refl,
e(r)=¢ e, refy, , (3)
e, Te,

€;, ey and e, are the unit vectors corresponding the
the z, y and z axes, and v, (r) ~ N(0,02%(r)). The
measurement noise, vy,, arises from two independent
sources. The first source is the error in tracking the tag
line. The second is the error incurred from rounding
the measured displacement vector to the nearest grid
point.

In order to use the estimation technique described
below, we stack u(r) in lexicographical order and stack
ym(r) and vy, (r) into the M x 1 vectors Yy, and V,,.
The measurement equation becomes

Y = EU + Vi, (4)

where

u(rin)
u(ryz)

()

u(riin,) )
u(rs)

L u(rn.vyN.) v vy xa

and r;;; are the lattice points in Q. The M x NNy N,
matrix E is structured such that (2) is satisfied for
each measurement.
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3.2 Displacement field model

Ideally, one would want to reconstruct the stacked
displacement field vector U from equation (4) alone.
Since the matrix E is not invertible, however, there
are an infinite number of displacement fields that sat-
isfy the measurement equation (4). One could use the
Moore-Penrose inverse of E in which case the recon-
structed displacement field U is given by

U=ET(EET) Y. (6)
Unfortunately, this approach makes the implicit as-
sumption that of all the displacement fields that sat-
isfy (4), we want the one with smallest norm (VUTU)
— an assumption that is rather arbitrary from a phys-
iological standpoint.

Our approach is to assume an explicit stochastic
model for the displacement field. This model will pro-
vide enough additional information to reconstruct the
displacement field from the measurements in equation
(4). In particular, we model each component of the
displacement field as a Brownian surface in analogy
to the model proposed in [15, 16, 17] for optical flow
estimation of motion. An example of a 2D vector field
generated by this type of model is shown in Figure 6
with a mesh plot of each Brownian surface component
shown in Figures 7a and 7a. In displacement fields
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Figure 6: Realization of a random 2D displacement
field.

generated by this model, vectors that are close in space
have similar magnitude and direction.

A physiological motivation of this model comes
from the connected nature of biological tissue, so we
expect this model to hold fairly well inside the my-
ocardium. The blood pool inside the LV and the peri-
cardial sac around the heart, however, cause discon-
tinuities in the true displacement field that are not
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Figure 7: (a) Mesh plot of z-component. (b) Mesh
plot of y-component.

accurately modeled by this model. As a result, we ex-
pect the reconstructed displacement field to be more
accurate inside the myocardium than at the epicardial
and endocardial boundaries.

The smoothness of the displacement field is de-
scribed by Figure 8. From the definition of displace-
ment, the spatial point r moves to r + u(r) and the
spatial point r+n moves to r+n+u(r+n). Our model
specifies that for n small, u(r) and u(r+n) are similar
vectors. Specifically, we let n € {he,, hey, he,} and
require that

u(r + hey) —u(r) =

u(r+ hey) —u(r) =
u(r + he;) —u(r) =

vz(r), Vr,r+ he; € Q
vy(r), Vr,xr + hey € Q
v,(r) Vr,r + he, € 2, (7)

where Vr € Q, v.(r), vy(r) and v,(r) are white ran-
dom vector processes that have a joint Gaussian den-
sity given by N (0, h202(r)I). According to this model,
the point r+n to moves to a point in a cloud centered
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u(r)

r n

Figure 8: Displacement field smoothness model.

at r + n + u(r) as shown in Figure 8. Note that this
formulation only models the value of the displacement
vectors relative to each other. Inspection of Equation
(7) shows that an arbitrary constant can be added to
each component of the displacement field and Equa-
tion (7) would still hold. Consequently, the actual
value of any particular displacement vector is neither
known nor described in a probabilistic sense.

As with the measurement model in equation (4),
we stack the equations in (7) in lexicographical order
to form the matrix equation

SU = Viy. (8)
where S is a spatial difference operator and Vy, =
wvr, VyT, VIT. The vectors V;, Vj, V; contain the lex-
icographically ordered vector fields v4(r), vy(r) and
v, (r) respectively. The structure of S is given by

Sz
S=158 |, (9)
S,
where
T, -
I -I
Sz = , I=1In.n,
L I —I -
Sy = In, ® Ay, where
T 7 5
I -I
Ay = yand I = Iy ;
- I _I -




S, = In.n, ® A, , where
I -1
I -I
A, = ,and I = I3,

I -1
and ® is Kronecker product.

