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Reconstruction of the Human Cerebral Cortex
from Magnetic Resonance Images

Chenyang Xu, Dzung L. Pham, Maryam E. Rettmann, Daphne N. Yu, and Jerry L. Prince*

Abstract—Reconstructing the geometry of the human cerebral
cortex from MR images is an important step in both brain
mapping and surgical path planning applications. Difficulties with
imaging noise, partial volume averaging, image intensity inhomo-
geneities, convoluted cortical structures, and the requirement to
preserve anatomical topology make the development of accurate
automated algorithms particularly challenging. In this paper we
address each of these problems and describe a systematic method
for obtaining a surface representation of the geometric central
layer of the human cerebral cortex. Using fuzzy segmentation,
an isosurface algorithm, and a deformable surface model, the
method reconstructs the entire cortex with the correct topology,
including deep convoluted sulci and gyri. The method is largely
automated and its results are robust to imaging noise, partial
volume averaging, and image intensity inhomogeneities. The
performance of this method is demonstrated, both qualitatively
and quantitatively, and the results of its application to six subjects
and one simulated MR brain volume are presented.

Index Terms—Cortical surface reconstruction, deformable sur-
face models, fuzzy segmentation, isosurface, magnetic resonance
imaging.

I. INTRODUCTION

RECENT advances in medical imaging of the brain allow
detailed anatomical information to be derived from high-

resolution imaging modalities such as magnetic resonance
imaging (MRI) and computed tomography (CT). These ad-
vances have placed a priority on obtaining accurate surface
reconstructions of the human cerebral cortex, not only to
provide valuable information on the geometric and anatomical
properties of the brain, but for other purposes as well. For
example, the location of functional activity obtained from
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positron emission tomography (PET), functional magnetic res-
onance imaging (fMRI), and other methods can be mapped to
the extracted cortical surface, providing a better understanding
of brain function and organization [1]. The reconstructed
surfaces can also be warped to other cortical surfaces for the
purpose of image registration [2]–[5], digital atlas labeling [6],
and population-based probabilistic atlas generation [7].

Geometrically, the human cerebral cortex is a thin folded
sheet of gray matter (GM) that lies inside the cerebrospinal
fluid (CSF) and outside the white matter (WM) of the brain.
Reconstruction of the cortex from MR images is problematic,
however, due to difficulties such as imaging noise, partial vol-
ume averaging, image intensity inhomogeneities, convoluted
cortical structures, and the requirement to preserve anatomical
topology. Preservation of topology is important because a
reconstructed cortical surface without a correct topology, such
as results obtained from isosurface algorithms [8], may lead
to incorrect interpretations of local structural relationships and
prevents cortical unfolding. These two aspects are critical in
applications such as brain morphometric analysis, surgical path
planning, and functional mapping.

Recently, there has been a considerable amount of work
in this area of research. Manginet al. [9] and Teo et al.
[10] reconstructed the cortex using a voxel-based method.
Volumetric registration, proposed by Collinset al. [11] and
Christensenet al. [12], allows the generation of cortical sur-
faces from MR brain image volumes, given a template volume
and its associated reconstructed cortical surface. Methods of
tracing two-dimensional (2-D) contours, either manually or
automatically through 2-D image slices followed by contour
tiling to reconstruct the cortical surface, have been described
by Drury et al. [13] and Kleinet al. [14]. Dale and Sereno [1],
MacDonaldet al. [15], Davatzikos and Bryan [16], and Sandor
and Leahy [17] have used methods based on deformable
surface models to reconstruct cortical surfaces. Unlike voxel-
based methods, a deformable surface is able to deform through
a continuum and yield a smooth surface representation of the
cortex. A surface representation is critical in applications such
as cortical matching and statistical analysis of cortical surfaces
(cf., [3]–[5] and [7]). Traditional deformable surface models,
however, have difficulties in progressing into convoluted re-
gions, resulting in reconstructed surfaces that lack the deep
cortical folds [9], [16], [18].

The goal of the present work is to provide a systematic
method for reconstructing a surface representation of the
central cortical layer from MR images of the brain. We
define the central cortical layer as the layer lying in the
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geometric center of the cortex, which is approximately cy-
toarchitechtonic layer four. Although the proposed method
can be tailored easily to track either the GM/CSF interface
or the GM/WM interface, we favor using the central cortical
layer to represent the cortex because it best represents the
overall cortical geometry compared to either the GM/CSF
interface or the GM/WM interface [19], [13]. Our method
is based on a new deformable surface model consisting of
novel approaches for both initializing the deformable surface
and deriving the external forces. This deformable surface
model is particularly suited to reconstruct the entire central
cortical surface including the deep folds, while maintaining
the correct cortical topology. The deformable surface model
is applied on membership functions computed by an adaptive
fuzzy segmentation rather than on image intensity volumes.
The segmentation provides modeling of partial volume effects
and eliminates dependency on image intensity, which can vary
between subjects.

