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Convolution Backprojection Formulas for 3-D
Vector Tomography with Application to MRI
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Abstract— Vector tomography is the reconstruction of vec-
tor fields from measurements of their projections. In previous
work, it has been shown that reconstruction of a general three-
dimensional (3-D) vector field is possible from the so-called inner
product measurements. It has also been shown how reconstruc-
tion of either the irrotational or solenoidal component of a
vector field can be accomplished with fewer measurements than
that required for the full field. The present paper makes three
contributions. First, in analegy to the two-dimensional (2-D) ap-
proach of Norton, several 3-D projection theorems are developed.
These lead directly to new vector field reconstruction formulas
that are convolution backprojection formulas. It is shown how
the local reconstruction property of these 3-D reconstruction
formulas permits reconstruction of point flow or of regional flow
from a limited data set. Second, simulations demonstrating 3-
D reconstructions, both local and nonlocal, are presented. Using
the formulas derived herein and those derived in previous werk,
these results demonstrate reconstruction of the irrotational and
solenoidal components, their potential functions, and the field
itself from simulated inner product measurement data. Finally, it
is shown how 3-D inner product measureinents can be acquired
using a magnetic resonance scanner.

I. INTRODUCTION

ECTOR tomography is the reconstruction of vector
V fields—e.g., the velocity of fluid flow or the displacement
of a deformed object—from projections of components of
the field. In this paper, we consider the following general
projection measurement:

gP(l, w) = /ma p(l, w) - q(x)6(l —w - x) dx €))

which we call the inner product measurement or probe trans-
Sform of vector field q. The effect of probe p(l, w) is to
convert the vector field q(x) into a scalar by taking a point-
by-point inner product. The resultant scalar field is then
integrated over planes as in the 3-D Radon transform. This
transformation generalizes a type of measurement equation
that has been studied in two dimensions and almost exclusively
in the context of acoustic flow imaging using time-of-flight
measurements—e.g., ultrasonic imaging in medicine [1], flow
imaging in nondestructive evaluation [2], [3], and ocean acous-
tic tomography [4], [5]. In this application, the acoustic
time-of-flight along a line is measured, reflecting a change
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about its nominal value due to the component of fluid velocity
along the line. It is a two-dimensional (2-D) problem (because
it integrates on lines rather than planes) and is limited to
a probe direction coinciding with the line of integration.
Norton showed in [6] that only the divergence-free component
of the field can be reconstructed from these measurements.
More recently, Braun and Hauck [7] showed that use of an
orthogonal probe allows one, in principle, to reconstruct the
irrotational component as well. However, it is not known
how to make acoustic probe transform measurements using
orthogonal probes. Recently, Rouseff and Winters [8] formu-
lated an acoustic flow measurement approach using physically
realizable acoustic diffraction measurements. Their approach
uses a different measurement model than (1) and is strictly
2-D.

More recently, Norton conceived of an optical analog of
the time-of-flight acoustic imaging problem in which “the
quantity measured is the change in optical path length of a
collimated laser beam directed through the region of flow”
[9]. In this technique, optical phase shifts arising from flow
can be measured interferometrically leading to an analogous
measurement as the acoustical time-of-flight measurements.
Norton also described a new vector tomographic approach to
flow measurement based on Doppler measurements, which
might be either acoustical or optical. Juhlin independently
proposed a Doppler approach and conducted simulations for
its use in the reconstruction of blood flow in vessels [10].
Prince suggested that inner product measurements of three-
dimensional (3-D) velocity fields can be made using magnetic
resonance imaging techniques [11], a topic that is addressed
further in the present paper. The concept that vector fields
can be reconstructed from direction-dependent integral mea-
surements has also been discovered in fields other than flow
measurement. For example, Zahn proposed to reconstruct the
electric field in a Kerr material by measuring the polarization
of light passing through the sample from many directions
[12]. In the monograph [13], Sharafutdinov proposed the use
of optical polarization measurements to reconstruct material
stress using the Brewster effect. The mathematical framework
of the probe transform applies to special cases within these
applications, although the general framework can be very
much more complicated (cf., [13]). Because the number of
applications is growing, there is a clear need to examine the
general theoretical properties related to reconstructing vector
fields from the probe transform.

The theory and practice of vector tomography has been
studied in the past by several investigators. Johnson et al.
[1] considered 3-D fluid velocity reconstruction from acous-
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tic transmission measurements. They developed a numerical
approach and identified a lack of uniqueness in their so-
lution. Norton [6] considered the 2-D problem, developed
a 2-D projection theorem, and showed through Helmholtz’s
decomposition of vector fields that the irrotational component
is invisible to standard line integral measurements. This ac-
counted for the lack of uniqueness in Johnson et al.’s solution.
Norton proposed boundary measurements to reconstruct the
irrotational component separately under the assumption that
there are no sinks or sources within the domain. Braun and
Hauck [7] considered the 2-D problem again, independently
developed the use of Helmholtz’s decomposition, but proposed
the use of another probe direction to recover the irrotational
component. Their approach does not require the absence of
sinks and sources, but the required measurements cannot be
made using acoustical time-of-flight [9]. Prince [14] extended
the results of Braun and Hauck to 3-D vector fields and
to arbitrary probe directions. It was shown in [14] that the
irrotational and solenoidal components of an arbitrary 3-
D vector field can be reconstructed from the measurements
obtained using one and two probes, respectively. Finally,
Desbat and Wernsdorfer have developed an efficient direct
algebraic reconstruction algorithm for 2-D vector tomography
using an interlaced sampling scheme [15].

