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An Active Contour Model for Mapping the Cortex

Chris A. Davatzikos and Jerry L. Prince

Abstract—A new active contour model for finding and mapping
the outer cortex in brain images is developed. A cross-section of
the brain cortex is modeled as a ribbon, and a constant speed
mapping of its spine is sought. A variational formulation, an
associated force balance condition, and a numerical approach are
proposed to achieve this goal. The primary difference between
this formulation and that of snakes is in the specification of
the external force acting on the active contour. A study of the
uniqueness and fidelity of solutions is made through convexity and
frequency domain analyses, and a criterion for selection of the
regularization coefficient is developed. Examples demonstrating
the performance of this method on simulated and real data are
provided.

1. INTRODUCTION

ETERMINING the location of the brain surface from

MR images is often a first step in brain visualization
[11, [2], quantitative analysis of brain properties, multimodal
registration [3], and mapping and unfolding the cortex [4]-[6].
Contours representing the brain outer surface are usually
determined either automatically through edge detection and
linking [7], [8] or contour following [9], [10], or are drawn
by hand [4]. Typically, edge detection methods suffer from
the identification of either too few or too many edge points,
creating problems in edge linking. Contour following methods
are typically not very robust to noise and cannot easily be
made to satisfy known boundary conditions. Finally, hand-
drawn contours require a great deal of time and are generally
not reproducible.

An alternate and potentially very powerful approach based
on active contours [11]-[16] has been adapted to brain surface
extraction by several investigators in recent years [17]-[20].
In this approach, an initial curve is placed somewhere near
the cortex. By modeling this initial curve as a physical object,
which is called an active contour, and the data as an external
force to which the object is attracted, an iterative procedure
is initiated to cause the active contour to move toward the
data and ultimately conform to it. An active contour algorithm
is characterized by three parts: 1) a model of the internal
forces, e.g., elasticity and bending moments, which describes
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the active contour as a physical object; 2) a model of the
external forces which describes how the active contour is
attracted to the data; and 3) an iterative procedure which
attempts to find the configuration that best matches both the
internal and external forces. This contour should satisfy a
force balance condition, which are the Euler equations of a
variational formulation, and should also minimize the energy
function of this same formulation.

Active contour methods offer several advantages. First, an
active contour is modeled directly as a curve and is maintained
as a curve throughout the iterative process that deforms it
toward the final solution. Thus, characteristics of the desired
curve such as its length, curvature, and conformation to the
data can be evaluated or imposed as an explicit part of
the algorithm. Second, an optimality criterion involving both
intrinsic properties of the curve and the curve’s relationship to
the data is specified, and an optimal solution is sought. Third,
an explicit map between the curve and the unit interval is
generated automatically. Such a map can be used to determine
properties of the cortex such as lengths, tangents, normals, and
curvature using the theory of differential geometry. A final
benefit of this approach is that it can be readily extended to
3-D by defining deformable surfaces instead of curves. Some
work along these lines has already been reported [21]-[25].

A potential weakness of active contour methods is that their
convergence properties are poorly understood. The two central
questions are: will the active contour algorithm converge
to a unique solution, and if so, will this solution be near
the truth? Some grasp of the answers to these questions is
essential if active contours are to be used for either a scientific
or clinical objective. Several authors have begun to study
convergence (cf., [12], [26]-[28]). It has been determined that
active contour models are nonconvex and that solutions are
often local rather than global minima.

In this paper, we present a new active contour algorithm for
ribbons (ACAR), which is specifically designed for mapping
the human cortex. The model uses only elastic internal forces
and is therefore classified as a string model. The more common
snake model [12] has bending moments, which we believe
are undesirable for brain mapping where conforming to the
sharp folds of the sulci is highly desirable. The external
force used in ACAR is motivated by the fact that the cortex
has a nearly constant width (around 5 mm) throughout its
extent. We require that if a small disk centered at a point
on the active contour rests entirely within the cortex, it
experiences no external force; if, on the other hand, a portion
of the disk intersects adjacent tissue, the disk experiences a
force drawing it back toward the cortex. This external force
represents a significant departure from that of snakes for two
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Fig. 1. A ribbon C is defined by its central layer a(s) and its thickness
w. The point x is close enough to the curve so that its neighborhood A'(x)
intersects C, and its center of mass function c(x) is defined.

reasons. First, it is derived from an integration of the image
data rather than a differentiation. This integration leads to a
certain degree of robustness to noise which we demonstrate
in simulations. Second, our external force is designed to draw
the active contour toward the spine of a ribbon, not toward
a boundary between two objects as in snakes. This is a
fundamental difference which precludes direct comparison of
the performance of ACAR to that of snakes.

The remainder of this paper is organized as follows. In
Section II, we introduce the terminology and notation of
ribbons and define a new external force designed for ribbons.
In Section III, we present our new algorithm ACAR, which
is motivated by an intuitive force balance condition and
completed by the development of an associated variational
principle. A condition on the regularization coefficient which
guarantees both uniqueness and fidelity of ACAR solutions
is developed in Section IV. In Section V, we give examples
of the performance of ACAR using both simulated and real
data, and finally in Section VI, we summarize our results and
discuss directions for future research.

II. PRELIMINARIES

A. Ribbons

In a cross-sectional image of the brain, the band of cortex
beneath the outer cortical surface is continuous and has nearly
constant thickness. This type of object has been studied in
the computer vision literature [29], [30], where it is called a
ribbon. A ribbon can be defined using its spine, which we
define as the constant speed plane curve a(s), and a thickness
w(s), both defined on the unit interval [0, 1]. As depicted in
Fig. 1, the ribbon is the set between two boundary curves, and
is given by

C ={x € R?|x = a(s) + Aw(s)N(s)/2,
0<s<1,-1<A<1),

where N(s) is the unit normal vector of a(s).

The goal of our algorithm is to find the spine of a ribbon
using an active contour algorithm. The following observations
are relevant to this goal:

1) The spine of a ribbon is a curve parameterizing its

skeleton. It is therefore possible to approach this problem
as one of skeletonization followed by parameterization.
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Most skeletonization methods, however, are sensitive
to noise and presegmentation errors (cf., [31]-[34]),
both of which are inevitable in any medical imaging
problem. Under these conditions, it is highly likely that a
skeleton could not be parameterized as a simple curve. In
contrast, an active contour is a simple curve by definition
and maintains this topology throughout the numerical
procedure.

2) The constant speed curve is unique among all possible
parameterizations of a curve. In addition to providing
a unique solution, the constant speed parameterization
is highly desirable in brain mapping and registration
applications since it preserves relative distances. This
simplifies the calculation of intrinsic metric properties
of the cortex such as length and curvature.

3) The spine does not lie on a boundary between two
objects. This means that snakes are not directly appli-
cable to this problem since their external forces seek a
boundary.

