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Abstract

A general active contour formulation is considered and a
convexity analysis of its energy function s presented. Condi-
tions under which this formulation has a unique solution are
derived; these conditions involve both the active contour
energy potential and the regularization parameters. This
analysis is then applied to four particular active contour
Sformulations, revealing important characteristics of their
convexity, and suggesting that external potentials involving
center of mass computations may be better behaved than
the ususal potentials based on image gradients. Most
importantly, our analysis provides an explanation for the
poor convergence behavior at concave boundaries and sug-
gests an alternate algorithm for approaching these types of
boundaries.

I. Introduction

Active contours, originally described by Kass, Witkin,
and Terzopoulos [1], have been successfully used in a
wide variety of applications. Their main advantage is that
they are topologically isomorphic to the features they seek,
namely object boundaries. As a result, no edge linking
is required, and they are robust to low contrast, noise,
and gaps or spurious branches in boundaries. A main
disadvantage is that their convexity properties are poorly
understood. Specifically, it has been noted in the past that
active contour models are nonconvex, and that solutions are
often locally rather than globally optimal solutions, often
involving discontinuities or “splits” in the final contour [2].
Our main goal in this paper is to understand the nature of
the convergence problem, through a study of the convexity
of the active contour energy function. In particular, we
consider the following question: under what conditions is
the active contour energy function convex? We start by
stating a fairly general active contour formulation in the
continuum. We then discretize this formulation and derive a
convexity condition for the discrete model. This condition
involves the regularization parameters of the problem —
these prescribe the elasticity and rigidity of the active contour
— and local object characteristics such as curvature. The
fact that the object itself partly determines the convexity of
the formulation is unavoidable, and is partly what accounts
for the often-observed excellent convergence in some re-
gions and abysmal convergence in other regions.

To demonstrate the utility of our convexity analysis, we
apply it to four active contour formulations differing only
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in their definition of external energy. Since the primary
application of our research is to cortical brain mapping [2],
our four models focus on the detection of ribbons (which
are good models for the cortex in two-dimensional magnetic
resonance images of the brain). This framework includes
the usual boundary mapping problem as a special case since
the ribbons can be made very thin. Therefore, boundaries re-
sulting from convolutional or morphological edge detection
operations can also be studied within this framework. The
four active contour formulations include two that are mod-
ifications of the potentials commonly used in the “snake”
models [1, 3] and two that were introduced in [2, 4, 5] in the
context of brain mapping and were subsequently used in [6]
for estimating the central axis of tube-like objects.

II. Discrete Active Contour Model

An active contour is a curve x(s) = (z(s),y(s)), s €
[0, 1], that moves through image data to minimize an energy
E = & + &, where & is the internal energy and &g is the
external energy, defined as

It

1 1
g = K, /0 Ix'(s)[Pds + K /O Ix"(s)[ds, (1)

&

fo P(z(s), u(s)) ds, @

where P(z,y) is the potential function, and Ky and K are
the elasticity and rigidity parameters of the active contour.
It can be shown using calculus of variations that a curve
minimizing £ must satisfy the Euler equations

— VxP(x(s)) + 2Kox"(s) — 2K1x""(s) = 0.  (3)

To fully specify the model, we assume that x(:) and its
derivatives are known for s = Oand s = 1.

In this paper, we consider a discrete active contour model
defined using finite difference approximations of the deriva-
tivesin (1). Let the active contour be modeled as a collection
of points x; = [z;, %)%, i =0,..., N, where z; = z(i/N),
y; = y(i/N). The free values of the discrete curve — i.e.,
those not fixed by the boundary conditions — are represented

by the vector d = [x],...,x%_,;]7. Then we obtain the
discrete approximation of the energy function £,
£(d) = &(d) + £x(d) (4)



where the exact expressions for & and &g can be found in
[41.
The necessary condition for d to minimize £(d) is

VE(d) = KoN(2A1d — by)+K;N3(2A,d — by)+p

0, &)

where by and b, are 2( N —1)-vectors related to the boundary
conditions,

_[ap P op  opP 1T ©)
P= 6z, Oy’ ' 8zn_1 Oyn_1] ’
and A; =diag{B;} and A, =diag{B,}, where B, is a
symmetric Toeplitz tridiagonal matrix whose first row is
[2,-1,---,0]and B~2 is a symmetric tridiagonal matrix (see
[4] for details). If £(d) is strictly convex then (5) is also a
sufficient condition, and d is the unique minimizer of £(d).

In what follows, the domain where the potential P is
defined is denoted by R. The domain D in which d is
defined is then given by

D={e=[e],..,en_JT e R¥"?|e;€R,i=1,...,N~1}.

