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A Frequency Domain Performance Analysis of Horn and
Schunck’s Optical Flow Algorithm for Deformable Motion

Thomas S. Denney, Jr. and Jerry L. Prince

Abstract— A frequency domain performance analysis of Horn and
Schunck’s optical flow (HSOF) algorithm for estimation of deformable
motion is presented. Noise sources in the algorithm are modeled using
the discrete Fourier transform of the brightness pattern. This noise model
along with the estimation error covariance function derived in previous
work is used to derive an expression for the expected performance of
the optical flow estimate that is valid for an arbitrary discrete brightness
pattern. Simulation results are presented that demonstrate the validity of
our methods and show that HSOF is more accurate that the optical flow
estimate of Anandan for certain low-frequency patterns.

I. INTRODUCTION

An important application in both image processing and computer
vision is estimating the motion of deforming biological tissues
from image sequences obtained with modalities such as ultrasound,
computed tomography, and magnetic resonance (MR) imaging. The
motion estimation problem in these applications differs from those
typically considered in the computer vision literature in three ways:
1) occlusion does not occur because the image is a 2-D slice of a 3-D
object rather than a 2-D projection of a 3-D object; 2) the motion must
often be estimated from only two image frames because the temporal
sampling is often coarse; and 3) it is possible to modify the spatial
brightness pattern of the deforming object itself—for example, by
changing the acoustic frequency in ultrasound, using contrast agents
in CT, and applying tags in MR [1].

In the case of two-frame motion estimation in the presence of
noise, differential methods such as Horn and Schunck’s optical flow
algorithm (HSOF) [2] are thought to perform poorly relative to
other methods because of the difficulty of approximating spatial
and temporal derivatives of a discrete image sequence [3]. Region-
matching techniques such as Anandan’s optical flow algorithm (AOF)
[4] are generally considered to perform better in this case because no
derivatives are required [3]. Recent research, however, has shown
that for deformable motion with no occlusion, the performance of
HSOF is highly dependent on the brightness pattern of the object
undergoing motion [5], [6], and in applications such as MR tagging
[1] where the brightness pattern of the object can be controlled,
use of the optimal brightness pattern can result in accurate HSOF
estimates of motion. Denney and Prince proposed a brightness
pattern optimization procedure in [6] for a parametric class of
patterns that was based on the estimation error covariance function
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derived by modeling HSOF as a stochastic linear smoother. This
procedure computed the optimal tradeoff between low-frequency
patterns that yield good derivative approximations and high-frequency
patterns that provide good information about the underlying velocity
field.

In this correspondence, we extend the results of [6] by develop-
ing an HSOF performance measure that is valid for an arbitrary
discrete pattern. Noise sources in the optical flow algorithm are
modeled using the discrete Fourier transform (DFT) of the bright-
ness pattern. This noise model along with the estimation error
covariance function derived in [6] is used to derive an expres-
sion for the expected performance of the optical flow estimate
that we call the frequency domain expected performance (FDEP).
We use the FDEP to analyze the HSOF performance of 16 pat-
terns. Our results show that the HSOF performance is primarily
a function of the pattern bandwidth. We then demonstrate that
for certain low bandwidth patterns, HSOF consistently outperforms
AOF.

II. DERIVATION OF THE FDEP

We begin with the stochastic linear smoother formulation of HSOF
presented in [6]. The HSOF estimation error covariance is shown in
[6] to be ™!, where £ is a matrix obtained by finite-differencing the
velocity estimate equation in [2] on an NV x NV lattice. The expected
performance of the HSOF estimate is given by the average error
covariance
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where the variance o2 is a parameter that models the smoothness of
the true velocity field. The matrix ¥ is a function of the brightness
pattern gradient V¢ and a measurement noise variance given by
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where o2 is the variance of the additive noise in the image sequence,
At is the temporal sampling period, and

0'121(93) = g{(“z;axH(‘t’)Umax)z}- 3)

Here, £ is the expectation operator, H (i) is the Hessian of the bright-
ness pattern ¢, and vmax is the maximum magnitude velocity vector
in the true velocity field. An expectation is required because H ()
is modeled as a random matrix to account for random placement of
¢ relative to the image frame. The variance o2 (¢) models errors
in computing ¢, from a pair of images with a two-point forward
difference. A similar expression can be derived for any difference
formula for which the truncation error is known (see [6] for details).
If an analytical expression for  is available, 2 () can be computed
in closed form (cf. [6]). Equations (1)~(3) form the basis for the
pattern optimization results in [6].