B. A New External Force

Consider the point x with circular neighborhood N(x)
of radius p as shown in Fig. 1. The intersection of the
neighborhood with the ribbon forms a crescent-shaped area
with center of mass ¢(x). We define the external force acting
on x to be the vector ¢(x) — x. This force draws x toward the
ribbon. If the neighborhood is completely within the ribbon,
then the force is zero and the point is not compelled to move.
In this case, if the diameter of the neighborhood is equal to
the thickness of the ribbon, then x is, by definition, on the
ribbon’s skeleton. In this way, our new external force attracts
points to the skeleton of a ribbon.

There are several points to consider in this definition of
external force. First, in order that there is a center of mass,
there must first be a mass. It is implied above that a ribbon has
constant mass on the ribbon and zero mass off the ribbon. In
this case, it is sufficient to define the mass function as just the
indicator function of a ribbon. This, in turn, implies that a brain
image is first segmented into cortex (the ribbon) and noncortex
regions. It is certainly possible to define a ribbon in this fashion
and to run our algorithm on this type of presegmented data.
But, is also possible to run our algorithm directly on the raw
image by defining a different mass function. For example, in
our magnetic resonance experiments (see Section V), we define
the mass function at each pixel as the posterior probability
that pixel belongs to gray matter. In the ideal case of perfect
observations, this reverts to the indicator function; but with
noisy observations this defines a kind of “soft” mass function
having values between zero and one. In either case, the center
of mass is well defined and provides a valid definition of
external force.

A second consideration involves the choice of neighborhood
radius p. Ideally, to have the external force become zero
only on the spine, we require either a variable radius which
conforms to the local ribbon thickness or a constant-thickness
ribbon with thickness w = 2p. It is also important to note
that the center of mass is undefined if the neighborhood
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does not intersect the ribbon. For our theoretical analysis in
Section IV, we assume that the ribbon has constant width
w, the neighborhood radius is p = w/2, and that the active
contour is close enough to the ribbon so that the centers
of mass are defined. For our experiments in Section V,
however, we use a multiresolution approach wherein the
neighborhoods start out large and then shrink as the active
contour approaches the ribbon. The final neighborhood size is
constant, an approximation to the average width of the ribbon.

A final point to consider is the way in which the external
force on an active contour point changes as the point moves
toward the ribbon. Most importantly, the center of mass moves
as the point moves; thus, the point of attraction of a given point
is always changing. This is really just a consequence of the
fact that the collection of forces defined on all the points in
the plane comprise a vector field defined in spatial coordinates
rather than material coordinates. In this way, our external
forces are analogous to the forces implied by the gradient field
of filtered images used in [12].

Kass et al. [12] also introduced the notion of control
points, in which stationary points within the image attract
particular points on the active contour. This defines a material
field, which is handled in quite a different analytical and
computational fashion. In Section V, we introduce a new
approach to control points that augments the spatial forces
rather than the material forces. This approach shows improved
mapping of the sulci and opens up a new area for future
research.

III. ACTIVE CONTOUR ALGORITHM FOR RIBBONS (ACAR)

Active contour algorithms are traditionally developed by
formulating an energy function and then using calculus of
variations to find the Euler equations representing its equilib-
rium force balance condition [12]. Here, we work backwards,
finding a force balance condition and then deducing the
required energy function. Although the force balance condition
is all that is required for implementation, the variational
framework provides physical intuition, allows us to select
fundamental constants, and permits us to contrast this approach
with that of snakes.

A. Force Balance Condition

We start by modeling an active contour as a collection of
points X; = [z;,%]T, i = 0, ---, N, where z; = z(i/N)
and y; = y(i/N). The positions of the endpoints are assumed
to be fixed and known, i.e., Dirichlet boundary conditions,
and given by xo = (a,7) and xy = (3, §). Now consider a
free (nonboundary) point X; on the active contour. If the sole
force exerted on this point were the external force directing
it toward its center of mass ¢; = c(x;), then it would move
directly toward the ribbon independently of the other points
on the active contour. But what of the connectivity of curve
and the desired isometry of the result? To encourage these two
properties, spring forces acting between consecutive points on
the active contour are introduced. Two terms per free active
contour point, these forces act in the direction of the neighbors
with strength proportional both to the neighbor’s distance and

to a spring constant K. These forces comprise the internal
forces of the active contour.

Given the definitions of both the external and internal forces,
we define the solution to ACAR by the requirement that
each free point on the active contour obeys the force balance
condition

[e; — %] + [K(Xig1 — %) + [K(x:-1 — x:)] = 0,
i=1,--- N-1. )

It is convenient to restate the collection of force balance

conditions in matrix form. The free points of a discrete curve
are represented by the vector

T T T T

d=[z1,91, -, anv-1,yv-1] = [x1, - xyo], Q)

and their centers of mass by

f£(d) =[cf,---,en]™ ©)
Then, (1) forz =1, ---, N—1 can be written as
d-f(d)+ KAd = Kb, @
where
b =[aa)6’07"' a01’7>6]T7 (5)
[ 2 0o -1 0 07
0 2 0 -1 I
A= -1 0 2 0 0 ) ©)
0 -1 0 2 P |
L6 -~ 0 -1 0 2

Because f depends on d, this equation is nonlinear in d
and cannot be solved by standard large-scale matrix inversion
techniques.

B. Modified Gauss-Seidel (MGS) Solution

The numerical procedure we use to solve (4) is a mod-
ification of the standard Gauss-Seidel approach for solving
large linear systems. While certainly not the only approach
for solving this nonlinear equation, it has both intuitive and
theoretical appeal which should become clear during the
following discourse.

Consider an iterative approach in which f(d) is temporarily
fixed for a given d. In this case, the force-balance equation
becomes

d-f+ KAd = Kb, Q)

which is linear in the unknown d. While it is now possible to
solve for d in a single step, it is also important to recognize that
(7) represents a crude linearization of the true force-balance
equation and is only valid for d near the one for which f
was fixed. Therefore, upon fixing f, our approach takes only
a single Gauss-Seidel iteration toward the solution to (7). At
the k-th iteration, this step is given by (cf., [35])

X = K + 1) 7Y ek + K(xb, +xE @®)
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for s = 1, ---, N—1. After all the points are so updated, the
center of mass function is resampled, ie., f is recalculated
given the new active contour. This two-step procedure, which
we call modified Gauss-Seidel, is repeated until convergence.

C. A Variational Framework for ACAR

Physically, a force-balance equation is a necessary condition
that minimizes an energy [36]. It is both interesting and
useful to determine the variational principle that gives rise to
ACAR. For example, it is interesting to see how the external
energy term differs from that of snakes. It is useful to find
the fundamental regularization parameter K which underlies
the problem and to examine the conditions under which the
problem is convex.