The domains R and D depend on the potential P, which in
turn is derived from the image data.

1II. Convexity Analysis
The question we address in this section is this: when

is g(d) strictly convex? This question is equivalent to
the question: when is a solution satisfying (5) the unique

minimizer of £(d). Practically, if we know that £(d) is
convex then any solution satisfying (5) is also the globally
optimal solution.

Our goal in this section is to find a sufficient condition

for the strict convexity of £(d). First, we note that if the
Hessian matrix H of £(d) is positive definite at each point

in D then &(d) is strictly convex. Since H is guaranteed
to be positive definite if the eigenvalues of H are strictly

positive, we have that £(d) is strictly convex if the smallest
cigenvalue of H is greater than zero, i.e.,

Amm(H) >0.

Now letting Hg and Hy denote the Hessian matrices of £g(d)
and & (d), respectively, we have from (4) that

H=H;+Hg. (7)
Using the fact that the smallest eigenvalue of the sum of two
symmetric matrices is greater than or equal to the sum of
the smallest eigenvalues of the two matrices, we have the

following sufficient condition: &(d) is strictly convex if

Amin(H1) + Amin(Hg) > 0. (8)

In the following sections we find expressions for the mini-
mum eigenvalues of Hg and Hj.
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A. Minimum Eigenvalue of H;
It can be shown (see also (5)) that the eigenvalues of Hj

coincide with those of the matrix 2KoNA{ + 2K N3A,.
Moreover, since A; is block diagonal, its eigenvalues co-
incide with those of B;. Similarly, the eigenvalues of A,
coincide with those of B,. Therefore, we conclude that

Amjn(Hl) > 2K()NAmin(B1) + 2K1N3Amin(B2) . (9)

Since B is Toeplitz tri-diagonal, its eigenvalues can be
found through a recursion formula [4], giving the following
minimum eigenvalue

Amin(B1) = 2(1 — cos(n/N)). (10)

The eigenvalues of B satisfy a double recursion formula
which does not have an explicit solution. A lower bound can
be readily found, however, as follows. It is straightforward
to show that

1

1
B; = B% -+ —2-’21211- + —Zzz; s

2
where z; = [1,0, ...,0]T and z, = [0,...,0, I]T. Since
Amin(zlzr) = Amm(zzz;) = (0, the minimum eigenvalue of
B, must satisfy Apin(B2) > Amin(B?). Since By is positive
definite, we have Amin(B?) = (Amin(B1))? which yields

Anin(B2) > (Anin(B1))° (11)

Substituting (10) and (11) into (9) gives the final result
Amin(Hip) > 4K0N(1—cos(7r/N))+8K1N3(1-—cos('/r/g\7)g2 .
12

B. Minimum Eigenvalue of Hg

Taking second partial derivatives of £g(d) and using the
fact that 8P (2, y:)/8z; = OP(2:,1;)/0y; = 0,fori # g,
it is not hard to see that Hg is a block diagonal matrix with
diagonal entries

D: = J__ Pzzgxi; sz(xi)
* N P:uy Xi Pyy(xi)

where x; = (2;,%). Thus, the eigenvalues of Hg can be
determined by finding the eigenvalues of these 2 X 2 matrices
fori=1,...N — 1. A direct solution yields

Xt = (Pao(x:) + Py (x:)) /2N +
(V/(Pas(xi) = Py (x:))2 + 4P2,(x:) ) /2N, (133)
(

Xiz = (Poo(x:) + Pyy(xi)) /2N —
(y/(Pea(x:) = Buy(x:))? + 4P2,(xs)) /21, (13b)
fori=1,..., N — 1. The minimum eigenvalue is

Amin(HE) = min{A“, )«,;2, 1= 1, ey N - 1} . (14)



C. Convexity Condition
Using (12) and (14) in (8) and multiplying both sides by

N/2 gives the following general convexity condition: £(d)
is strictly convex on D if

3 1<mm {NXi1, NXio} + 2KoN?*(1 — cos(n/N))

+4 KiN*(1 - cos(m/N))? > 0. (15)

From (13), we see that the terms N A;; and N );, are inde-
pendent of N. We can go a step further to eliminate the
dependence of this expression on the specific location of the
points x;,% = 1,..., N — 1. To do this we define

h(x) = (Paa(X) + Puy(X)) /4 +
(V(Pee) = PV + 4(Pey(xP) /4, (160)

Ba(x) = (Pea() + Piy()) /4 -
(V/(Pea) = P07 + 4Py /4, (160)
which leads directly to our final convexity condition: the

energy function of VP is strictly convex for every active
contour in a subset R’ C R if

A(R') + 2KoN*(1 — cos(w/N)) + 4K N*(1 = cos(r/N))* > 0,
(17)

(18)

The use of a subset R’ of R allows for the possibility that we
may only be interested in convexity on a smaller set than the
entire domain of definition of the potential. The remaining
issue is how to determine A(R').