In [6}, p was computed for a class of brightness patterns related by
a single parameter. In this correspondence, we derive a p for a broader
class of brightness patterns by expanding ¢ in a Fourier series. We
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assume that ¢ is twice differentiable, bandlimited, has finite energy,
and is periodic [p(z + T,y + T) = o(x, y)]. In this case, ¢ can be
expressed as the truncated Fourier series

N/2
p(z,y) = aco + E @m0 COS Win T + Crm0 SIN W T
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where w,, = 2am/T and w, = 2wn/T. We now allow ¢ to have
a random shift (q.,g,) relative to the image frame and a random
orientation ¢ relative to the velocity field. If we assume that ¢, and
gy are uniformly distributed on {0, 7’) and ¢ is uniformly distributed
on [0, 27), (3) becomes (see [7] for details)
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where H(y) is the Hessian of ©(z + ¢=,y + ¢y) and
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If ¢ is available as a discrete image defined on an N x N lattice
with uniform spacing h, we define p[m,n] = @(mh,nh), where
0 < mn < N — 1. In this case, 02(y) can be expressed in terms of
its discrete Fourier transform (DFT) coefficients as follows:
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where T = hN, Hy, is the DFT of [m,n], and T is the index set
{kl|k,1=1,.--, % kl # %%} Equations (2) and (6) relate the
measurement noise variance to the discrete frequency components in
the pattern [, n]. Each frequency component makes an incremental
contribution to o2(y) thai depends on its magnitude and distance
from the frequency origin. We formulate the FDEP by incorporating
(2) and (6) into the average error covariance in (1). Our procedure
for computing the FDEP is summarized in Fig. 1.
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Fig. 1. Block diagram of FDEP algorithm.

II. SIMULATION RESULTS

The FDEP for each of the sixteen brightness patterns in Fig. 2 was
calculated, assuming that each pattern has gray levels in the range
[0,1], 02 = 0.05 s~*, 02 = 0.001, At = 1.0, and [[vmax|| = 2.54
cm/s. The resulting FDEP is shown beneath the corresponding pattern.
It turns out that Patterns 1-16 are ordered according to their FDEP,
with the best performance expected by Pattern 1. Interestingly, all of
the selected simulated patterns are expected to perform better than
all of the natural scenes. This phenomenon is explained below.

A deformed image was created for each pattern for the velocity
field shown in Fig. 3, and zero-mean white Gaussian noise with
variance 0.001 was added to each image pair. HSOF was then
used to compute a velocity estimate. We used the spatial difference
operators defined in [2], a two-point forward difference for the
temporal derivative, and no presmoothing. The mean-square-error
(MSE) between each estimated velocity ©;; and the true velocity
v;; was computed according to the formula

N
1 L2
MSE = INE E llvi; — 0i;11° )

ig=1

The MSE is plotted versus FDEP in Fig. 4, where for each image we
plot a circle at the location (x,y) = (FDEP, actual MSE) with the
image number indicated near the circle. The dotted line represents
a linear regression fit to the data points; the solid line is the line
y = z. The linear regression calculation has a strong correlation
(correlation coefficient > 0.96) between the actual MSE and the
FDEP. This means that the FDEP is a good predictor of the relative
performance of different images—i.e., that we can reliably order their
performance. Since most of the circles lie far away from the y =
line, however, the FDEP is a relatively poor predictor of the actual
MSE. We note, however, that the synthetic images tend to lie near
the y = = line while the natural scenes tend to lie far above it. It
follows that the actual performance of the natural scenes is far worse
than we predicted. Since the main difference between these synthetic
and natural images is their bandwidth, we conclude that the FDEP is
more accurate at predicting the quantitative value of the actual MSE
in low bandwidth images than in higher bandwidth images.
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Fig. 2. Brightness patterns [(pattern number)—FDEP]. (a)—0.0561; (b)—0.0591; (c)—0.0591; (d)—0.0593; (e)—0.0679; ()—0.0681; (g)—0.0711;
(h)—0.0810; (i)—0.0841; (j>—0.0881; (k)—0.0882; (1)—0.0919; (m)—0.0935; (n)—0.0948; (0)—0.0961; (p)—0.0976.

To demonstrate the effect of high frequency components on both
the expected performance of HSOF and the actual MSE, Pattern 10
(peppers) was filtered by a series of lowpass filters with different
cutoff frequencies. For each cutoff frequency the FDEP of the filtered
pattern was computed and an image pair was simulated for the
velocity field in Fig. 3. A plot of the FDEP versus cutoff frequency
is shown by the solid line in Fig. 5; the actual MSE is shown by the
dotted line. Both the FDEP and the actual MSE improve as the high-
frequency components are removed; the best performance is predicted
at a cutoff frequency of about 0.06. This result suggests that for a
given set of imaging parameters, there is a critical frequency f. in
which frequency components in the pattern above f. degrade the
performance of HSOF. The derivation of an expression for f. is an
open problem.

The above results and those of [6] show that the performance
of HSOF is strongly influenced by the brightness pattern, and we
now have a fairly good grasp of the theoretical reasons behind this

phenomenon. But one might ask what is the performance of HSOF
relative to other well-established (and mostly favored) optical flow
methods? In our final simulation, we begin to explore this issue by
comparing the performance of HSOF with the performance of the
region-matching optical flow algorithm of Anandan (AOF) for the 16
image pairs described above. Our implementation of AOF is the one
used by Barron ez al. [3]. The MSE for both HSOF and AOF for
each pattern is plotted in Fig. 6. Since the patterns are ordered by
increasing expected performance, the MSE of the HSOF estimates
tend to get worse with increasing pattern number; HSOF, however,
performs much better than AOF on the low-frequency patterns while
AOQF performs better on the high frequency patterns.