This paper is organized as follows. In Section II, we de-
scribe our new cortical surface reconstruction method. In
Section III, we present and discuss both qualitative and quan-
titative results of applying our method to six different sub-
jects, as well as a simulated MR brain volume. Finally,
in Section IV, we conclude our paper and point out future
research directions.

We note that part of the work reported in this paper has
appeared in the conference papers [20] and [21].

II. M ETHODS

In this section we present our method for reconstruction
of the cortical surface from MR brain image data. This
method consists of four major steps. First, the acquired data
is preprocessed to extract the cerebrum and interpolated to
cubic voxels. Second, the brain image volume is segmented
into fuzzy membership functions of GM, WM, and CSF
tissue classes using an adaptive segmentation algorithm that is
robust to image intensity inhomogeneities. Third, an iterative
process of median filtering and isosurface generation on the
WM membership function produces an initial estimate of
the cortical surface that is topologically correct. Fourth, our
deformable surface algorithm moves this surface toward the
central layer of the cortex, yielding the final reconstructed
cortical surface. Fig. 1 shows an overall flow diagram of our
method. Throughout this section, we use results from one
subject as an example to illustrate the method.

A. Data Acquisition and Preprocessing

Our algorithm uses T1-weighted volumetric MR image data
acquired on a GE Signa 1.5 Tesla MR scanner using the SPGR
imaging protocol (TR 35 ms, TE 5 ms, flip angle 45
NEX 1). This data provides adequate contrast between
gray matter, white matter, and cerebrospinal fluid and has
fine enough resolution to resolve the complex structure of
the cortex. It has been tested on both axially acquired image
data with in-plane resolution of 0.9375 0.9375 mm and
out-of-plane resolution of 1.5 mm and on coronal data with
comparable resolution figures. The algorithm is easily modified

Fig. 1. Block diagram of the overall cortical surface reconstruction system.

to use multispectral data, but the resolution must be the same
or better.

The first step in our method is to preprocess the image
volume to remove skin, bone, fat, and other noncerebral tissue.
We used a semiautomated software package developed by
Christos Davatzikos at the Johns Hopkins University [22]. This
package features a combination of region-growing algorithms
and mathematical morphology operators to ease the processing
of cerebral tissue extraction. It also provides some manual
editing features that were used to remove the cerebellum
and brain stem (since we are only interested in the cerebral
cortex). We note that further automation may be possible,
using the methods proposed in [6], [23], and [24] but, in our
experience, some manual intervention was always required,
even with these approaches. Fig. 3 shows the three slices from
Fig. 2 after this procedure was applied. The increased contrast
apparent in these images is simply the result of image intensity
rescaling.

The final step in preprocessing is to trilinearly interpolate
the segmented volume to cubic voxels having the in-plane
resolution in all three directions. This reduces the directional
dependency in subsequent processing.

B. Fuzzy Segmentation of GM, WM, and CSF

There has been a trend in the recent literature favoring
the use of fuzzy segmentations over hard segmentations in
defining anatomical structures [25]. Fuzzy segmentations re-
tain more information from the original image than hard
segmentations by taking into account the possibility that more
than one tissue class may be present in a single voxel. This
circumstance often occurs when imaging very fine structures,
resulting in partial volume averaging. Small errors in the data
acquisition or segmentation will also be less of a factor in
fuzzy segmentations since this will only alter the segmentation
by some fractional number while in a hard segmentation, small
errors might change the entire classification of a voxel.
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(a) (b) (c)

Fig. 2. Sample slices from acquired MRI data set.

(a) (b) (c)

Fig. 3. Sample slices after the cerebral tissue extraction.

MR images sometimes suffer from intensity inhomo-
geneities caused predominantly by nonuniformities in the RF
field during acquisition [26], [27]. The result is a slowly
varying shading artifact appearing across the image that
can produce errors in intensity-based segmentation methods.
In particular, this artifact may cause the position of the
reconstructed cortex in various regions of the brain to be
shifted slightly from its true position. Robustness to intensity
inhomogeneities is therefore an important requirement in a
cortical surface reconstruction algorithm.