It can be shown that MGS is a so-called explicit step (cf.,
(37]) in the solution of the following pair of nonlinear partial
differential equations:

z(s) — ula(s), y(s)] - Koz(s) =0
y(s) — v[z(s),y(s)] — Koy(s) =0

where K = KoN? and [u(z(s),y(s)],v[z(s),y(s)] is the
center of mass in the neighborhood of the point [x(s), y(s)].
We can therefore view MGS as the solution of a variational
problem for which (9) are the Euler equations. The constant
K is a fundamental (regularization) constant in this formula-
tion, independent of IV, the number of points used to represent
the continuous active contour.

Euler equations arise as the variational derivative of an
energy function £ which depends on the functions z(s) and
y(s) used to represent a continuous active contour (cf., [38]).
It can be shown that (9a) and (9b) are Euler equations if

(%a)
(9b)

E=¢r+¢&E (10)
where
1
Ep =2 / Plz(s),y(s)]ds (11a)
0
1 2 2
&5 =Ko / {(d”;(s)) + (dy(s)) }ds, (11b)
0 S ds
and
OP(z,
(‘(; v) =z — u(z,y), (12a)
oP
g;’y) =y —v(z,y). (12b)

The first term £ is an energy term corresponding to the
external forces, and the second term g is an energy term
corresponding to the internal elastic forces.

From (12), we see that P(z,y) is a potential function whose
negative gradient defines our external force field. But it is
not always possible to define P(xz,y) given arbitrary data
u(z,y) and v(z,y). This is true since 92P(z,y)/0zdy =
8% P(x,y)/8y Oz must be true, which implies that (12) is valid
only if

uy(z,y) = va(z,y). (13)
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Another way to state this problem is to note that any vector
field which is the gradient of a potential function must be
irrotational, which is not true in general. This difficulty is
strictly of theoretical concern since ACAR is defined by
its Euler equations, not by a variational formulation. We
have, howevér, determined that the field is approximately
irrotational—and therefore that this variational framework is
accurate—in two circumstances: 1) when the active contour
is very close to the spine and the neighborhood diameter
is approximately equal to the width of the ribbon; and 2)
when the ribbon has no sharp bends and its intersections
with a circular neighborhood are circular arcs. In our study
of convexity in Section V, we implicitly assume that one of
these conditions holds.

Although P does not need to be calculated to solve ACAR,
it is instructive in our simulations to determine the final energy
E of an active contour. (We note that since the final active
contour is near the spine in this case, the field is nearly
irrotational and the variational framework is accurate.) From
(12), we can deduce that the total differential of P is

dP(z,y) = [z — u(z,y)] dz + [y — v(z,y)] dy.

Then, from vector integral calculus (cf., [39]), it follows that
Pa,) = Plau) + [ lo= ulg,h)ds
c

+/[h —v(g,h)]dh, (14)
c

where £ is any path originating at Xo = (%o, %o) and ending at
x = (z,y). Thus, P is completely determined by knowledge
of P at a single point Xo and of w and v along any path
connecting Xg to X. Suppose we choose xg = a(0) and set
P(zo,y0) = 0; then, it is easy to deduce from (14) that P is
zero on the entire spine. Therefore, P(z,y) is determined by
any path leading from any point on the spine to x.

A particularly useful path that takes x to a point on the
spine is given by the so-called line of flow of the vector force
field F = c(x) — x originating from x. This is the path that a
particle at x would follow if F were a time-invariant velocity
field. A parametric expression for the line of flow originating
from x can be found by solving

W _ Fulg(e), hio) 152
P _ Fylgte),hio), (15b)

for g(¢t) and h(t) subject to the boundary condition
[9(0),R(0)] = (=z,y). Thus, P(z,y) can be determined
using (15) to find £ and (14) to integrate the field backwards
over this line of flow. A numerical procedure can be readily
developed to combine these operations into a single iterative
procedure that is applied to each point (z, ).

IV. UNIQUENESS AND FIDELITY

The selection of the regularization constant K, essentially
a spring constant, is critical to the overall performance of
ACAR. If chosen too large, the active contour may not be
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able to conform to the ribbon, and fidelity is lost. If chosen
too small, the points become separated, and both isometry and
uniqueness are lost. In this section, we analyze both uniqueness
and fidelity of ACAR as a function of Ky, and provide a
guideline for its selection.

A. Convexity

In this section, we consider the convexity of £, a discrete
approximation to &, noting that if £ is convex, then it has a
unique global minimum. In the common least squares problem
of estimating = under the model Az = b, convexity is
guaranteed regardless of the data b. In contrast, since the
Euler equation (4) is nonlinear, the convexity of £ depends
on the data. Therefore, in order to discuss convexity, it is
necessary to make assumptions about the nature of the true
object. Our guidelines were to make the least restrictive yet
workable assumptions, and under these assumptions, our main
theoretical result of this section is that £ is guaranteed to
be convex if Ko > Kpp, where Kip is determined by
the ribbon and is defined precisely below. The inevitable
deviations from our assumptions make this lower bound ap-
proximate in practice. However, our experience has shown
very good agreement between theory and practice, even under
nonideal circumstances. Experimental evidence supporting this
observation is given in Section V.

Here are our assumptions. First, we assume that the ribbon
has constant thickness w and that its indicator function is
known and used for center of mass calculations. Second, we
assume that each neighborhood intersects a single boundary
curve of the ribbon. Third, we assume that the boundary curve
intersecting a given neighborhood is exactly a circular arc
within the neighborhood.

Using finite differences to approximate the required deriva-
tives, a discrete approximation of £ is given by & (d) =
Er(d) + Ep(d) where

2 N
Er(d) = ¥ Z: P (16a)
. N-2
&p(d) = KoN Z [(xH—l - x;)

1=1

+ (Wit1 — ui)?]

+ K()N[(.Tl . a)2 + (IN—I - ﬁ)z

+ (=% + (yv-1 - 67 (16b)

In these equations and for the remainder of the paper, we adopt
the convention that a superscript ¢ applied to u, v, or any of
their derivatives means that the function is to be evaluated at
(Ti,9:), €.g., ub = u(x;,y:). This is done so that we may use
the subscripts = and y to denote partial derivatives.

For £(d) to be strictly convex at d, the Hessian matrix H
of £ (d) must be positive definite at d. From (16), we see that

H=Hr+H E,
and from standard matrix analysis [40], it follows that

/\min(H) 2 )\min(HF) + )\min(HE)' (17)

Since H is positive definite if its minimum eigenvalue is
greater than zero, a sufficient condition for the strict convexity
of £(d) is given by

/\min(HF) + )\min(HE) > 0. (18)

Finding expressions for Amin(Hg) and Apin(Hr) and solv-
ing (18) for the regularization coefficient K, provides our
convexity condition.