IV. DISCUSSION

We have described an approach to analyze the performance of
Horn and Schunck’s optical flow algorithm based on the frequency
content of the brightness pattern. Our experimental results show that
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Fig. 3. Velocity field.
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Fig. 4. Actual MSE versus FDEP.

our method can accurately predict the relative expected performance
of HSOF for a given set of imaging and velocity field parameters
but does not correctly predict the quantitative error, especially for
images with high frequency content. Our results also suggest that
for a given set of imaging and velocity parameters, images having
bandwidth greater than or less than a critical frequency f. tend to
have poorer performance than those having bandwidth f.. This idea
may be useful in determining the bandwidth of spatio-temporal pre-
filters for conventional motion estimation applications. Developing
an analytic formula for f. is a subject of future research.

Finally, our results suggest that one reason why HSOF is generally
considered to be a poor algorithm for motion estimation by the
computer vision community is that it has been typically applied in
situations where the brightness patterns have significant frequency
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Fig. 5. HSOF performance versus cutoff frequency.
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Fig. 6. HSOF and AOF performance.

components above f.. Our simulation results suggest that when the
brightness patterns have a lower frequency content, the quantitative
accuracy of HSOF is at least competitive with—and in some cases
much better than—region-matching algorithms. An interesting subject
of future research is to derive optimal brightness patterns for other
algorithms such as AOF and compare the performance of the different
algorithms with each algorithm using its optimal pattern.
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Linear-Quadratic Noise-Smoothing
Filters for Quantum-Limited Images

Cheuk L. Chan, Aggelos K. Katsaggelos, and A. V. Sahakian

Abstract— In this correspondence, we the use of nonlinear
estimators for the noise smoothing of images obtained under quantum-
limited imaging conditions. A Volterra expansion is investigated from
which a set of linear-quadratic filters is derived using higher order
statistics. The filters are applicable for single frame and multiple frames
of a single scene imaged under low-light levels.

1. INTRODUCTION

Quantum noise is a signal-dependent, Poisson distributed noise
source that can arise in a variety of image processing applications. For
example, in medical imaging, the intentional reduction of radiation
dosage in clinical exams for safer fluoroscopy procedures is accom-
panied by an ensuing degradation in image quality. This undesirable
artifact is termed quantum mottle and is created by the depletion
of necessary X-ray photons for imaging [1], [2]. In remote-sensing
applications and low-light-level acquisitions such as astronomical
imaging, the unavailability of light photons causes a similar loss in
image quality [3].

Various approaches for postprocessing of images degraded by
quantum noise have been proposed in the past. Because this type
of noise is typically placed into the class of signal-dependent degra-
dations, the majority of these techniques lie in the specification of a
nonstationary model for the description of the noise [4], [5], resulting
in a genre of nonstationary filters that operate independently at each
pixel. This is intuitive with the notion of signal-dependent noise;
however, these techniques also have a common feature in that they
are linear. While it is well known that a nonlinear filter will generally
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Fig. 1. Poisson noise simulator, after [8].

perform better than a linear filter for non-Gaussian environments, the
formulation of one is also difficult, if not impossible. Nevertheless,
because the property of Poisson noise is such that it is known to
have information in the higher order moments, it is useful to consider
nonlinear estimators for the recovery of signal parameters.

In this correspondence, a class of nonlinear systems that can be
described by a Volterra expansion [6] is investigated for the filtering
of images containing quantum noise. Specifically, a set of linear-
quadratic filters is derived using higher order statistics for suppressing
the quantum noise without the need to know the exact probability
density function (pdf) governing the noise samples.

II. BACKGROUND

A. Observation Model

In this section, a nonstationary additive observation model is
proposed to be used for the nonlinear filtering of images degraded by
quantum noise. Consider first the intensity function f of an object to be
imaged. The observed counting process, N, at an image intensifier’s
input in an imaging chain is characterized by the pdf p(IN | f). For the
quantum-limited scenario, which is the focus of our work, the number
of photon counts in each pixel becomes statistically independent [2],
[4], [7], i.e.

p(N 16 =[] p(N(x) | £(x))

rcA

where the conditional density function of N (r) is Poisson-distributed
for a given realization of f(r). The conditional density of the number
of photons at each pixel is thus given by

(Af(x) Ve

N(r)! M

p(N(r) | f(r)) =
where the constant A is a proportionality factor relating the displayed
image intensity to the assumed number of photon counts present
as shown in Fig. 1 [8]. The displayed image intensity, g(r), where
g(r) = aN(r) and @ = %, has the pdf [8], [9]

(/\f(r))kg(r)e—/\f(r)
Ag(r)! ’
An equivalent and more useful model for minimum mean square

error (MMSE) filtering is to express the noise as an additive signal-
dependent term [4], [10}; that is

polg(r) | f(r)) = A

9(r) = f(r) + ny(r) 03]

where the mean of the noise ng(r) is 0 and the variance is given
by [2]

02,00 = TE{()}. ®

1057-7149/95$04.00 © 1995 IEEE