Recently, we reported a new method called adaptive fuzzy c-
means (AFCM) [28] to obtain fuzzy segmentations of 2-D MR
images that are robust to intensity inhomogeneities. AFCM
iteratively estimates the fuzzy membership functions for each
tissue class, the mean intensities (called centroids) of each
class, and the inhomogeneity of the image, modeled as a
smoothly varying gain field. The fuzzy membership functions,
constrained to be between zero and one, reflect the degree
of similarity between the observed voxel intensity and the
centroid of that tissue class. Unlike several other well-known
methods for inhomogeneity correction [27], [29], AFCM is
an unsupervised algorithm. Thus, it does not require any
training data or other manually selected data. Our comparisons
have also shown that AFCM provides more accurate seg-
mentations than several other competing unsupervised meth-
ods [30]. We now briefly describe the steps of AFCM for
3-D images. Details of its derivation for 2-D images are
provided in [28].

Let be the observed image intensity at voxel
be the membership value atfor class such that
and be the centroid of class and
be the unknown gain field to be estimated.the total number
of classes, is assumed to be three, corresponding to GM, WM,
and CSF. Background pixels are ignored. The steps for AFCM
are as follows.

1) Initial values for centroids, are se-
lected automatically, as described in [31], and the gain
field is set to one for all

2) Compute memberships as follows:

(1)

for all and .
3) Compute new centroids as follows:

(2)

4) Compute new gain field by solving the following space-
varying difference equation for

(3)
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(a) (b) (c)

Fig. 4. Sample slice from membership functions computed using AFCM. (a) GM. (b) WM. (c) CSF.

(a) (b)

Fig. 5. Resolution problems in determining the cortical surface. (a) Ideal image. (b) Sampled image.

where and

The operators are finite differences
along the axes of the image volume and

and
are second-order finite differences. Here

we have used the notation The symbol
denotes the discrete convolution operator.

5) If the algorithm has converged, then quit. Otherwise, go
to Step 2.

Convergence is defined as when the maximum change in
the membership functions over all pixels between iterations
is less than 0.01. In Step 4 of the algorithm, and
are parameters that control the expected smoothness of the
inhomogeneity. These parameters were determined empirically
and have demonstrated robustness to inaccurate selection. The
gain field in Step 4 was computed using a multigrid
algorithm (see [28]). A typical result from AFCM is shown
in Fig. 4.

C. Estimation of Initial Surface with the Correct Topology

In order to use a deformable surface model to accurately
reconstruct the extremely convoluted cortical surface, a good
initial surface is required. In the past, deformable surfaces
have been typically initialized using simple geometric objects
(e.g., a sphere or ellipsoid) outside the cortical surface or by
manual interaction [15], [6], [13], [16]. When initialized from

outside the cortical surface, however, deformable surfaces
have difficulty progressing into the sulci [16]. As shown in
Fig. 5, the primary difficulty with this approach is that sulci
can be narrow, relative to the resolution of the scanner, so that
the imaged sulci become connected [9]. As a result, these de-
formable surfaces produce cortical surface reconstructions that
lack deep folds. Manual initializations yield better results, but
they are labor intensive and time consuming for 3-D data sets.

Because of the presence of WM, there is more space
between the cortical folds on the inside of the cortex than
there is on the outside (see Fig. 5). Therefore, initializing the
deformable surface on the inside of the cortex is a promising
strategy [1], [20], [10]. Ideally, we desire an initial surface
that is on the inside of the cortex, is close to the final surface,
and has the correct topology: that of a sphere.1 As shown in
Fig. 5, the GM/WM interface is both inside and close to the
cortex. Our approach is to find a surface that approximates the
GM/WM interface by finding an isosurface of a filtered WM
membership function. Filtering is required in order to make
the initial surface have the correct topology. We now describe
this approach in detail.

1) Using an Isosurface Algorithm:An isosurface is a sur-
face that passes through all locations in space where a continu-
ous data volume is equal to a constant value. The construction
of isosurfaces is a well-studied problem [8], [32], [33]. The
result of a typical isosurface algorithm usually consists of

1The cerebral cortex actually has a hole at the brain stem. Here, we
reconstruct a closed surface that passes through the brain stem.
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triangle meshes that are discrete representations of the cor-
responding continuous isosurfaces.

Since voxels at the GM/WM interface contain both GM and
WM, an isosurface can be computed on the WM membership
function obtained from AFCM, to yield an estimate of the
GM/WM interface. In order to use isosurfaces in the context
of our work, several issues need to be addressed.

• Extraneous connected structures: The boundaries of the
hippocampus, the ventricles, and the putamen are gener-
ally connected with the cortical GM/WM interface in the
WM membership function. This may cause isosurfaces
computed from the WM membership function to be a
composite of the cortical GM/WM interface and these
extraneous connected surfaces. Since we are only inter-
ested in reconstructing the cortical GM/WM interface, we
manually remove the hippocampal formation and fill both
the ventricles and the putamen in the WM membership
function. This process is facilitated with the aid of region-
growing algorithms and takes only a small portion of the
total processing time.