In this paper, we first develop a set of projection theorems
for 3-D vector tomography. This theory confirms the main
results in [14] using the frequency domain. The main theorem,
which relates the 1-D Fourier transform of the probe transform
to the 3-D Fourier transform of a component of the vector field,
is then used to develop several new reconstruction formulas.
These formulas are of the convolution backprojection variety,
while those in [14] are not. While the formulas given here can
be derived directly from those in [14], the Fourier approach
given here is more straightforward and intuitively appealing.
Furthermore, this approach starts from “first principles,” rather
than from an existing inverse 3-D Radon transform formula.
Next, we present an extensive set of simulations to demonstrate
the behavior of the new reconstruction formulas and also those
of [14], in which no simulations were provided. Finally, we
describe how the 3-D probe transform can be measured using
a magnetic resonance scanner.

II. BACKGROUND

A. Radon Transform

The 3-D Radon transform of a scalar function f(x), where
x=(z,y, z) € IR?, is defined as [16]

Flw) = Rf = /R s —wdx @

where [ is a real scalar parameter, w is a unit vector in 1R3,
and 6(-) is the one-dimensional (1-D) Dirac delta function.
The 3-D Radon transform of a 3-D vector field q = q(x) =
[u(x), v(x), w(x)] is

q(l, w) = [a(l, w), 0], w), w(l, w)]. €))

It is assumed here and throughout this paper that both f
and the elements of q belong to either £, the class of
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rapidly decreasing C°° functions, or D, the class of C*
functions with compact support. This implies that all fields
have homogeneous boundary conditions—i.e., they go to zero
on the boundary. Unless otherwise indicated, vectors are
designated using bold symbols and are assumed to be column
vectors.

From (1) and (2), it follows that

gp(l7 w) = P(lv w) : Q(la w)'

This implies that for three probes p;, p2, and p3, which are
linearly independent at each (I, w), we can recover the 3-D
Radon transform of ¢ as follows:

4

-1

P gP*
a=|pJ gP2 4
p3 gr?

In this equation and many of those that follow, explicit
functional dependence on ! and w is omitted for convenience.
The vector field can be recovered using the inverse Radon
transform [16], which can be symbolically written q = R~1q.
Here, the inverse transform is applied separately to each
element of the vector § to produce the vector q. For our
purposes, it is useful to write the inverse 3-D Radon transform
of f as

f=RK'f, (©6)
where
(R*9)(x) = / _ I(w - X, w)dw
. -1d,
K= §;r—2_5ifl
_of
Tl

B. Field Components

According to Helmholtz’s theorem, a vector field q(x) with
homogeneous boundary conditions can be uniquely written
[17] as

q=49qr+4gs (72)
ar=Vy (7b)
gs =V xa (7¢)

where V - a = 0. The scalar function % is called the
scalar potential and the vector function a is called the vector
potential. The irrotational component gy satisfies Vxqr =0,
while the solenoidal component qg satisfies V - qg = 0.

It is convenient to give separate symbols to fields that are
either completely irrotational or completely solenoidal. Since
a static electric field is irrotational, we will use the symbol e
for an irrotational field. The symbol E, often used for the field
itself, will be reserved here for the Fourier transform of e.
Likewise, since a steady magnetic field is solenoidal, we will
use the symbol b for a solenoidal field and B for its Fourier
transform.
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C. Previous Reconstruction Formulas

In [14], it was shown that if the total field is irrotational
it can be reconstructed using only one set of probe measure-
ments, and the reconstruction formula is
(3a)
(8b)

. g°
pw
e =V
If the field is known to be solenoidal, then two sets of probe

measurements—using, say, probes p; and po—are required.
The reconstruction formula is

(p1 xw)T g

a=R*K |(pz xw)T gP? (92)
wT 0

b=V xa (9b)

where it is required that p1, p2, and w be linearly independent.

Note that these reconstruction formulas first reconstruct
the respective potential functions and then take deriva-
tives—gradient in the case of the irrotational field and
curl in the case of the solenoidal field. Two pertinent
comments follow from this observation. First, any information
about the field derivable from a potential function can
be extracted without reconstructing the full field. Second,
these formulas are not convolution backprojection formulas
since the gradient and curl operators represent an additional
convolution after backprojection. Thus, the formulas (8a) and
(9a) potentially provide shortcuts to the calculation of key
field properties, while the completion of these formulas using
derivatives in 3-D, represented by (8b) and (9b), are costly
and potentially unstable ways to reconstruct the actual fields.
This paper addresses this problem through the development
of convolution backprojection formulas for e and b.

The irrotational and solenoidal components of an arbitrary
field q can be imaged separately and then added together to
form the total field. The irrotational part is imaged using the
probe w; the solenoidal part is imaged using probes p; and
P2, which are linearly independent and orthogonal to w. With
these probes, the reconstruction formulas given in (8a) and (9a)
give the potential functions for the irrotational and solenoidal
components of q, respectively, and (8b) and (9b) give the
components themselves.