From (16a), we see that

Hg = 2K,NA, (19)

which has a minimum eigenvalue of Ayui,(Hg) = 2
KoNAmin(A). To find Aynin(A), we note that we can write
the free variables of an active contour using the vector
d’ = [z1, -, ZN-1,U1, -, yn—1]T. With this ordering, the
Hessian becomes Hy = 2KoNA’, where

B| O
Al=|——|— ], (20)
0| B
and B is a symmetric Toeplitz tridiagonal matrix whose first
row is [2, —1, 0, ---, 0]. It is readily demonstrated that the
eigenvalues of A’ coincide with those of B, and that those of
A’ coincide with those of A. Also, since B is tridiagonal and
Toeplitz, its eigenvalues can be calculated through a recurrence
formula [41]. Putting these facts together yields
Amin(A') = 2 — 2cos (7/N), @1
and therefore
Amin(Hg) = 2KoN(2 — 2cos (w/N)). (22)

Turning now to Hp, we note that since
oP; 0P,
dz; ~ Oy,

it follows that Hy is block diagonal with blocks

=0 i#],

D; = {”" 7} i=1,--,N~1.

Y Ui
The elements of D; are given by
=222y,
- 8(13; W) g 6(3’8; v) = —2u = 20,
s :2%’;;—”1) =2(1 - vi).

The eigenvalues of Hp can be determined by finding the
eigenvalues A;; and A;2 of the N—1 matrices D; by solving

A — (0 + )X + oty — (1:)2 =0,

Because o0;, i, and v¢; depend on the gradient of c;,
the local shape of the ribbon must be considered. Here, we
use the assumptions that a neighborhood intersects only one
boundary curve of the ribbon and that within this intersection
the boundary is exactly a section of a circular arc. Consider

i=1,--,N—1.
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the local geometry in which the center of this circular arc is
the origin, as shown in Fig. 2. It follows that the spine is also a
circular arc with a fixed radius, say R, and that the point x; and
its center of mass c; lie on the same radial line. As is shown in
Fig. 2, the polar coordinates of x; and ¢(x;) in this coordinate
system are (r;,¢;) and (r; + n(r;), ¢;), respectively, where
n(-) is a function depending only on the radial coordinate. To
simplify our notation, we refer to n(r;) as n’, and use n}. and
nl, to denote its first and second derivatives with respect to
r;. Using this approximation and notation, it can be shown
after some algebra that

2 .
Al = N (=n}), (23a)
2 nt

n=—=1-—), 23b

A2 v ( Ti) (23b)

fori =1, ..., N—1. It follows that the minimum eigenvalue
of Hp is

/\min(HF) = min{/\ﬂ,)\ig, 1= 1,--~,N——l}. (24)

Combining (24) and (22) with (18), we have that £ is convex
if

% min {—n.,—n'/r;} + 2KoN[2 — 2cos (n/N)] > 0.

Therefore, £(d) is convex if Ko > Krp where
—min {-n, —n'/r;}

Kip = N2(2 —2cos(n/N))"

(25)

The following remarks are made to clarify and interpret

this result:

o Sharp Lower Bound: If Ky > Kig, then from the above
argument £(d) is guaranteed to be convex. But it is
also possible that K chosen smaller than the bound will
yield a convex problem. Thus, our convexity condition is
sufficient, but not necessary. In practice, the sharpness of
this bound depends on the ribbon.

» Numerator of Lower Bound: The radial function n(r;) is
implicitly a function of both R and p, as well as r;, but in
fact may be considered to be a function of just the ratios
r;/p and R/p. Using formulas derived in [42], in Fig. 3
we plot —n? and —n'/r as functions of r; /p for different
values of R/p, assuming that p < w/2. We conclude
that \;; is always positive and that ;2 can be either
positive or negative. Since K is greater than zero by
definition, from (25) we see that positive eigenvalues pose
no constraint whatsoever. Therefore, K is constrained
only when A;2 is negative. From Fig. 3, we see that this
occurs only when the ribbon boundary curves toward the
neighborhood (as in Fig. 2(b)) and that \;> goes increas-
ingly negative with increasing distance between the spine
and the neighborhood. Also, the slope is largest when the
ribbon curvature is largest. We therefore conclude that
Ky is determined at the ribbon’s strongest curve by the
most distant inside neighborhood.

* Denominator of the Lower Bounds: From the denomina-
tor of (25) it appears at first glance that the lower bound
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Fig. 2. Two possible geometries for the intersection of a small neighborhood
with an annulus.

can be made arbitrarily small by increasing N. This is
not true, however, as it can be shown using a series
expansion of the cosine function that limy o, N 2-2
cos (m/N)] = 72. In fact, this sequence converges quite
rapidly so that for typical N we can approximate Kip
in practice by

{—ni,~ni/ri}.

* Nonconvex Domain: We have shown that the energy
function £(d) is convex when Ky > K. Since £(d)
is only defined when the neighborhoods intersect the
ribbon, however, this restricts d to a domain D, and D
is generally not convex. Therefore, despite the convexity
of the energy function, a descent algorithm (of which
ACAR is one) will generally “get stuck” at the boundary
and not reach the global minimum. To get around this
problem, we have implemented two approaches based on
temporarily redefining the energy function itself. The first
approach allows the active contour to go outside of D
by redefining the external forces so that a point whose
neighborhood does not intersect the ribbon simply feels
no external force. The second approach redefines D by
increasing the neighborhood size so the external forces
are always defined. In either case, we expect the active

min

Kip= —r2
B 1<i<N-1

(26)
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(b)
Fig. 3. Plots showing (a) (N/2) A;; and (b) (N/2) A;2.

contour to continue to move closer to the ribbon so that
these changes will be temporary. Through this temporary
action, the active contour is allowed to relocate itself into
a different region of D, which may be closer to the global
minimum.

B. Frequency Domain Analysis

The convexity result above shows how to choose Ky to
assure a unique solution. But how close will this solution
be to the truth? If K, is chosen to be very large then the
problem is convex, but in this case the active contour acts like

a very tight rubber band, resisting all effort to stretch it to
conform to the ribbon. Clearly, if Ky is too large then fidelity
is lost, meaning that the solution is too smooth and the active
contour points do not sit on the spine. In this section, we
study ACAR in the frequency domain and show that it can be
interpreted as a sequence of lowpass filtering operations. The
effective cutoff frequency is determined in part by K, where
a large K, dictates a small cutoff frequency. Thus, if Ky is
too large, the cutoff frequency may be lower than the highest
frequencies in the ribbon, precluding the possibility of accurate
reconstruction. This principle allows us to determine an upper
bound Kyp on Ky below which fidelity is maintained.

Recall that the numerical solution to ACAR involves a two-
step procedure, MGS, which linearizes the nonlinear Euler
equation, takes one step toward the solution of the resulting
linear equation, resamples the center of mass function, and
repeats. The linearized Euler equation (7) has the following
continuous equivalent:

z(s) —u(s) — Koz(s) =0,
y(s) - v(s) - Koy(s) =0.