• Mesh selection: The output from an isosurface algo-
rithm on the WM membership function usually contains
multiple meshes. Since these meshes are physically dis-
connected from each other, they can be distinguished
from one another by their vertex connectivity. Among all
these meshes, the one with the largest number of vertices
corresponds to the GM/WM interface.

• Topology: Isosurfaces are, in general, topologically un-
constrained. We assume that the topology of the GM/WM
interface is equivalent to that of a sphere. However,
imaging noise often induces the formation of small han-
dles (like that of a coffee cup) on the computed WM
isosurface. These small handles are inconsistent with the
assumed anatomical topology and special care is required
in order to obtain an initial surface with the correct
topology.

2) Correcting Surface Topology:The existence of handles
in a surface can be detected by computing the surface’s
Euler characteristic, [34]. For a closed surface, can only
assume an integer value less than or equal to two. A surface
is topologically equivalent to a sphere when . The
existence of handles in the surface reduces the value of
by two for each handle.

The Euler characteristic can be computed from a triangula-
tion of the surface by [35]

(4)

where is the number of vertices, is the number of edges,
and is the number of faces. The Euler characteristic is a
topological invariant of a surface and does not depend on the
method of triangulation.

We found that the handles on the surface can be eliminated
by successively median filtering the WM membership function
and recomputing its isosurface until the largest isosurface
triangle mesh has The resulting surface is a smoothed
approximation to the GM/WM interface and has the topology
of a sphere.

TABLE I
SIZE AND EULER CHARACTERISTICS OFMESHES

FROM THE ORIGINAL ISOSURFACECALCULATION

TABLE II
EULER CHARACTERISTIC OF LARGEST

RESULTING SURFACE AFTER EACH ITERATION

3) Summary of Surface Initialization:Our procedure for
computing an initial estimate of the cortical surface with the
correct topology can be summarized as follows.

1) Manually remove the hippocampal formation and fill
both the ventricles and the putamen in the WM mem-
bership function.

2) Compute an isosurface on the preprocessed WM mem-
bership function at the value 0.5.

3) Extract only the connected surface with the largest
number of vertices.

4) Compute the Euler characteristic of the extracted
surface.

5) If is not equal to two, then apply a 3 3 3 median
filter to the preprocessed WM membership function,
recompute the isosurface on the filtered data, and go
to Step 3.

Isosurfaces were generated using the IBM Visualization Data
Explorer software which uses the ALLIGATOR algorithm
[33].2 Except for Step 1, all of the steps are performed
automatically.

A typical result of applying the above procedure to one of
our data sets is shown in Tables I and II, and Fig. 6. Table I
shows the number of meshes and theirvalues before any
median filtering has taken place. The one mesh that is clearly
much larger than all other meshes represents an estimate of
the GM/WM interface with an incorrect topology. Table II
shows how the of the largest resulting mesh is increasing
with each iteration and eventually converges to the desired
value of two. Although there is no theoretical proof that
successive median filtering will cause the Euler characteristic
to converge to two, we have found empirically that this is the

2This implementation of the ALLIGATOR algorithm sometimes results
in isosurfaces that contain singular points where two different parts of the
mesh meet at one vertex, which ALLIGATOR should prohibit. In this case,
methods to remove singular points automatically were also incorporated into
the iterative procedure.
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(a) (b)

Fig. 6. (a) Isosurface of WM membership function with the incorrect topology. (b) Estimated initial surface with the correct topology.

case. Additional results on the convergence of the deformable
surface initialization are provided in Section III-B1.

Fig. 6(a) shows the result of the isosurface algorithm on the
original WM membership function at a value of 0.5. Multiple
meshes and topological inconsistencies are present. Fig. 6(b)
shows the final topologically correct mesh after nine iterations
of our procedure. We see that although we have not yet
applied the deformable surface model, many of the prominent
geometrical characteristics of this cortical surface are already
apparent.

D. Refinement of the Initial Surface Using
a Deformable Surface Model

After obtaining an initial estimate of the cortical surface
that is topologically correct, the surface requires refinement.
Because of median filtering, the initial surface in the previous
step is a smoothed version of the GM/WM interface. Using
deformable surfaces, it is possible to have this initial surface
move toward the central layer of the GM. The main problem
here lies in defining the external forces. Below, we first give a
brief overview of deformable surface models and then describe
our specific model, which uses external forces that push the
initial surface toward the central layer of the GM. For a thor-
ough survey on deformable surface models, we refer readers
to the survey paper by McInerney and Terzopoulos [36].