III. PROJECTION THEOREMS AND
RECONSTRUCTION FORMULAS

Use of the frequency domain has proven to be extremely
important in the development of reconstruction formulas for
projection imaging. In this section, we develop three new pro-
jection theorems for vector tomography. As in standard com-
puted tomography, these theorems help both in understanding
the action of the probe transform and in the development
of new reconstruction formulas. It should be noted that two
projection theorems for 2-D vector tomography have already
been reported in the literature [6], [9], [18]. The results in this
section extend the 2-D results of [9] to three dimensions.
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A. Projection Theorems

The standard 3-D projection theorem (also called a
projection-slice theorem or a central-slice theorem) relates
the 1-D Fourier transform of a projection of f to a “central
slice” of the 3-D Fourier transform of f. This theorem can
be stated concisely [16] as

Glp, w) = F(pw) (10)

where
Fw) = A0} = [ feemrax ap
is the 3-D Fourier transform of f and
Glpw) = Al W) = [ Flwe a2

is the 1-D Fourier transform of f(I, w). The well-known
Fourier reconstruction method is based directly on this the-
orem; the filtered backprojection and convolution backpro-
Jjection methods are readily derived from this theorem (cf.,
[16D).

A projection theorem for vector tomography is found by
taking the 1-D Fourier transform of the probe transform (1).
Accordingly, we get

G®(p, w) =F1{g"(l, w)}
_F { /R p(l, ) - q(x)6( — w - %) dx}

=/RS/Rlp(l,w)

~q(x)6(1 — w - x)e 2™l dl dx
= / p(w-x, w)-q(x) e 72 xdx  (13)
R3

where the final equation follows from the sifting property of
the impulse function. This equation is recognized as a 3-
D Fourier transform with the frequency variable v = pw.
This leads to a the following very general vector projection
theorem:

GP(p, w) = Fa{p(w X, @) - (X po- (14)

An important special case follows immediately by restricting
the probe direction to depend only on w—i.e., the orientation
of the planes of integration, not their spatial position. In this
case p(l, w) = p(w), and it follows from (14) that

GP(p, w) = p(w) - Q(pw)

where Q is the 3-D Fourier transform of q.

Using (15) and the Helmholtz decomposition of q leads to
a very powerful projection theorem. Since q = gy + qg it
follows that Q = Qi + Qg, where Q7 and Qg represent
the 3-D Fourier transforms of the irrotational and solenoidal
components of q, respectively. It can be shown using well-
known vector theorems that

Q:(v) = j2mv¥(v)
Qs(v) =j27v x A(v)

(15)

(16a)
(16b)
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where U(v) = F3{¢(x)} and A(r) = Fs{a(x)}. Therefore,
from (15) it follows that

GP(p, w) = j2mp{pWw) - [w¥(pw) + w x A(pw)]} (A7)

which is a projection theorem relating the probe transform
directly to the potential functions. This theorem is the starting
point for the reconstruction formulas developed below. It
should be noted that this theorem is completely general except
that the probe direction is required to depend only on w.

B. Reconstruction Formulas

‘We now use the projection theorem given in (17) to develop
a collection of new reconstruction formulas. These formulas
can also be derived from the resuits in [14]; but the overall
approach here begins from first principles, not from existing
formulas for the 3-D Radon transform.

1) Irrotational Fields: First, suppose that the total field e
is known to be irrotational. Then, since by assumption e is
zero on the boundary, a = 0 and A = 0. From (17) it
follows that the Fourier transform of the scalar potential can
be reconstructed using

G®(p, w)

Vo) = o) o]

18)
provided that p(w) - w # 0. It follows that e(x) is given
symbolically by

e(x) = VF;  {¥(pw)}.

The actual implementation of this inverse Fourier transform
requires some form of polar to rectangular coordinate transfor-
mation. One possibility is to interpolate the Fourier data given
by ¥(pw) in polar coordinates onto a rectilinear grid; then take
the inverse discrete Fourier transform. This approach is known
in the classical CT literature as the Fourier method. Another
approach is to write the inverse Fourier transform in polar
coordinates and develop an analytic formula for inversion. We
pursue this second approach now.
The inverse 3-D Fourier transform of ¥(») is given by

P(x) = /R3 U(p)etI2™ > dy,

19

To relate this to the projection theorem (17) we make the
substitution » = pw, where —oo < p < oo and w ranges over
half of the unit sphere, which we denote by H2. Using this
substitution it can be shown that

b(x) = / / PP (puw)e 2O oy dp.
—oo JIH?

Taking the gradient of this expression and replacing ¥ (pw)
with the expression in (18) yields

= o s L

- et PO dp duy.

PGP (p, w)

(20)

From this expression and using the definition of the 1-D

Fourier transform, it is straightforward to write both a filtered
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backprojection formula

w
= — FTHPEGP(p, —wx dw (21
e) = [ S FUAG 0wl @D
and a convolution backprojection formula
-1 w p
= —— _— . 22
e(x) e /11-12 p(w)-wg”(w X, w) dw 22)

where the double subscript indicates second derivative with
respect to [.