Using the following Fourier series representations for z(s)
and y(s):

(272)
(27b)

z(s) = Xo + Z {X., cos(2nls) + X, sin(2nls)} (28a)
=1

y(s) =Yo+ Y {Ye, cos(2rls) + Y, sin(2xls)}, (28b)

=1

and analogous representations for u(s) and v(s), it is readily
shown that

X, =H()U,, 1=0,1,---,00 (29a)
X, =HW)U,, [=01,---,00 (29b)
Y, =H() V., 1=0,1,---,00 (29¢)
Y, =H() V,,, 1=0,1,---,00 (29d)
where
1
HO = i xome 30

These equations describe a frequency filter with transfer func-
tion H(l), a first-order discrete Butterworth low-pass filter,
applied to u(s) and v(s). Therefore, we see that MGS performs
one step toward the implementation of a Butterworth filter.
The new curve will be similar to the current center of mass
function, but will have its frequency content more concentrated
in the low frequencies. A similar filtering interpretation of the
snake active contour formulation was derived by Whitten in
[43]. However, in [43], this frequency interpretation was not
related to the selection of Kj, as we now do.

Assume that the active contour is initialized exactly on the
spine, a(s). If a(s) has spectral energy outside the pass-
band of H(l), one step of ACAR will filter some of these
frequencies out, causing the active contour to move away from
a(s). Resampling the center of mass will offset this loss to
some extent, but subsequent iterations will continue to move
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the active contour away from the spine. If, on the other hand,
the spectrum of a(s) falls within the pass-band of H(l), then
an MGS iteration will leave the active contour unchanged, and
a(s) will be the solution of ACAR.

Because H(!) is not a perfect low-pass filter and because
only one step toward its solution is made per iteration, the
preceding argument is only approximate. In fact, since the
filter is applied repeatedly, the effective cutoff frequency of
the cumulative filter is far lower than that of a standard
Butterworth filter. We define this effective cutoff frequency
l. in terms of a parameter ;1 < 1 as follows:

H(l) = (1 - wH(0).
From (31) and (30), and using the fact that ;1 < 1, we obtain

Lo [ SR/
€ 1-u2evKe 2avEKy '

If the spectrum of a(s) falls largely below this effective
cutoff frequency, then ACAR will maintain fidelity. Although
the bandwidth of a(s) may be known or assumed, because
it is the spine of a ribbon it also has a maximum possible
bandwidth. In particular, it is not difficult to see using a simple
geometric argument that spine of a ribbon with minimum
thickness wmi, cannot have a radius of curvature smaller than
Wmin/2. Therefore, the curvature, which is the reciprocal of
radius of curvature, is bounded above by

2

Wmin

(3D

(32)

Ko = (33)
Now suppose that only one frequency has energy. Then
ignoring possible overlap, translation, and the initial starting
point, the coordinate functions must be of the form

z(s) = % cos (Lks) (34a)

y(s) =% sin (Lks), (34b)

where L is the total length of the spine. Since « < k,, the
maximum frequency at which these functions can exist is
Lko/27. Therefore, we conclude that a practical constraint on
the bandlimit of a(s) is provided by

I, < Lo, 35)
- 27
Substituting (33) into (35) yields
L

I, < . (36)

TWmin
A more accurate bound that allows the possibility of energy
in all Fourier coefficients is developed in [44].

We are now in position to specify Kyp. To make sure that
ACAR will not filter out the frequencies present in a(s), we
must have [, < [.. Using (32) and (36), we find that K,
should be selected to satisfy

Ky < Kys, 37
where
2
pwl;
K = min .
UB A2 (38)
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If the maximum curvature Kmay is known to be less than the
upper bound determined by the width of the ribbon, a larger
upper bound can be found by using (32) and (35), yielding

Ky (39)

T L2k2

max

From the above result, we see that, in order to maintain
fidelity, Ko should be small. We know from the previous
section that if K is too small convexity will be lost and the
result will be a local minimum. Interestingly, it turns out that
this phenomenon can also be interpretated in the frequency
domain as aliasing. To show how aliasing occurs when K| is
too small, we consider what sampling frequencies are required
to sample the spine, the active contour, and the center of
mass function. Nyquist’s theorem specifies that in order to
adequately sample a(s), the sampling frequency [, must be at
least 21,. At some point during the iterative process, however,
the active contour itself may contain higher frequencies than
the spine, so we must, in general, choose a sampling frequency
higher than that required by the spine. If the filter imposed
by ACAR were ideal, then a sampling frequency of [, =
2l. adequately samples the active contour at the output of
this filter. But even this sampling frequency may not be high
enough because the center of mass function of this same
active contour may have even higher frequencies present.
We note that if aliasing of the resampled center of mass
function occurs—and this depends on N, Ky, and the ribbon
itself—high frequencies will be mapped into low frequencies
and the effect will never be filtered out. Therefore, aliasing
causes convergence to a local minimum.

C. Selecting the Regularization Constant

From the previous two sections, we know that convexity
is maintained if Ko > Krp and fidelity is maintained if
Ky < Kyg. Clearly, the ideal circumstance would have
Kigp < Ko < Kyg. But we have found that Kip is less
than Kyp only when the ribbon turns very gently. Thus, in
practice, we cannot expect to ever satisfy both conditions
simultaneously, and a trade-off must be made. In this case,
we can take Kyp < Ky < K. If K is selected near Kyp
then the active contour points will move very near to the spine,
but might be separated and isometry might be lost. If K is
selected near K1 p then the points will be equally spaced but
the active contour will be too tight, an overly smooth version
of the spine. We note that since the lower bound is a sufficient
condition, it is possible to choose K lower than Kip and
still have a convex problem. However, if Ky > Ky, then
oversmoothing is guaranteed to occur. Thus, if Kip < Kup
then K¢ should be chosen close to Kyp rather than close to
KLB~

V. EXPERIMENTAL RESULTS

In this section, we present a set of experiments with both
synthetic and real data. First, we experimentally confirm our
theoretical lower and upper bounds for ACAR. We then
demonstrate its overall performance for different choices of
Ky and N, showing the effects of oversmoothing and aliasing.
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Fig. 4. An annulus of thickness w = 6 and radius R = 60 used in the
experiment of Section V-A.

We then adapt the mass function to gray scale images and
show how ACAR is robust to noise. Finally, we apply ACAR
to magnetic resonance brain images, demonstrating its use in
mapping of the outer cortex.

A. Confirmation of Bounds

In this section, we examine the performance of ACAR on
a very simple ribbon, an annulus created using a semicircular
spine with radius R = 60 dilated to obtain a ribbon with
thickness w = 6, as shown in Fig. 4. (All physical dimensions
in this section are in units of pixels). The number of points
in the contour was N = 50 and the neighborhood radius was
p = 3. The bounds for this ribbon are Ky 5 = 1.7 x 1073 and
Kuyp = 1.0 x 1073, assuming p = 0.01 (see (32)). Clearly,
there is no K that will simultaneously satisfy both bounds.