D. Approximations

From (17), (18), and (16) itis clear that convexity of £(d)
depends on the regularization coefficients K, and K; and
on the potential P(x). The potential, in turn, depends on the
underlying image. To know how to choose K and K to
maintain convexity, it is possible, in principle, to calculate
A(R’) for a given image or region within an image. In this
and the following sections, however, we seek a more general
understanding of the relationships between convexity of
£(d) and object shape through a series of approximations.

In order to simplify our analysis, we first observe that as
N —> o0, (17) becomes independent from N . In particular,
using a Taylor series expansion it is readily shown that

where

A(R') = min {ha(x), ha()}

lim 2N?(1 — cos(7/N)) =
N-—oo

This sequence converges fairly fast, so that for any practical
value for N ( N > 30), it is a very good approximation

to use the limit in place of the expression. Using this
approximation, (17) becomes
A(R') + Kom* + Ky7* > 0. (19)

As shown in Fig. 1, this condition gives a region in Ko-K;
space which guarantees convexity of £(d).

We now seck to find simplified expressions for hy(-) and
k> (+), which determine A(R'), by expressing these functions
in a local coordinate system described next. Consider the
curve of constant potential, the isopotential curve, passing
througha pointx € R, and assume (at first) that its curvature
at x is nonzero. We can then define a local polar coordinate
system whose origin coincides with the center of curvature
of this curve, as shown in Fig. 2. We now view the potential
as a function of » and ¢, the radius and angle in the local
coordinate system, and seek expressions for Pye, Pgy, and
Py, atx.

First we note that because of the way we defined the local
coordinate system it can be shown that [4] Py = Py =
0. Using this fact and the chain rule, we can express the
derivatives of the potential P in the polar coordinate system.
After some algebra we arrive at the following expressions
for hy and hy:

hi(x) = (Pre(x) + Po(x)/7(x)) /4 +

(\/ (Pen(x) — PL(x)/r(%))’ + 4P3¢(x)/1'2(x)) /4, (200)

ha(x) = (Prr(x) + Pr(x)/r(x)) /4 —

676

<\/ (Pen(x) — Po(x)/7(x))" + 4P7¢(x)/r2(x)) /4, (20b)

where r(x) is the radius of curvature of the isopotential
curve at x (see Fig. 2). Note that if we let » — oo we obtain
expressions for h; and h; for the case where the isopotential
curve has zero curvature.

Now we are in position for our second approximation.
We note that potentials used for locating boundaries have
isopotential curves that are nearly parallel to each other, and
that are nearly parallel to the boundary’. This is especially
true when the boundaries are smooth or the point x is very
near the desired boundary. In this case the term P,y(x)
in (20) is negligible and we can assume that P, ¢(x) ~ 0,
which introduced into (20) yields

hi(x) ~ % (P”(x) + 1—:% + ‘(Pr,-(x) - 1:’((;‘))) ]) :
i) = 5 (Pl + 2 ’(S) - |(p,r(x) N ’(i"))) l) .

By defining e1(x) = P (x)/2 and e;(x) = P,
it is straightforward to show that

min {k(x), ho(x)} = min {ei(x), e2(x)}.
XeR XER

(x)/2r(x)

Therefore, to good approximation A(R') is given by

A(R")

~
~

(1)

min {e1(x),e2(x)}.
XeR

We have now arrived to the main conclusion of this
section: Under the approximations described above, the

IThe value of the potential along each isopotential curve increases with
the distance from the underlying boundary.



analysis of the convexity of VP reduces to the study of
the functions e;(-) and ey(-). We use this result in the
following section, in which we study the convexity of four
particular active contour potentials, and we show that under
certain assumptions, e;(-) and ey(-) are functions of only
one variable, the radius of curvature r of the isopotential
curve at x, which greatly simplifies the convexity analysis.

IV. Specific Examples of the Potential

In this section we apply the convexity analysis of Sec-
tion ITI to four particular active contour potentials, which are
designed to find and parameterize boundaries. We derive
explicit expressions for A(-) in (21) for all four potentials
and, based on these expressions, we analyze the conditionin
(19). This analysis reveals important correlations between
the uniqueness of the solution of VP, the selection of its regu-
larization parameters, the initialization of the active contour
relative to the boundary, and the geometric characteristics
of the boundary.