Equations (21) and (22) are new reconstruction formulas for
irrotational fields given a single set of probe measurements
where the probe depends only on w. Two derivatives of each
probe projection are required. In theory, this can either be
accomplished by convolving the projection with a triplet or by
filtering it with a rho-squared filter. This filtered projection is
backprojected into IR? by substituting w-x for [. Next, a weight
is applied to the backprojection function according to its
backprojection orientation, and these weighted backprojection
functions are integrated to produce a reconstructed irrotational
field. Comparing (22) to a standard 3-D reconstruction formula
for scalar functions (cf., [19]) reveals only one key difference:
the weighting w/p(w)-w. This is a very minor difference which
does not affect the overall computational complexity of the
reconstruction algorithm. Thus, reconstructing an irrotational
vector field from its 3-D probe transform has the same
fundamental complexity as reconstructing a scalar field from
its 3-D Radon transform.

2) Solenoidal Fields: If the total field b is solenoidal, then
U(v) = 0 (since b is zero on the boundary). From (17), it
follows that

GP(p, w) =(j2mp)p(W) - [w X A(pw)]

= (j27p)A(pw) - [p(w) X w]

where the second equality follows from a basic property of
the triple product. From Helmholtz’s theorem, we know that

the vector potential is solenoidal—i.e., V - a(x) = 0—which
implies

(23)

(727p)[A(pw) - w] = 0.

Putting this equation together with (23) for two probes pi(w)
and ps(w) yields the system

GP(p, w) [p1(w) x w]*
Gm(oﬂ, w) | = (72mp) | [P2(w) X w|' | A(pw).

If p1(w) and pa{w) are chosen so that {p; (w), p2(w), w} are
linearly independent, then

[p1(w) x w]T] 7 [P (o, w)
A(pw) = (j2mp) ™" |[p2(w) xw]T | |GP2(p, w) | (24)
w’ 0
and b(x) is given symbolically by
b(x) =V x f;l{A(pw)}. (25)

The same considerations regarding polar-to-rectangular con-
version as in irrotational fields must be made here. Direct
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interpolation onto a rectangular lattice of the known values of
A(pw) yields a Fourier reconstruction method. Alternatively,
writing the inverse transform in polar coordinates yields direct
filtered backprojection and convolution backprojection formu-
las. Following steps analogous to the irrotational case, we first
write
a(x) = / A(v)etiZmx gy,
RZ
which leads to the polar form

a(x) = / /]H2 P2 A (pw)etIZTPUE iy dp.

Taking the curl of this and manipulating the resulting expres-
sion yields

[o¢]
b(x) :/ wx/ 72mp® A pw)e 2P dp duw. (26)
H? —o0
To further simplify this, we let
P(w) =
and

G(p,w) =

and use (24), yielding after some simplification
b(x) = / wx P Hw)
H2

. / P2G(p, w)eTITTPOX g duy.

@7

This equation can be put into the form of a filtered backpro-
jection formula

b(x) = /1H , @ X PTH@FT 0" G(p, 0)}imwx dw (28)

and a convolution backprojection formula

—1
4r?

b(x) = / w x P N w)gy(w - x, w) dw (29)
H‘I2

where g(l, w) = F; {G(p, w)}. Once again, the convolution
kernel turns out to be just the second derivative operator. As in
the irrotational case, the filtered projections are backprojected,
weighted, and integrated to form the reconstructed vector
field. Note that although g is a 3-D vector, only two of its
components are nonzero; therefore, only two probe transforms,
gP* and gP?, are required to reconstruct a solenoidal field.

3) Arbitrary Vector Fields: Tt follows from (17) that the
components qr and qg of an arbitrary vector field q can
be imaged separately. In particular, if p(w) = w, then since
w X w = 0, the solenoidal component of the field is invisible.
Therefore, for p(w) = w any of the reconstruction formulas
for an irrotational field can be used directly to reconstruct the
irrotational component qz. For example, from (22) we see that
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the irrotational component of an arbitrary vector field is given
by

qs(x) = 4—12 / wgp (w - X, w) dw. (30)
7 H2

In similar fashion, we see from (17) that the irrotational part
of the field is invisible if p(w) is orthogonal to w. Since the
linear subspace orthogonal to w is 2-D, two probes p; and ps
can be selected that are linearly independent and orthogonal
to w. Accordingly, any of the reconstruction formulas for
a solenoidal field can be used to reconstruct the solenoidal
component of an arbitrary vector field. A simpler formula
can be derived, however, by noting that when p; and ps are
orthogonal to w, it follows that

—1 _ P2 P1 w
Prw) = [[pzplw] [p1p2w] }

where the notation [abc] is standard for triple product and is
equal to a - (b x c¢). The cross product w x P~! appearing
in (29) simplifies since w x w = 0, and the equation can be
put into the form

(x) -1 w X p2
X)=—
s 4% e | [P2p1w]

[ ]

9" (@ - %, w)

w X p1 }
[p1p2w]

E2Y)

An even simpler equation results if {p1, p2, w} form a right-
handed orthonormal basis. In this case it is easy to verify
that

_ 1 ' (w-x, w)
qs(x) = e /H2 [P1 P2 [gﬁz (- x w) duw.