We ran a series of simulations using different values of Ky
for two different initial configurations: a nonsplit and a split
configuration. The nonsplit configuration has its points almost
uniformly spaced on a semicircle of radius 57, except that its
endpoints are fixed to the truth. This is a curve that is very
close to the true spine. The split configuration is also on a
semicircle of radius 57 with endpoints fixed to the truth; but
its points are split so that nearly half of the semicircle contains
no points at all. Since this configuration is far from the spine,
we expect the active contour to be trapped in local minima for
small K’s. We note that this initial active contour is unlikely
in practice and was chosen here for theoretical verification.

We use two measures of error to assess the performance of
ACAR. The first measure is the fractional change in energy
of the final active contour with respect to the energy of the
true spine

F = (€ £)/a.

We note that if this measure is positive, then we can conclude
that the energy function is not convex; if it is negative,
then we can conclude that a(s) is not the global minimum.
Our second measure is the maximum distance in the radial
direction between the spine and the final active contour. To
make this computation, we assume that active contour points
are connected by line segments and resampled so that no
two points are separated by more than a prespecified small
distance. This measure represents a worst-case performance
since it focuses locally on the poorest fit between the final
active contour and the spine.

Performance results are presented in Fig. 5, where we see
three distinct regions corresponding to Ky small, medium,
and large. In the central range where 10~% < K < 1073,
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Fig. 5. (a) Plots of the maximum error between the spine and the ACAR
solution as a function of Ko for a nonsplit and a split initialization of the
active contour. (b) Plots of the fractional change in energy F as a function
of the regularization constant Ko for the same two initializations.

the maximum error is constant and small as is the fractional
energy change F. In this region, the active contour performs
very well. As K drops below 10~°, F begins to grow positive
for both initializations. This indicates that the active contour is
converging to local minima. However, the max error does not
begin to grow until Ky approaches 1076, and then only for
the split initialization. This tells us that local minima exhibit
themselves primarily as a loss of isometry, i.e., splits between
the points begin to occur. The nonsplit configuration does not
suffer this because of its very particular initialization.

When Ko > 1073, several interesting phenomena take
place. First, the split initialization curve makes an abrupt
transition in both the maximum distance error and the frac-
tional energy change plots. The nonsplit curve makes a similar
transition at about 102, This transition means that the active
contour has left the domain D in which the energy function
is defined, that is, one or more neighborhoods no longer in-
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tersect the ribbon. When this happens, our algorithm has been
programmed to provide zero external force on the affected
neighborhoods and zero external energy contribution to the
overall energy. As explained in an earlier section, it is hoped
that in doing this the active contour may drift back into D
and approach a(s) again. This does not happen for very large
Ko’s, however. Instead, both curves ultimately collapse to a
line segment joining the endpoints of the ribbon. The presence
of these sharp transitions represent a catastrophic failure, a
strong divergence from the truth, and a situation to be avoided
at all costs.

The theoretical bounds are also indicated on the plots in
Fig. 5. We first note that Kyp sits right at the point where
catastrophic errors begin to take place. It is a very good
upper bound on K for this example. We next note that K1
sits in the region of catastrophic failure. However, since this
bound was derived as a sufficient condition, it is possible
that the problem is also convex below this bound. In fact,
from Fig. 5(b), we can conclude that the problem is definitely
nonconvex when Ky < 1074 (since F is positive), but is
possibly still convex above this value. For this example, any
value between 0.1Kyp and Kyg is a good choice for Kj.

B. Overall Performance

In this section, we examine the overall qualitative and quan-
titative performance of ACAR on a more realistic object. In
this section, the ribbon, as shown in Figs. 6-8, is a modulated
semicircle with nominal radius R = 60 and thickness w = 6,
both in units of pixels. The formula for the spine is

z(s) =0 — {R+ [r, + a cos (bns)]

-cos(2Mms)} cos ws (40)
y(8) =yo + {R+ [ro + a cos (brs)]
-cos (2Mns)} sin 7s, 41

where, in this set of experiments, the parameters were 7, =
7,a =3,b=2 M =6, 1z, = 125, and y, = 50. The
initial curve is a constant velocity semicircle with the true
end-points, as shown in Fig. 6(a). The neighborhood size is
not large enough to guarantee intersection with the ribbon for
all points in the curve. Therefore, we use a larger neighborhood
size in the initial iterations and lower this size incrementally
until all neighborhoods intersect with radius p = 3. Thereafter,
the neighborhood size remains constant.

1) Qualitative Assessment: Fig. 6(b) shows the ACAR so-
lution for Ko = 8 x 1077 and N = 230, which together
represent empirically “good” parameter choices for this ribbon.
Fig. 7 presents the results of K too large and too small
for the same N. In Fig. 7(a), we show the solution when
Ko = 1 x 107*, which corresponds to an overregularized
ACAR. The oversmoothing is apparent, especially near the
sharp foldings of the boundary. As explained in Section IV,
this oversmoothing occurs because high frequencies, which
were shown to correspond to high curvatures, are filtered out.
Fig. 7(b) shows the solution when Ky = 3 x 10~8, which
specifies an underregularized problem. Because the energy
function is not convex in this case, the active contour is
trapped in a local minimum. We have found through numerous
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Fig. 6. (a) The initial configuration of the active contour superimposed on
the synthetic ribbon. (b) Final curve for Ap = 8 x 107",

(b)

Fig. 7. (a) The final curve obtained through ACAR for Ko = 1 x 10~4.
This curve corresponds to an overregularized problem. (b) The final curve
obtained through ACAR for Ko = 3 x 10~*. This curve corresponds to an
underregularized problem.

simulations that local minima correspond to curves that contain
splits, i.e., points that are separated by large gaps. We can
clearly see this kind of behavior in Fig. 7(b), especially close
to the sharp foldings of the ribbon. One practical solution to
this problem would be to redistribute the points near each split.
This new curve will have higher energy, but resampling the
center of mass function from this new position will allow the
curve to move toward the desired solution, thus bypassing the
local minimum.

In Fig. 8, we show the effect of undersampling the active
contour. Using Ko = 4 x 1075 for both examples, the
result of sampling the active contour with N = 100 points
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(a)

(b)

Fig. 8. The problem of undersampling and aliasing: L\ is the same for both
(a) and (b), but the active contour was sampled with 100 points in (a) and
with 60 points in (b).

is shown in Fig. 8(a), and the result when N = 60 is shown
in Fig. 8(b). The curve in Fig. 8(a) is a reasonably good result
with some evidence of a problem at the two sharp folds nearest
the boundary points. In Fig. 8(b), however, the final curve
contains two strong splits at these sharp folds. The reason
these splits did not occur in Fig. 8(a) is because the higher
frequencies introduced at each center of mass resampling stage
did not cause aliasing. Furthermore, these high frequencies
were largely filtered out by the subsequent MGS iteration,
preventing a cascade of subsequent aliased curves.