1) Deformable Surface Models:The traditional deformable
surface is a parameterized surface

that moves through the spatial
domain of a three-dimensional (3-D) image to minimize an
energy functional [36]–[38]. A typical example of such an
energy functional is

(5)
where and are weighting parameters that control the
surface’s tension and rigidity, and denote the first and
second partial derivatives of with respect to and
is the external energy function derived from the image. It can
be shown that the deformable surface minimizing the above
energy functional can be obtained by finding the steady-state

solution of the following dynamic equation:

(6)

where the internal forces are given by
and the external forces are given by

. The symbol
is the Laplacian operator defined in the parameter space. Note
that in (6), an auxiliary variable timeis introduced to make
deformable surface dynamic.

2) External Forces:Traditional deformable surface models
typically use external force fields that are conservative vector
fields since they are computed from the spatial gradient of
a scalar function. The scalar function is usually either the
magnitude of the image intensity gradient or a distance func-
tion derived from an analysis of the objects within the image
[37], [39]. Such deformable surface models, however, have
difficulty progressing into boundary concavities [18] which, in
our case, are the gyri of the cortical GM. We recently reported
a new external force model, called gradient vector flow (GVF)
[18], [40], and, even more recently, an extension to GVF
called generalized gradient vector flow (GGVF) [41], each
of which can be used to address this problem. The external
forces we use in this paper combine GGVF with a constrained
pressure force which further improves overall convergence of
the deformable surface. We now briefly describe this new
external force model.

A GGVF field where is defined
as the equilibrium solution of the following system of partial
differential equations:

(7a)

(7b)

where denotes the partial derivative of with respect
to and is the
Laplacian operator (applied to each spatial component of
separately). In this work, we set to be the GM membership
function and and
where is a scalar and is a dummy variable. We note that if

and where is a positive scalar, GGVF
reduces to GVF. The advantage in using and as
defined here is that it leads to improved convergence properties
for narrow boundary concavities [41].
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Fig. 7. GGVF vector field converges to the center of a thick edge.

When applied to a thick sheet such as the cortex, GGVF,
through its diffusion process, creates forces that point to the
central layer of the cortex [42]. To illustrate this, in Fig. 7 we
show a 2-D example of GGVF applied to a ribbon. The figure
shows GGVF force vectors clearly pointing toward the central
layer of the ribbon from which they were calculated.

Despite the improved convergence properties of GGVF over
conventional external forces, deformable surface convergence
can be slow and the surface still may not fully capture the
gyri in some areas of the cortex. Thus, we combine GGVF
with pressure forces [43], [39] that are constrained to operate
only on parts of the surface that are not within the GM. This
constraint, similar to that in [23], helps increase the speed of
convergence of the deformable surface when it is far from the
GM and improves the fidelity of the final result when it is
within the GM. The resulting external force is given by

(8)

where and are weights, is the GGVF field,
is the outward unit normal vector of the surface at,
is the inner product of two vectors, and is a constraint
field (defined below). Since the component of the external
force in the tangent plane will affect the parameterization of
the surface but not its shape, we project onto the normal
direction at surface position. The internal force is therefore
solely responsible for controlling the surface parameterization,
while the external force is solely responsible for deforming the
surface toward the feature of interest.

The constrained pressure force is designed to
push the surface outward only until it enters the GM, where-
upon the pressure force then turns off. To accomplish this, we
define the strength of the pressure force, as controlled by the
constraint field , to be

if
otherwise

Fig. 8. Initial deformable contour shown in black and final converged
deformable contour shown in white.

Fig. 9. Illustration of behavior ofC(xxx).

where and are the WM and GM membership
functions. Here, is a threshold that controls the width of the
GM region where the pressure force is disabled, i.e., .
In our experiments we used . The behavior of
is illustrated in Fig. 9 where one-dimensional (1-D) profiles
of GM and WM membership functions and the corresponding

are plotted. It is easy to see that whenis in the WM
is positive, which would cause the pressure force to push

a deformable surface toward the GM. Whenis in the GM
is zero and the GGVF force is the only external force.

When is outside the GM in the CSF or background
is negative, causing the pressure force to push the deformable
surface back toward the GM.