This stochastic displacement field model provides
the additional equations needed to reconstruct a
unique displacement field from the measurements in
equation (4). The Brownian surface model is a gen-
eral model for smooth displacement fields and is not
intended to specifically model the motion of the heart.
While this type of model may not be as accurate for
heart motion, it is less dependent on the restrictive
and possibly invalid a priori assumptions needed for a
more specific model. More sophisticated displacement
field models are under development.

3.3 Fisher estimate

Equation (8) is a stochastic model for the displace-
ment field U, and we would like to compute its mean
and variance. Unfortunately, the matrix S is singular
because SA = 0 when A is a nonzero constant vector.
As a result we cannot compute the mean and vari-
ance of U from (8). Bayesian estimators cannot be
used in this case because they require that the mean
and variance be known a priori. The Fisher estima-
tion method [14], however, does not require knowledge
of the mean and covariance of U; hence, we use this
method to reconstruct the displacement field.

While the displacement field model in (8) does not
completely specify the statistics of U, we do want to
incorporate the information given by the model into
the Fisher estimate. The model is not a measurement
in the classical sense because it does not change from
realization to realization. The model does, however,
constrain the solution in the same way that a mea-
surement does.

To capture this concept, we treat the displacement
field model in equation (8) as an a priori observation
on the unknown displacement field U [14]:

0= SU_VIyZ) (10)
and form the augmented system

Y=CU+V, (11)
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Assuming constant noise variances o2 and 0%, the
optimal estimate U is given by
1
—ETY,,,

2
Ow

U = (13)

where
1 1
T = W[SZSI +5T8, +8Ts.] + ;ZETE- (14)

The difference operators S7 Sy, SgSy and ST S, are
the discrete analogs the the continuous operators
8% /02, 8%/8y? and 8% /82 respectively. In fact, (13)
is exactly the same equation obtained when the partial
differential equation

1 1 1
- —2V2u + —7eeTu = —-ey
a? a2, a2

(15)

is discretized on the lattice 2. Equation (13) can be
solved using any of the methods commonly used to
solve (15) such as SOR [18].

The Fisher estimate minimizes the expected mean-
square estimation error subject to the constraint that
E{U} = &{U} where £ is the expectation operator.
Define the estimate error as U = U — U. The estimate
error covariance is given by

P=£{UUT}y=x"". (16)
The diagonal entries of P are the error covariances for
each point in the lattice Q. The off-diagonal entries are
the cross-covariances. Note that P is only a function of
a priori information and can, therefore, be computed
before any data is taken. The ability to compute an a
priori error covariance gives our method an advantage
over the methods proposed in [12, 11]. We plan to use
this error covariance in future research to compute the
minimum number and placement of tags to achieve a
given reconstruction accuracy.

3.4 Transformation to material coordi-
nates

The reconstructed displacement field given by
Equation (13) is in spatial coordinates because the
measurements are in spatial coordinates. The dis-
placement field must be transformed to material co-
ordinates before quatities such as strain can be com-
puted. The main steps in our transformation method
are shown for a 2D displacement field in Figure 9. Af-
ter reconstruction, the displacement field is defined in
spatial coordinates on a regular lattice as shown in
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Figure 9: (a) Spatial coordinate displacement field defined on a regular lattice.

(¢)

(b) Material coordinate dis-

placement field defined on an irregular lattice. (c) Material coordinate displacement field defined on a regular

lattice.

Figure 9a. The spatial point r is related to the mate-
rial point p by the equation

p+u=r.

Since there is a one-to-one correspondence between
the spatial points and the material points, we can also
define u at the material points p = r — u as shown in
Figure 9b. The displacement vectors are now defined
on an irregular lattice, and an iterative technique is
used to interpolate the material coordinate displace-
ment field onto a regular grid as shown in Figure 9c.

4 Simulation results

To evaluate our 3-D displacement field interpola-
tion method, we used a cardiac deformation simulator
program written by Walter O’Dell. This program as-
sumes the myocardium at end-diastole is a shell of a
prolate sphere with inner radius 32mm and outer ra-
dius 40mm centered at the origin. It simulates a typi-
cal deformation taking place at end-systole [19]. It in-
cludes bulk translation, bulk rotation, and bulk shear,
and torsion, transmural twist, transmural shear, and
a gross compressibility constraint. Wireframe plots of
the initial heart and the deformed heart are shown in
Figures 10a and Figures 10b respectively. The refer-
ence map, which is needed to determine the positions
of deformed tag planes from this deformation map,
was determined by iterative approximation.