(32)
Two equations, (30) and either (31) or (32), can be now
used to independently image and reconstruct the irrotational
and solenoidal components of an arbitrary field. These equa-
tions can also be put together to give a single formula for
reconstructing the total field. Assuming {p1, p2, w} form a
right-handed orthonormal basis, (30) and (32) give

-1
160 =15 [ pil - x )
+ p2(w)g?(w - x, w) + wgh (w - X, w) dw (33)

which is a remarkably simple formula for reconstructing a
vector field from its probe transform measurements.

IV. SIMULATION RESULTS

A. Full 3-D Reconstructions

Three vector fields were defined on the unit cube (—1 <
%,y, z < 1) and sampled on a 16° lattice. The continuous
fields are all from the space D, with support on the unit sphere.
The small lattice size was used both to reduce computation
time and to improve visualization of the results. The first field
is irrotational, the second is solenoidal, and the third is the
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sum of these two. The scalar and vector potentials

1 -1
p(x) = { 2 &P (1 - 1x|2)’ <1 (34)
0, otherwise
-1 -y
a(x) = P (——1 = |x|2) S R )
0, otherwise

where |x| = y/22 4 y? + 22 are used to define the irrotational
and solenoidal fields

e(x) =Vi(x)
=t ep(—————_1 )37 x| <1
= BTV w2 ) Y] X
- P ) |
0, otherwise
(36)
b(x) =V x a(x)
xz
(1—1x[*)?
-1 yz
_J2exp W (1— [x]2)? , |xl<1
- 22 + ¢
(1= [x[*)? .
0, otherwise.
(37
Assigning q; = e and qg = b gives a third vector field
q(x) = e(x) + b(x) (38)

which obviously has both irrotational and solenoidal compo-
nents. Also, it is readily verified that Vxe =0, V-a =0,
and V-b = 0.

All five fields—, a, e, b, and g—are shown in Fig. 1.
By design, the magnitudes of all five fields are zero on the
boundary of the cube and larger near the center. The value of
the scalar potential 1, shown in Fig. 1(a), is proportional to
the diameter of the ball. The corresponding irrotational field e,
shown in Fig. 1(c), shows vectors pointing toward the origin,
implying the existence of a sink at the origin. Note that the
magnitude of these vectors is largest on a shell enclosing the
origin. There is, of course, no rotation (curl or vorticity) in
this field. The vector potential a, shown in Fig. 1(b), shows a
2-D circulation around one axis. It is not surprising that this
field would demonstrate this type of circulation, since we know
that the vector potential is itself solenoidal. The corresponding
solenoidal field b, shown in Fig. 1(d), demonstrates a more
complicated circulation through and around the origin. This
field has no divergence; therefore, no particles moving through
this field could either be lost from the cube or emanate from
or converge to a point. The total field q, shown in Fig. 1(e),
shows evidence of both field components—some convergence
toward the origin and some swirling through and around the
origin.

The probe transforms of the three fields e, b, and q were
computed numerically as follows. Fifty-four orientations of
w were chosen to sample the top half of the unit sphere
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Fig. 1. Simulated potentials and fields. (a) Scalar potential 1. (b) Vector
potential a. (¢) Irrotational field e. (d) Solenoidal field b. (e) Total field q.

with nearly equal areas. Fig. 2 gives a view of the top of
the unit sphere indicating the placement of these 54 samples.
The ordering from 1-54 is shown primarily to make it easier
to display the acquired data (see below); however, it also
suggests that a spiral is one possible way to generate w-
samples in practice. Given the elevation and azimuth angles
of an w sample, a Euler matrix was constructed to rotate the
unit vector pointing in the +z direction directly to w. The
probe vectors p; and ps were generated by applying this
same Euler matrix to the unit vectors pointing in the +z
and +y directions, respectively. The resultant set of probes
{p1, p2, w} is a right-handed orthonormal basis. A different
right-handed orthonormal basis is generated for each of the 54
samples w;, ¢ =1, ---, 54.

Given a direction w;, three planar integrals approximating
(1) for each of the three probes p1, p2, and w; were numeri-
cally calculated at 29 evenly spaced lateral positions /;, j =1,
-++, 29. For a particular pair (/;, w;), three scalar fields were
created by taking the inner product of the three probes with the
vector field on the plane L(l;, w;) = {x|l; = w; - x}. Each
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Fig. 2. Positions of w-samples looking at the unit sphere from the top.

field was then numerically integrated by sampling the plane
using 322 samples on a square section of the plane covering
the unit sphere. Trilinear interpolation was used to determine
the value of a vector field for sample points not falling on a
lattice point.

Sinograms representing the probe transforms are shown
in Fig. 3. Each row of a sinogram corresponds to a given
w;, ¢t =1, .-+, 54, where the top row corresponds to w;
and the bottom row to ws4. The columns correspond to the
lateral displacements ;, j =1,-- -, 29, with the center column
corresponding to integration through the origin. Thus, a row
of a sinogram is a projection, and there are 54 projections.
Alternately, a sinogram can be viewed as a gray-scale repre-
sentation of the matrix [gP({;, w;)] where 7 indexes the rows
and j indexes the columns. Note that there is a periodicity
reflected in the sinograms of p; and po. This periodicity has
an increasing period from top to bottom because there are more
samples around the unit sphere at the equator. This sampling
strategy is necessary to give nearly equal-area sampling of the
sphere. Also note that two of the sinograms of e are nearly
zero (a neutral gray color is zero) because irrotational fields
are invisible to probes orthogonal to w. Similarly, one of the
sinograms of b is nearly zero because solenoidal fields are
invisible to probes parallel to w. The nonzero sinograms of e
and b agree to good approximation with those of q, indicating
that the probes can separate the components of an arbitrary
field quite well.