To demonstrate the behavior of these external forces, we
applied a 2-D deformable contour, a 2-D analog to deformable
surfaces in 3-D, using the external forces defined in (8) to the
computer phantom shown in Fig. 8. Here, the gray ribbon is
analogous to the cortical GM, sandwiched between the WM
and the CSF. In the figure, the initial deformable contour is
the circle shown in black, while the final converged contour
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(a) (b)

(c) (d)

(e) (f)

Fig. 10. Surface renderings of a reconstructed cortical surface from one subject displayed from multiple views. (a) Top. (b) Bottom. (c) Left. (d) Right.
(e) Left medial. (f) Right medial.

is shown in white. We note that the final contour rests on the
center of the simulated GM.

3) Adaptive Parameters:Because of image noise, rela-
tively large internal forces are desirable where the deformable
surface is far from the GM. Large internal forces cause the
deformable surface to be very smooth, however, and prevent
the surface from accurately conforming to the central cortical
layer. Therefore, lower internal forces are desirable where
the deformable surface lies within the GM. We achieve this
by allowing and to be spatially varying parameters in
(5) with respect to the strength of the constraint field
as follows:

if
otherwise

for where

E. Reconstructed Surface

We have implemented the proposed deformable surface
based on a simplex mesh representation of the underlying con-
tinuous surface [44]. Simplex meshes can be easily obtained
by applying a dual operation to the triangle meshes generated
by the isosurface algorithm. Details of our deformable surface
implementation can be found in [42]. As an example, we
carried out the complete surface reconstruction on the sample
data set appearing in Figs. 2–4, and 6. Different views of the
reconstructed surface are shown in Fig. 10, and crosssectional
views are shown in Fig. 11. The parameters used to achieve
this result are and for AFCM;

for GGVF; and
and for the deformable surface.

While this may appear to be a large number of parameters to
tune, we have found that they are fairly robust to both changes
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(a) (b) (c)

Fig. 11. Cross-sectional views of the reconstructed cortical surface (in white) and the initial surface (in gray). (a) Axial. (b) Coronal. (c) Sagittal.

in their values and the data. In fact, all the results presented
in the following section use these same parameters.

At first glance, the sulci in the surface shown in Fig. 10
appear too open and do not resemble those from a normal
brain. Note, however, that this reconstruction represents the
central layer of the cortical GM, an object that we are not
accustomed to viewing. The central layer is not the brain’s
outer surface, as would be seen from a cadaver brain or
a standard isosurface reconstruction of the cortical surface.
Careful inspection reveals exquisite depiction of the major
sulci, including the central sulcus, superior temporal sulcus,
calcarine sulcus, parieto-occipital sulcus, and the Sylvian
fissure. Secondary sulci such as the pre- and postcentral sulci,
the superior frontal sulcus, and the cingulate sulcus are also
readily discernible. Their prominence in these pictures is, to
some extent, because we are depicting a more open brain
surface, but also because the central cortical layer is the most
natural representation of the overall geometry of the cortex.
We note that the small area of cortical surface passing through
the brain stem region is not cortical gray matter, but it is
necessary to generate a closed surface.

The crosssectional pictures in Fig. 11 show how the re-
constructed surface tracks the central cortical layer over the
entire cortex, including its deepest folds. In fact, because
the surface is initialized inside the cortex, the most difficult
areas to reconstruct are typically the gyri, not the sulci. A
typically difficult area is the superior temporal gyrus, which
is not particularly well reconstructed on the left side of the
picture in Fig. 11(b). Other features of interest appearing
on these crosssections are the various islands of apparently
disconnected surface intersections. These features, however,
are actually parts of the surface protruding through the image
plane. The surface being portrayed is simply connected with
the topology of a sphere.

III. RESULTS

We applied the described cortical surface reconstruction
method to MR brain images from six subjects, four of which
were taken from the Baltimore Longitudinal Study on Aging
[45]. The same parameters used in the example from the
previous section were used for these six studies. Using an SGI
O2 workstation with a 174-MHz R10000 processor, the total
processing time per study varied between 4.5 and 6 h. The
time required for manual interaction varied between 0.5 h and

1 h for a trained operator and AFCM required approximately
1 h. The automated steps in GM/WM interface estimation
take approximately 0.5 h and produce a mesh with between
200 000 and 400 000 vertices. Because of the large number of
vertices in the mesh, it takes the deformable surface algorithm
about 3 h toproduce the final reconstructed surface. Note that
both AFCM and the deformable surface algorithms are fully
automated steps.

A. Qualitative Results

Fig. 12 shows the right medial surface of each of the six
reconstructed cortical surfaces. Prominent sulci include the
calcarine sulcus, the parieto-occipital sulcus, and the cingulate
sulcus. Fig. 13 shows a coronal view of a slice taken ap-
proximately at the anterior commissure of each reconstructed
cortical surface. These figures show that the surfaces reside
on the central cortical layer and that buried gyri (such as the
insula) are found. Although most gyri are properly depicted,
certain regions, such as the superior temporal gyrus, are
sometimes not found accurately. This is particularly apparent
in Fig. 13(e) and (f). We are considering further improvements
to correct these deficiencies.