2) Quantitative Assessment: From the results in Figs. 6-8,
we see that both K and N affect the performance of ACAR.
To gain additional understanding into the relationship between
these two parameters, we ran a series of simulations and
computed two measures of error: the maximum distance
error and the total area between the true spine and the final
active contour. The area measure gives a global measure of
performance while the maximum distance measure gives a
measure of the worst local performance.

The results are shown in Fig. 9. The area error and maxi-
mum distance error as functions of N for different K’s are
shown in Fig. 9(a) and (b), respectively. A general interpre-
tation of these results is easiest for large Ky since in this
case the energy function is convex. For a convex problem,
convergence to the global minimum is guaranteed, and if
N is large enough, the discrete solution should be a good
approximation of the continuous solution. Hence, the errors
should approach a constant as /N increases, a behavior that is
confirmed in the curves for Ko = 250 x 10~7 in Fig. 9(a)
and (b). For smaller Ky, the prospect of aliasing increases,
especially for small N; therefore, the irregular behavior of
the curves for small N as seen in these figures confirms our
expectation that these curves will be examples of various local
minima. The smaller K, is the longer we would expect the

presence of local minima to dominate as IV increases, a feature
that is confirmed fairly well, especially in Fig. 9(b).

Both Fig. 9(a) and (b) confirm that for N = 230 the best
performance is achieved by Ko = 8 x 1077, i.e., one that is
neither too large nor too small. When N = 100, however, a
larger value, Ko = 80 x 10~7, achieves better performance in
both cases. Aliasing causes this behavior since splits give large
area and maximum distance errors. A lower cut-off frequency
of the MGS iteration provided by the large Ky prevents these
grave results, at least at this point. As IV is made even smaller,
however, larger K’s simply oversmooth the active contour,
leaving no possibility of approaching the true curve.

Fig. 9(c) and (d) shows plots of the area and maximum
distance errors, respectively, as a function of K for various
N’s. These plots demonstrate the existence of optimal Ky's
and the fact that the optimal K decreases with increasing N.
The curves for N = 230 are the most dramatic, showing an
optimal Ko = 10 x 10~7 and rapid degradation on either side.
The other curves for different N’s reveal a similar behavior
on a different scale. We can see then that, in designing an
active contour algorithm for a specific IV, our goal to improve
performance would be to lower K as far as possible without
crossing a drastic performance threshold. Since this threshold
depends on the object, we would not choose such a low K
if we desired robust performance across a family of different
objects.

3) Solution Through FFT: 1t was shown in Section IV that
ACAR can be interpreted as a sequence of filters applied
to the center of mass function with intermediate resampling.
When the contour is closed, this filter can be implemented
efficiently using the FFT. Fig. 10 shows a result from this
FFT implementation applied to a closed ribbon. The initial
configuration is shown in Fig. 10(a), and two intermediate
configurations of the active contour and its final one are shown
in Fig. 10(b)-(d).

C. Grayscale Images and Robustness

One way to treat grayscale images within our current
framework is to segment the image into two objects: an
estimated ribbon and the background (everything else). In this
scenario, noise is simply the misclassification of ribbon as
background or background as ribbon. One can expect that
our algorithm is fairly robust to this kind of error since the
direction of movement of the active contour is determined by
integration. The effects of an occasional mistake would largely
cancel out. Still, the success of this approach is ultimately
linked to the performance of the segmentation algorithm,
which makes both analysis and generalization difficult.

An alternate way to treat grayscale images is to redefine the
mass function, allowing numbers between zero and one rather
than just zeros and ones. The mass may reflect the probability
that the pixel is in the ribbon, or it may reflect a partial volume
contribution from the ribbon, or some combination thereof.
In short, this allows a great deal of flexibility not permitted
by hard segmentation. We sketch here an approach based on
probabilistic classification.

Let A;,2=1,---, K, denote the tissue classes present in an
image and let [{x,y) represent the image intensity. We define
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Fig. 9. Error plots: (a) Area error measure as a function of the number of samples IV, for different choices of Kp. (b) Maximum distance error measure
as a function of N, for different choices of Ko. (c) Area error measure as a function of Ky, for different N’s. (d) Maximum distance error measure

as a function of Ky, for different N’s.

the mass function to be the posterior probability that (z,y)

belongs to A;, the gray matter of the cortex

m(x,y) =Pl‘[(:1,‘, :‘/) € ’\1 II(Z’,y)]
U1z ) | M]PrO)

K
> flI(w,y) [ \]Pr ()

i=1

In our experiments, we assumed the conditional probability

density functions f(-|-) are Gaussian and of the form

_(z,y) — ] }

f[I(way)l’\T:] = 22

1
Vamo {
The means y; and variances o7 might be known, as they are
in our simulations, or not known, in which case they can be
determined through partially interactive statistical methods.

With the above mass function, pixels that are either very
noisy or are heavily partial-volume-averaged should have
small masses; hence, they should not enter significantly into
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©
Fig. 10. The use of FFT for closed ribbons: (a) The initial configuration. (b), (c) Two intermediate configurations. (d) The final curve.

the center of mass calculation or thereby influence the defor-
mations of the active contour. In fact, pixels with the highest
probability of being cortex have the strongest effect on the
active contour. Because of this property, we would expect to
see a certain robustness to noise and partial volume averaging.
This robustness is demonstrated via simulations in Figs. 11 and
12. In Fig. 11(a), we show a noisy image of a simulated cross-
section of the brain. The standard deviation of the additive
Gaussian noise is equal to 25 while the difference between the
intensity values of the white matter (brighter interior) and the
grey matter (ribbon) is 50, yielding an SNR of 6 db. Using the
same initial curve as in Fig. 6 and Ky = 1.9 x 1076, ACAR
converges to the final active contour shown in Fig. 11(b).

To demonstrate robustness quantitatively, we applied ACAR
to the same underlying image with different additive noise
levels. Fig. 12 shows a plot of the maximum distance between
the final contour and the truth as a function of noise standard
deviation. We see that up to a standard deviation of about
30—or equivalently down to an SNR of about 4.4 dB—the
performance is nearly the same. For noise levels above 30,

(d

the performance deteriorates very rapidly. This plot shows the
typical characteristic for robust estimators, in which the esti-
mate is largely independent of noise in high SNR scenarios but
deteriorates rapidly below a certain threshold. This supports
our claim that our active contour algorithm is robust to the
effects of noise.