We now focus on reconstructing the potentials and fields
from the probe transform measurements of the total field
q; thus, we reconstruct from the sinograms on the bottom
row of Fig. 3. The scalar and vector potential fields were
reconstructed using discrete approximations to (8) and (9),
respectively. The irrotational and solenoidal components and
the full field were reconstructed using discrete approximations
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Fig. 3. Sinograms of the probe transforms of the irrotational field e (top
row), the solenoidal field b (middle row), and the total field q (bottom row).

to (22), (32), and (33), respectively. These discrete approx-
imations used central differences to approximate derivatives
and replaced the backprojection integral with a summation
in which the samples were weighted by the areas accorded
to each angular sample. These reconstructions are shown in
Fig. 4. Note that the respective fields appearing in Figs. 1 and
4 are plotted using the same scale, so visual comparison is
meaningful (however, different fields are scaled differently so
that at least some detail within each field is visible). The error
is very small despite the relative sparsity of data; it is, in fact,
difficult to see any difference between the reconstructions and
the truth. A plot of the error vectors shown on the same scale as
the truth has vectors so small that little qualitative information
is available. In a more detailed comparison, however, we have
observed that the reconstructed vectors are somewhat too short
on average, and the orientations of the largest vectors are very
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Fig. 4. Reconstructed potentials and fields. (a) Scalar potential 7. (b) Vector
potential a. (c) Irrotational field e. (d) Solenoidal field b (e) Total field q.

nearly exact.

Quantitative results for reconstructing the potentials and
fields are given in Table I. This table gives average errors for
simulations in which the source fields were purely irrotational,
purely solenoidal, and the sum of these two. Since it is not
possible to reconstruct a, b, and q from e alone or 1, e,
and g from b alone, these entries are denoted n/a for “not
applicable.” All remaining boxes contain a number in the left-
most part, which gives the square root of the average squared
error—i.e., the root mean square error (RMSE), defined as

N
1
RMSE = , | — i — G2
N ;:1 la: — &

where N is the number of lattice points in the unit sphere.
The boxes corresponding to the reconstruction of vector fields
(including a) have two additional numbers corresponding to
average percent magnitude error and average angular error.
For reference when discussing the RMSE, Table II gives the
ranges and average values of the magnitude of the true fields.
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TABLE 1
AVERAGE RECONSTRUCTION ERRORS
Source Field
e b q

¥ || 0.364 - - n/a 0.367 - -
a n/a 0.539 11.9% 0.95° | 0.541 11.9% 1.13°
é | 3.471 -5.94% 0.96° n/a 3.620 -5.87% 1.93°
b n/a 5.733 -12.4% 3.53° | 5.800 -12.3% 3.94°
q n/a n/a 6.574 -9.06% 4.42°

(Note: RMSE figures must be multiplied by 10~2)

TABLE II
RANGES AND AVERAGES OF THE MAGNITUDE OF THE TRUE FIELDS
Minimum | Maximum | Average ||
¥ || 0.00376 0.181 0.070
a || 0.00146 0.131 0.061
e || 0.00430 0.399 0.291
b | 0.05121 0.719 0.336
q || 0.01953 0.776 0.444

The RMSE captures the performance of each reconstruction
in a single number. Since the RMSE values in Table I
have the same units as the entries in corresponding rows in
Table II, we can think of RMSE as an average deviation
from the truth in the same physical units as the field being
measured. Overall, the RMSE’s are less than 18% of the
average magnitude of their corresponding true fields and less
than 9% of the maximum magnitude. These RMSE values also
indicate that the presence of an “interfering” field only very
slightly degrades our ability to extract a given potential or
field component. For example, the presence of the solenoidal
field b causes the RMSE for reconstructing 4 to go up from
0.364 x 1072 to 0.367 x 10~2, less than a 1% change in the
RMSE. Percent magnitude error or angular deviation is another
indicator of the performance in reconstructing vector fields;
these measures have the advantage of separating out quantities
that may be of particular interest in a given application.
From Table I we see that all field reconstructions in this
simulation—eé, 13, and g—have vectors that are, on average,
too short; interestingly, reconstructing from the total field
tended to reduce this error. The angular error in these same
reconstructions, however, shows the exact reverse effect—i.e.,
the direction of a field component is better reconstructed from
measurements of the field component by itself.