A. Ribbons

In order to analyze all four potentials in a unified frame-
work, we use an idealized model for object boundaries:
a ribbon of thickness w (see Fig. 3). Convolutional and
morphological edge detection operations often produce edge
maps resembling thin ribbons, whose thickness is directly
related to the size of the kernel of the edge-detection op-
erator. We denote C the collection of points belonging to
a ribbon, and we define the mass of the ribbon to be equal
to 1/w if x € C and zero otherwise. The constant 1/w
is a normalization factor that makes the total mass of the
ribbon equal to its length L. We note that, as w approaches
zero, m approaches a Dirac function at C, which defines
an ideal boundary. We also denote a(s) , s € [0,1], a
parameterization of the spine of a ribbon; this is the desired
solution to VP. Finally, we denote a;(s) and a,(s) the two
outer curves defining the ribbon (Fig. 3).

B. Ribbon Potentials

In order to use the variational framework of VP to find
a(s), we consider four different potentials, which are all
based on the geometry of ribbons and are designed to take
their minimum value in the vicinity of the spine of a ribbon.
The first two, denoted P, and P,, were introduced in {2]. The
last two, denoted P; and Pj, are variants of the potentials
commonly used in snake models [1, 3]. In order to define Py
and P,, we first introduce the center of mass function c(x),
which is the center of the mass of the ribbon included in a
circular neighborhood A/ (x) centered at x (see Fig. 3). We
notice that, for sufficiently small neighborhood radius p, for
any point x on the spine of the ribbon,

c(x) = x. (22)
Accordingly, we define P; and P, to be minimal on points
which coincide with the center of the mass of the ribbon
present in their neighborhood:

Pi(x)
Pz(x)

Ix — c(x)I?,

2 /,; Is - c(g)ldt,

(23)

It

@5
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where £ is the line of flow? connecting an image pointx with
the the minimum potential curve. The minimum potential
curve for Py and P, is the collection of points satisfying the
following condition:

x = ¢(x). (25)
We note that if the diameter of the disk AV/(-) is much larger
than the width of the ribbon, then (22) is not necessarily
satisfied on the spine of a ribbon. Therefore, in the im-
plementation of an active contour algorithm using P or
P,, the neighborhood size should gradually decrease as the
active contour approaches the spine [4]. For the purposes of
the convexity analysis, we will assume that p is sufficiently
small so that (22) is satisfied on the spine.

From (23) and (24) we easily see that the potentials P,
and P, are minimal and equal to zero close to the spine
of the ribbon, and precisely on the points satisfying (25),
and gradually increase with increasing distance from it.
Accordingly, the external force field induced by both Py
or P, is a restoring force field tending to deform an active
contour toward the spine.

In addition to P; and P, we also consider the following
two potentials:

P3 (X)
P4(X)

(26)
@7

=[m(x) x+g(x)l,
—[m{x) ++g(x)|*.

i

Here, g(x) is the impulse riS})onse of a low-pass filter and is
defined to be unity if x € A/(0) and zero otherwise. These
potentials are similar to the usual snake potentials [1, 3], but
differ in the following respects:

1. P; and P, use the binary mass function m(-) instead
of the magnitude of the image intensity gradient which is
customary in snake models. A binary mass can be readily
obtained by thresholding the edge map obtained through the
image gradient.

2. P; and P, use the “disk” function g(-), instead of a
Gaussian smoothing function.

These modifications are introduced here in order to simplify
the convexity analysis and allow direct comparisons between
the four models.

We will assume throughout our development that Py, Ps,
P, and P, are defined at x, if the disk A/(x) intersects both
o(s) and a(s) (see Fig. 3). Accordingly, the domain of
definition of these potentials is

R = {x € R*: {N(x) N ai(s) # 8} and {N(x) N exz(s) ¢(% :

We note here that outside R, the energy function £ is equal
to &1, and therefore the active contour contracts under the
influence of its internal elastic forces, until it reaches the
vicinity of the ribbon. Since in that region £ is obviously
convex, we will restrict our convexity analysis to R.

C. Convexity of Ribbon Models

Having defined the four potentials, we now turn our
attention to A(-) and the convexity condition in (19). In
order to obtain explicit expressions for A(:), we need to

2The line of flow is the trajectory of a particle under the influence of a
potential gradient.



make certain assumptions about the shape of the underlying
boundary. In particular, we approximate the intersections of
the ribbon with neighborhoods of active contour points by
arcs of radius R and thickness w, as shown in Fig. 4. Under
this approximation, P4 is exactly zero, and A(:) is exactly
given by (21). Moreover, €;(-) and e;(+) are functions only
of the radial coordinate . Therefore, the convexity analysis
reduces to the study of the one-dimensional functions e;(r)
and e;(r).