B. Quantitative Results

Several quantitative validation experiments were performed
to evaluate the robustness and accuracy of our surface recon-
struction approach. These are described in this section.

1) Initialization Algorithm Validation: Application of our
method to multiple subjects allowed a preliminary validation
of the convergence of the deformable surface initialization al-
gorithm (see Section II-C). The results are shown in Table III,
where we observe that the median filter used in the iterative
process effectively eliminates handles on the surfaces and
that in all six cases, the Euler characteristic of the surface
converged to two in fewer than ten iterations.

2) Gray Matter Percentage:Since our deformable surface
algorithm is designed to converge to the GM, as an initial
evaluation for each reconstructed surface we computed the
percentage of the surface area that was inside the GM
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(a) (b) (c)

(d) (e) (f)

Fig. 12. The medial view of surface renderings of all six reconstructed cortical surfaces (subjects 1–6 displayed from left to right and top to bottom).

(a) (b) (c)

(d) (e) (f)

Fig. 13. From left to right and top to bottom, the coronal slice across the anterior commissure for subjects 1–6 superimposed with the crosssection of
the corresponding reconstructed cortical surface.

where is the reconstructed surface with the brain-stem region
excluded and is a binary segmentation of GM. is
derived from the fuzzy membership functions as follows:

if
otherwise.

The GM percentage for each reconstructed cortical surface
is shown in Table IV. All the reconstructions have GM per-
centage over 96%. We believe that those parts of the surface
not lying in the GM are mostly found in the WM crossing
a gyrus that is not reconstructed well, such as the superior
temporal gyrus.

3) Landmark Errors: A high GM percentage is a necessary
condition for the reconstructed surface to be accurate because
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(a) (b)

Fig. 14. Illustration of landmark locations. (a) Lateral view. (b) Medial view.

TABLE III
EULER CHARACTERISTICS OFSURFACES GENERATED

FOR SIX SUBJECTS AT DIFFERENT ITERATIONS

TABLE IV
GM PERCENTAGEMEASURE OFRECONSTRUCTEDSURFACES FORSIX SUBJECTS

it gives a global measure of how much of the reconstructed
surface is inside the GM. The GM percentage, however, does
not reflect whether the surface coincides with the central
cortical layer. To get a sense of this accuracy and how it
varies across the cortex, we computed a series of landmark
errors for each of the six surfaces. We picked five landmarks
on the central cortical layer of each hemisphere on all subjects.
Fig. 14 shows the location of the landmarks picked on the
brain cortex. Details of how these landmarks were picked
and how the landmark errors were calculated are given in the
Appendix. The landmarks were located on the fundus of the
central sulcus (CS), the crown of the postcentral gyrus (PCG),
the most anterior point of the temporal lobe (TLG), midway
along the fundus of the calcarine sulcus (CALC), and on the
medial frontal gyrus (MFG). The landmark error is defined as
the minimum distance between the given landmark and the
reconstructed surface.

The computed landmark errors for all six subjects are shown
in Table V. Overall, the mean landmark error is between 1
and 2 mm. Many of the individual landmark errors are less
than 1 mm: the size of a voxel. In particular, for landmarks
located at sulcal fundi, i.e., CS and CALC landmarks, the
errors are generally small since they are close to the initial
deformable surface. However, there are a few exceptions
where large errors are associated with these landmarks. This
is because in places where the sulcal banks are very close
together, our deformable surface model sometimes may travel

TABLE V
LANDMARK ERRORS (IN MILLIMETERS)

too far outward toward the outer brain surface. For landmarks
associated with gyri, consistent small landmark errors are
observed at the relatively open gyri such as the PCG and the
MFG. However, for narrow extended gyri such as the TLG, the
deformable surface may be stopped before reaching the correct
destination, yielding larger landmark errors. In Section IV, we
will discuss possible directions for further improvement.

4) Parameter Selection:Our method requires the selection
of several parameters that affect its overall performance. We
have found that the algorithm is quite robust to variations
in , , and and that the nominal values we have used
yield the best overall results (see [28] and [41]). Tradeoffs
between the parameters controlling the deformable surface,
however, can influence the result more significantly. Therefore,
we conducted a numerical experiment in order to find the best
ranges of parameters to use in our deformable surface model.
These results are reported here.