D. Magnetic Resonance Data

The result of applying ACAR to MR brain data is shown in
Fig. 13. Here we used Ky = 2 X 1077, N =300,w =6, p =
3, and a probabilistic mass function was used. A larger neigh-
borhood was used to start, and was reduced to its final value.
We can see that for the most part, the solution falls very near
to the spine of the outer cortex. It fails to follow the sharpest
foldings of the sulci, however, and completely avoids any mi-
gration into the interior portion of the cortex. Because of this,
one might conclude that K, was too large. But the true reason
for this failing is more subtle: it is because the effective width
of the cortex at the sulci is 2w since two layers of the cortex
are juxtaposed. This allows for the possibility of many configu-
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(b)

Fig. 11. The performance of ACAR on noisy data: (a) The corrupted by
noisy ribbon. (b) The obtained result for the initialization of Fig. 6(a).
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Fig. 12. The performance of ACAR as a function of the noise standard
deviation.

rations that will satisfy the center of mass criterion exactly. Of
these configurations, the curve most favored by the elasticity
term in the energy function will be the smoothest curve, which
is also the curve closest to the outer surface of the brain. For
this reason, our active contour model, as it has been presented,
is suitable only for reconstruction of the outer cortex.

It should be noted that stripping the skull in brain images
alleviates the problem of the active contour initialization. In
particular, in the experiment of this section, the active contour
was initialized at a circular configuration surrounding the
brain. However, in images of poor resolution or low contrast,
a careful initialization of the active contour close to the cortex
would be required to allow convergence to the cortical spine.
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Fig. 13. The final curve obtained through ACAR: The outer cortex has been
extracted, but the active contour failed to follow the sharp cortical folds.

E. Control Points

One of the great strengths of active contour models is in
their ability to accommodate constraints or additional informa-
tion which will influence their convergence behavior in order
to meet a new objective. In this section, we sketch such a modi-
fication, with the goal of improving the previous MR results.

In order to force the active contour to track the sulci, one
might imagine applying new external forces originating from
within the sulci. A particularly effective approach is based on
the idea of control points, originally proposed by Kass, Witkin,
and Terzopoulos in [12]. In their model, the control points are
fixed, manually provided points, each of which is connected
through a spring to a fixed point of the active contour. In our
application, this model can lead to dramatic failures, since we
can not know in advance which active contour point should be
attracted by a given control point. This problem becomes even
more severe because of the convoluted shape of the cortex.
Clearly, a different solution is required.

Here, we propose a new control point algorithm that differs
from that proposed in [12} in two key ways (see also [45]).
First, our control points are allowed to move with the active
contour. Second, we do not impose a fixed relationship be-
tween a given control point and a specific point on the active
contour. Combined, these two properties allow a control point
to lead the active contour into the sulci, rather than force
a particular point on the contour toward a particular point
in the image. This attractive force is provided by defining a
circular neighborhood around each control point. All points on
the active contour within this neighborhood experience a new
force toward the control point in proportion to their separation.

To be effective, the control points must move into the sulci.
To accomplish this, we initialize them close to the initial
configuration of the active contour and then let each of them
move under the presence of two forces. The first force, F¢, is
a constant magnitude force originating from a central point
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Fig. 14. The trajectories of the control points.

X, = (&, y.) of the brain, which is provided manually.
This force reflects the tendency of the sulci to fold toward
the interior of the brain. The second force, F,,, exerted on
each control point is a repulsive force originating from the
white matter underneath the cortex. This second force becomes
active only when a circular neighborhood around a control
point intersects the white matter.

Under the presence of these two forces, a control point
moves radially toward x. until the repulsive force F,, from
the white matter balances F.. This force balance condition
is satisfied at the deep parts of the sulci. An example of the
trajectories that the control points follow is shown in Fig. 14.
As the control points move toward the interior of the brain,
they attract the active contour and force it to sharply fold
following the shape of the sulci. In Fig. 15, we show the final
active contour configuration using control points. From this
figure, we see that the accuracy of the reconstruction and
mapping of the cortical contours has dramatically increased
over that shown in Fig. 13; some deep lying structures are
now captured where they were otherwise completely missing.

VI. SUMMARY AND DISCUSSION

In this paper, we introduced the concept of ribbons for
modeling the outer cortex in cross-sectional brain images and
proposed an active contour algorithm (ACAR) for determining
the spine of such ribbons. Our active contour model has an
external force derived from an integration of the data and
internal elasticity forces. We developed an iterative algorithm
(MGS) to solve the nonlinear force balance equation and
derived a variational formulation which ACAR solves. We
then analyzed the convexity of ACAR, demonstrating that it
can be made convex by choosing the regularization coefficient
Ky larger than a specified lower bound. We next analyzed
ACAR in the frequency domain, showing that spines have a
maximum bandwidth and that K, should be selected below
a certain upper bound in order to preserve the fidelity of the

Fig. 15.

The final curve obtained using ACAR and control points.

spine. Finally, we tested the validity of these bounds and gave
several simulations and experimental results.

Several important insights can be drawn from the results
of this paper. To start, we observed that, in general, there
is no regularization constant Ky which will simultaneously
guarantee both convexity and fidelity of this active contour
formulation. But, we also learned that the problem is made
nonconvex by points far away from the spine on the inside
of the sharpest bend in the ribbon. These observations suggest
that adaptive modification of Ky might be advantageous (see
also [46]-[48]). For example, K could be spatially adapted so
that it was large only where the sharp bends occur. In addition,
K could grow smaller as the active contour approaches the
spine. A combination of these two could lead to an optimal
balance between isometry and fidelity, and make the result
largely independent of the initial configuration.

As formulated herein ACAR penalizes only the first-order
derivative of the active contour coordinate functions. One
might ask whether it would be advantageous to also penal-
ize higher order derivatives. For example, if both first- and
second-order derivatives were included, then there would be
two regularization constants Ky and K;. Accordingly, the
convexity and fidelity of the algorithm would depend on both
K and K. Whether such an extension would prove useful in
the brain-mapping application is still an open question, but our
work herein provides some insight. For example, since large
K would restrict the bending of the active contour, one might
expect poorer fidelity in general. This notion is bolstered by
noting that the Butterworth filter H({) becomes second-order
in this case, implying a sharper transition region and more
high frequency filtering. If the spine is truly low-pass, then this
might be advantageous; otherwise it may be a disadvantage. As
for convexity, one can expect that for a given Ky, increasing
K, could turn a nonconvex problem in one that is convex.

Modification and extension of ACAR is relatively straight-
forward. For example, in this paper, we demonstrated an
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extension to grayscale images and to closed contours. We also
demonstrated an extension to allow detection of sulci using
control points. Modifications to make K, adaptive and to
extend the approach to three dimensions (by defining an active
surface analog) are also exciting possibilities. Qur theoretical
results in this paper do not directly apply to any of these
extensions, unfortunately; but it is hoped that new methods
can be developed to extend the theory as well. In any event,
the active contour framework has enormous potential in brain
imaging and should become an important tool in the future.
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