In [4] expressions for e;(r) and e,(r) were derived for

all four potentials P;, P,, P3, and P4. These expressions
depend on the curvature of the ribbon, the ribbon width, and
on the neighborhood radius, which makes the display and
interpretation of them a fairly difficult task. One way of
displaying this information is shown in Figs. 5 and 6, which
plot e;(r) and e>(r) against (r — R)/p, for different ratios
R/p. Several conclusions can be drawn from these figures
and the convexity condition in (19):
1. The functione; (r) (Fig. 5)ispositiveforr € [R+w/2—
p, R —w/2+ p]. Therefore, it is positive everywhere in the
domain R and its minimum value in R is positive. Given
(19) and (21), this implies that e; () imposes no restriction
on selecting a pair (K, K;) which yields a convex function.
2. The function e, () is always positive for » > R (positive
horizontal axis in Fig. 6). Therefore, both e;(r) and e;(r)
are non-negative at all points in R for which

r(z,y) > R(z,v), (29)

where R(z,y) is the radius of curvature of the spine in
N(z,y), and r(z, y) is the radius of curvature of the isopo-
tential curve passing through (z,y). Let R* be the collec-
tion of points satisfying (29), which can be shown [4] to be
a connected subdomain of R. Then the convexity condition
in (19) is satisfied everywhere in R* for all (Ko, K1) such
that Ko > 0, K| > 0. This region of convexity is shown
schematically in Fig. 7.

The implications of this result are important. In particu-
lar, an optimization method seeking a solution to the Euler
equations of VP within the subdomain of convexity R¥ is
guaranteed to converge to the global minimum in RT. A
similar result was used in [4] as the basis for an adaptive
active contour algorithm which restricted the active contour
in RT, avoiding, therefore, local minima.

3. For r < R (negative hotizontal axis in Fig. 6), e; is
negative for all potentials, and it is considerably smaller for
P; and P than for P; and P,. Therefore, the minimum
value of e in R for the P; and P, formulations is smaller
than that of the formulations using P; and P,. Considering
(19) and (21) this implies that K and K should be larger
for the models using P; and P4. Consequently, the elasticity
forces in the P; and P, formulations can be smaller while
still maintaining the convexity of VP. This is important
since large elasticity forces often cause oversmoothing of
boundaries {2].

4. The plots of Fig. 6 show that ez(r) decreases in absolute
value with the distance from the spine. This implies that as
the active contour gets closer to the spine, smaller values of
Ky and K can be used. Similarly, if an active contour is
initialized close to the spine, much smaller Ky and K are
required to maintain convexity. A similar result motivated
the development of a time-adaptive active contour algorithm
in [5], which was shown to improve the ability of the active
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contour to bypass local minima considerably, by gradually
reducing the elasticity parameters.

5. From Fig. 6 we deduce that the absolute value of e(r)
increases rapidly with increasing curvature of the spine
(1/R). This implies that for convoluted ribbons, larger
elasticity parameters are required to maintain convexity.

V. Summary

This paper studied a general active contour formulation
(VP), and derived conditions for the convexity of its energy
function. The derived condition quantitatively expressed the
relation between the convexity of the energy function and
the selection of the regularization parameters. The results
were then applied to four special cases of VP designed to
find parametrizations of boundaries, which are modeled as
ribbons.

The first main conclusion drawn from this analysis is that
in order for the energy function of VP to be convex, Ky and
K, should be selected from a specific domain in the Ko—K;
plane. This region is determined by the potential P of the
active contour formulation. The application of this result to
four particular potentials in Section IV lead to the second
and most important conclusion of our analysis. Specifically,
it was shown that, under certain assumptions, there exists
a connected domain where the energy function is convex
for any pair of positive regularization constants, for all
four potentials for boundary parameterization. This implies
that an active contour algorithm can avoid local minima by
searching for a solution within the domain of convexity.
The development of such domain adaptive active contour
algorithms [4] is a direction of further research originating
from the convexity analysis presented in this paper.
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Figure 1. The region of convexity of the active contour
problem in the Ko-K plane.

Figure 2. The local polar coordinate system centered at the
center of curvature of the isopotential curve throu gh (z,y).

Figure 4. An intersection of M (,y) with a ribbon of
width w.
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Figure 5. Plots of e;(r) for different ratios R/p and for a ribbon of thickness w/p = 0.01
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Figure 6. Plots of e(r) for different ratios R/p and for a ribbon of thickness w

@
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Figure 7 The region of convexity of the thin ribbon active contour problems,
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