B. Local Reconstruction

Consider reconstructing the field q at the point x( using
(33). All that is required are second derivatives (with respect
to ) of the probe transforms gP, gP2, and g* at the point [y =
w - x¢ for all w. This property is called local reconstruction,
a property inherited from the Radon transform, where it is
known that the inverse Radon transform operator is local
in odd dimensions [20]. Thus, in 3-D vector tomography it
is theoretically possible to reconstruct a vector at xg¢ given
only measurements on planes passing through x¢. In practice,
two approximations must be made in order to compute the
required derivatives. First, since w is sampled, the integral
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TABLE III
LOCAL RECONSTRUCTION ERROR (x1072)
Plane Spacing, T'

Number of Angles, M ][ 0.04 [ 0.08 [ 0.12 [ 0.16 [ 0.20 | 0.24 | 0.28 | 0.32 | 0.36 | 0.40
54 314 [ 2.22]1.83[1.45[1.46 | 1.69 [ 2.19 | 2.88 | 3.61 | 4.36
147 1811179 [1.74 168 {1.75 | 2.08 | 2.57 | 3.14 | 3.76 | 4.39
233 3.66 | 3.64 [ 3.13 | 2.49 [ 2.20 | 2.21 | 2.46 | 2.94 { 3.51 | 4.15
341 0.81 | 0.78 | 1.06 | 1.41 [ 1.81 [ 2.23 | 2.69 | 3.14 | 3.63 } 4.1
540 0.28 [ 0.65 [ 1.02 [ 1.40 [ 1.82 | 2.25 | 2.67 | 3.10 | 3.59 | 4.17
976 0.99[0.79 096 [ 1.39 [1.84 [ 2.23 | 2.63 | 3.08 | 3.58 | 4.16
1537 0.46 [ 0.63 [ 1.02 | 1.43 | 1.82 | 2.23 | 2.63 | 3.07 | 3.56 | 4.15
2224 0.43 [ 0.60 | 1.03 { 1.42 [ 1.82 | 2.23 | 2.63 | 3.06 | 3.56 | 4.14
3221 0.24 | 0.64 [ 1.03 | 1.42 | 1.81 | 2.22 | 2.62 | 3.05 | 3.55 | 4.13

in (33) must be approximated by a sum. Second, since [ is
sampled, the second derivatives in (33) must be calculated by
finite differences. Still, an experiment designed to reconstruct
only q(xg) would require only three plane integrals for each
w, provided that those planes could be positioned precisely.
A retrospective experiment (or one that allows only coarse
placement of the planes) would require at least four plane
integral measurements for each w to allow for interpolation
of the second derivatives. In our simulations we used a
combination of the two schemes: four plane integrals per w
were used, where the four planes were equally spaced and
centered at lo. Central differences were used to approximate
the two derivatives, and linear interpolation was then used to
determine the second derivatives at [g.

Given the above scenario, the remaining free parameters in
a local reconstruction experiment are the number of angles
M and the spacing T between the planes. To study the
relationship between these parameters and the reconstruc-
tion accuracy, we simulated noise-free local measurements
of q [see (38)] for many pairs (M, T'). The arrangement
of the M angles was chosen to sample the halfsphere with
nearly equal-area samples. For each w, the lateral positions
of four planes were centered at lj = w - Xg where X9 =
(0.066 666 7, 0.066 666 7, 0.066 666 7) and were separated by
T. The field was reconstructed using a numerical approx-
imation to (33) in which the integral was replaced by a
summation (weighted by the areas accorded to each angular
sample) and the derivatives were approximated by central
differences as described above. The resultant errors—that is,
|&(xo) — q(xo)|—are shown in Table IIL

The local reconstruction errors shown in Table III reveal
several interesting properties. First, when the planes are far
apart—i.e., T' is large—the error is very large and largely
independent of the number of angles. This indicates that for
large T' the derivative calculations are largely erroneous and
cannot be corrected by taking more angles. Second, for smaller
fixed T, increasing the number of angles reduces the error,
although the effect is relatively small. Third, except for the
region in which both M and T are small, the error decreases
strongly with decreasing plane spacing. Finally, there is a clear
anomalous behavior for small M and 7'. At this time, we
have no conclusive explanation for the anomalous region. We
speculate that the sampled angles are not sufficient in number
nor suitably oriented to capture the true field at that point—i.e.,
that this is a type of aliasing phenomenon related to the
interaction of sampling grids. Thus, except for this anomalous
region, we can conclude that performance is improved by
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taking more angles and moving the imaging planes closer
together. In particular, for the M and T' pair closest to that
of our previous full reconstruction simulation (M = 54 and
T = 0.08), the particular error here is 2.22 X 1072, about three
times smaller than RMSE of 6.574 x 10~2 in Table I. From
Table III, we see that it is possible to reduce this particular
error by almost a factor of 10 (to 0.24 x 10~2 when M = 3221
and T = 0.04), which by analogy would reduce the average
error to below 2% of the average field value.

V. APPLICATION TO MRI

Under a small phase-angle approximation (explained be-
low), the 3-D probe transform of a vector field can be
measured for arbitrary probe directions using magnetic res-
onance imaging (MRI) methods. It requires blending two
imaging approaches: 3-D planar imaging [21] and phase-
contrast imaging [22]. 3-D planar imaging uses a single 90°
radio frequency pulse to excite the entire sample followed by a
constant gradient during which the free induction decay (FID)
is recorded. An echo can be employed to refocus the FID. The
gradient direction during readout determines the direction w;,
the readout signal gives a series of planar integrals at different
positions. To make these integrals sensitive to velocity, the
gradient waveforms are manipulated before readout to provide
first a velocity-nulled readout and then a velocity-sensitized
readout. The three components of the probe vector are given
by the first moments of the gradient waveforms. Taking the
difference between these readouts gives a signal that, under
a small phase-angle approximation, is a 3-D probe transform
with a completely arbitrary probe direction. We now give a
brief mathematical treatment of this new imaging approach.