Simulated data from a 3-D planar tag imaging ex-
periment was generated using the above model of left
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ventricular deformation. We assumed that in the
short-axis images, 11 tags were separated by 5.5 mm
and 11 images were separated by 5.0 mm. In the 11
long-axis images tags were separated by 5.0 mm and
11 long axis images were generated over 180 degrees.
The position of deformed tag lines in each image were
assumed to be known to pixel accuracy only. These
numbers represent the type of data we expect to ac-
quire in practice. Our 3-D displacement field recon-
struction method was run on this data to estimate
a complete displacement vector at each point on a
128 x 128 x 128 lattice with a uniform spatial increment
of 0.5625 mm. This result was compared to the known
displacement, and a 3-D error map constructed. A
volume-rendered version of this error map is shown
in Figure 11a, where the grey level of each point is
proportional to the absolute value of the error. Gen-
erally, the error is smallest near the apex and gets
larger toward the base. This is revealed more clearly
in a long-axis cross-section, shown in Figure 11b. A
short-axis profile, shown in Figure 11c shows that er-
rors are largest at the boundaries of the myocardium.
This error is because outside the myocardium, the true
displacement field is zero while inside the myocardium,
the true displacement field is non-zero in general. The
reconstruction algorithm smooths the estimate across
the these discontinuities because the model described
in Section 3.2. generates smooth displacement fields.
We plan to address this problem in future research by
confining the estimation domain to the myocardium
itself instead of a cube. Table 1 shows the mean, root-
mean-square (RMS), root-median-square (RMdS), av-



(2)

section.
Error

b'd y z Mag
Mean 0.0554 | 0.2697 | 0.3376
RMS 0.4858 0.6361 0.7555 1.1006
MdS 0.3337 0.3963 0.2325 0.7789
Avg % || 46.5486 | 49.7496 | 22.0793 | 13.9918
Md % 18.2713 | 13.0846 | 6.8682 | 12.8331

Table 1: Reconstruction errors (mm).

erage percent, and average median error for this re-
construction. These global errors are close to those
obtained in basis function reconstruction method of
O’Dell et al. [12] and the finite element method of
Young and Axel [11].

The accuracy of our 3-D displacement field recon-
struction method depends on the variances o2 and
o2. While the measurement noise variance, o2, is de-
rived from the tag tracker accuracy and the spatial
increment, the o2 is usually chosen empirically. In the
above simulation, we used oy, = 0.2813 mm (one half
of the spatial increment), and ¢? = 500. To study the
affect of o2 on the estimation accuracy, we computed
reconstructions for several values of 02. The RMS er-
ror between the magnitudes of the reconstructed and
actual displacement vectors versus o? is plotted in Fig-
ure 12, where it is readily seen that the reconstruction
error is fairly constant for the last 1.5 decades of o2.
This result means that our reconstruction method is
fairly robust to the choice of ¢2 provided that o2 is in

(b)

Figure 11: 3-D tag interpolation error: (a) volume-rendered 3-D version; (b) long-axis section; and (c) short-axis
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(¢)

the proper range.

5 Discussion

In this paper we presented a method for recon-
structing the 3D displacement field of the heart on
a regular 3D lattice from planar tagged images of the
myocardium. This method uses a multidimensional
stochastic model for the displacement field and the
Fisher estimation framework to reconstruct a displace-
ment vector at each point the lattice.

Simulation results show that the reconstruction
accuracy is comparable to other methods proposed
in [12, 11]. The reconstruction algorithm, however,
smooths over discontinuities causing an increase in er-
ror at the boundaries of the myocardium. We plan
to address this problem in future work by solving the
reconstruction equation only at points inside the my-
ocardium. Another area for potential improvement is
the development of more sophisticated stochastic dis-
placement field models that incorporate a divergence-
free constraint, spatially varying process noise vari-
ances and deterministic heart models.

Other areas of future work include application of
our reconstruction methods to actual MR cardiac im-
ages and use of the reconstruction error covariance in
Equation (16) to determine the minimum number and
placement of tags to achieve a given reconstruction ac-
curacy.



(b)

Figure 10: Wireframe rendering of simulated (prolate-
spheroidal) left-ventricle: (a) initial configuration; (b)
deformed configuration.
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