After a nonselective 90° pulse, the FID is given to good
approximation [23] by

s(t) = //p(x, v)ej'Y[x'MO(tH"'Ml(t)] dx dv (39)

where p(x, v) represents spin density as a function of spatial
position x and velocity v and

Mg(ﬂ:/ﬂt G(r) dr
Ml(t)zft rG(r)dr

0

are the zeroth and first moments of the gradient waveform
G(t). Making the assumption that at any given spatial position
the velocity takes on only one value, we have p(x, v) =
p(x)6(v — v(x)). After the 90° pulse, the =, y, and 2
gradients are manipulated twice in order to achieve both
velocity encoding and planar imaging. The first manipulation
is the combined application of a dephasing pulse and a bipolar
flow-encoding gradient pulse (cf., [24]), applied to all three
gradients. This independently sets the zeroth and first moments
of the gradient waveform. Next, a 180° radio frequency pulse
is applied in order to generate a spin-echo [although a gradient
echo could also be used (cf., [25])]. At time ¢ = ¢.., just prior to
the echo, the gradients are set to constant values, represented
by the readout gradient vector G..
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Choosing My(t,) = G,t, (using the dephasing pulse)
yields the following signal during readout

s(t) = / p(x)el X Crth(x) Mi+G-2/2) gy (40)

where Mj = M;(t,) — G,t2/2 (set by the bipolar pulse).
Now let w = G,/|G,| and p(w) = yMJ/. These vectors
represent the unit normal and probe directions, respectively,
and are completely arbitrary and user programmable. Taking
the Fourier transform S(f) = F{s(t)} and defining

2(l, w 41)

27 27

gives

2(l, w) = / p(x)ePE) v ()
L
B/

where ' = 272v(x) - w/v|G,|. When 4 is small enough,
which can be assured by choosing |G| large enough, the
bracketed term in the integrand above behaves like an impulse
function. Therefore, we have the approximation

e-ﬂ"*(l—"'w)”ﬂ’} dx (42)

z(l, w) = / p(x)eP@ VX 51 _ x . w)dx.  (43)

When this approximation is not valid—either because of large
velocities or small readout gradients—the effect is to integrate
over planes that have some thickness. This is analogous to
finite-width detectors in computed tomography.

Equation (43) is not in the form of the probe transform de-
fined in (1). If, however, p(w)-v(x) is small, then exp {jp(w)-
v(x)} = 1+ jp(w) - v(x) and

2(l, w) = / p(x)6(l —x - w)dx+ 3 / p(x)v(x)

plw)d(l — x - w) dx. (44)
Now consider the two measurements z(!, w), acquired with

1 =0, and 21 (I, w), acquired with M not equal to zero but
small enough so that the above approximation is valid. Then

gp(la w) :j[zﬂ(la w) - Zl(l’ w)]
- / p(W) - pR)IV(R)S(I — X -w)dx  (45)

is precisely a probe transform measurement of the vector field
q(x) = p(x)v(x). Additional probe directions can be acquired
by changing Mj. In principle, three probe directions and
(velocity-nulled) zo({, w) are required to reconstruct q(x). The
velocity itself can be reconstructed by dividing q(x) by p(x),
which is found by taking the inverse 3-D Radon transform of
the measurements 2o(l, w).
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VI. SUMMARY AND CONCLUSION

This paper presented three new projection theorems for vec-
tor tomography. The third theorem was used to develop several
new convolution backprojection reconstruction formulas for
vector fields and their irrotational and solenoidal components.
Significant simplification resulted when the probes were cho-
sen as a 3-D right-handed orthonormal basis with w as one of
the basis directions. These formulas and those of a previous
paper were verified in simulation by synthetically scanning and
reconstructing a vector field and its components. A limited data
algorithm was also implemented and evaluated to demonstrate
the local reconstruction property of these formulas. Finally, an
approach to measure the 3-D probe transform using a magnetic
resonance scanner was presented.

The theoretical results of this paper complete a basic anal-
ogy between vector tomography and standard computed to-
mography by developing projection theorems and convolution
backprojection reconstruction formulas. Many other theoretical
questions remain, including the issue of boundary conditions,
which, as Braun and Hauck point out in [7], are often of critical
importance in the study of vector fields. Also, the formulation
and study of new transformations similar to the probe trans-
form is of importance in some applications—e.g., magnetic
resonance imaging—where approximations are required to cast
the physical problem into the probe transform model. On
the practical side, the implementation of the probe transform
reconstruction formulas are scarcely more difficult than those
for the standard inverse 3-D Radon transform. While the
simulations presented herein used probes that comprise a 3-
D right-handed orthonormal basis, it is important to realize
that linear independence is all that is required, and that field
components can be reconstructed from fewer than three probes.
This may allow the use of the probe transform formalism in
new applications. Finally, it should be noted that the approach
used to generate simulations in this paper—i.e., synthetically
scanning a discrete vector field and reconstructing the poten-
tials or field components—represents (as far as we know) a
completely new way to extract both potential functions and
field components from a sampled vector field.
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