We used the BrainWeb simulated brain data obtained from
the McConnell Brain Imaging Centre at McGill University3

[46], generated using the following parameters: 1 mm cubic
voxels, T1-weighted contrast, 3% noise, and 20% inhomogene-
ity level. We then varied the parameters of the deformable
surface model to obtain a series of reconstructed cortical
surfaces. For each reconstructed cortical surface we computed
its GM percentage and landmark errors. We found that the
best performance occurs when , which implies that
the deformable surface has no resistance to bending. The GM

3http://www.bic.mni.mcgill.ca/brainweb.
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TABLE VI
GM PERCENTAGE USING AFCM GM SEGMENTATION

TABLE VII
GM PERCENTAGE USING TRUE GM SEGMENTATION

TABLE VIII
LANDMARK ERRORS FORPHANTOM DATA (IN MILLIMETERS)

percentages computed for different and values are
summarized in Table VI. From the table, and

seem to yield consistently higher GM
percentages.

The BrainWeb simulated brain data also comes with a true
GM segmentation. This allows us to compute the true GM
percentage. The results are shown in Table VII. By comparing
the two tables, one can see that the GM percentage computed
from AFCM GM segmentation differs by at most 0.2% from
the value computed from the true GM segmentation. This
demonstrates the robustness of AFCM segmentation to noise
and image inhomogeneities.

The landmark errors are derived from the landmarks picked
on the true brain data where no noise and inhomogeneity are
present. For each set of parameters, the mean of the computed
landmark errors are summarized in Table VIII. From the table,

and seem to yield consistently
lower landmark errors.

The results from both GM percentages and landmark errors
suggests that we achieve the lowest errors when and

This is consistent with our conclusion
through visual inspection and the parameters match well with
our empirically chosen parameters.

5) Comparison with Shrink-Wrapping:Shrink-wrapping is
a well-known approach to finding a parametric representation
of the brain surface [15], [6], [16], [17]. This approach uses
a deformable surface that is initialized as a simple geometric
object (sphere or ellipsoid) outside the cortex and the surface
is then pushed toward the cortex by the action of internal and
external forces. For comparative purposes, we implemented a
shrink-wrapping deformable model that started from an initial
sphere outside the brain surface and deformed toward the
central layer of the GM, using the same external forces as used
in the proposed method. The proper parameters for the shrink-

(a) (b)

(c) (d)

Fig. 15. Surface renderings of (a) shrink-wrapping method versus (b) pro-
posed method. Cross sections of (c) shrink-wrapping method versus (d)
proposed method.

wrapping deformable model are determined experimentally.
The resulting surface of subject one is shown in Fig. 15(a),
while the surface found by our method is shown in Fig. 15(b).
These surfaces look very similar, and it is not apparent
from these renderings that there is much difference in these
approaches.

A profound difference between these two approaches is
revealed, however, in the crosssectional images shown in
Fig. 15(c) and (d). Clearly, the shrink-wrapping method only
finds the outermost cortical layer. It is interesting to note
that the GM percentage of the shrink-wrapping method is
94%, a fairly large number. However, this number merely
indicates that the final surface resides overwhelmingly within
the GM, but does not indicate how faithfully it tracks the
entire cortex. In fact, the landmark errors computed for the
shrink-wrapping result shows substantial errors (4–10 mm) in
the CS, CALC, and MFG landmarks, which are landmarks
that either reside within sulci or within the interhemispheric
fissure. This demonstrates the importance of initializing the
deformable surface from inside the cortical GM.

IV. DISCUSSION

We have presented a method for reconstructing cortical
surfaces from MR brain images. This method combines a fuzzy
segmentation method, an isosurface algorithm, and a new de-
formable surface model to reconstruct a surface representation
of the cortical central layer. The reconstructed surfaces include
deep gyri and sulci and possess the correct surface topology
of the cortex. The process is largely automated and produces



XU et al.: RECONSTRUCTION OF HUMAN CEREBRAL CORTEX 479

surfaces that are typically within 1–2 mm of the true cortical
surface.

The method for cortical surface reconstruction proposed by
Dale and Sereno [1] shares several common features with the
method described here. Both methods start from the GM/WM
interface and use deformable surface algorithms to reconstruct
the cortical surface. However, there are several major differ-
ences. In their work, image intensity inhomogeneities were
not explicitly considered and no validation of their algorithm
was presented. Also, they employed a 3-D floodfill algorithm
to obtain the GM/WM interface but, from our experience, the
floodfill algorithm can only remove holes (cavities) in the WM,
but not the handles (bridges). Moreover, it is unclear what
cortical layer was reconstructed by their deformable surface
algorithm.

Since the proposed method generates a mapping of the
entire cortical surface that preserves both deep folds and
topology, various brain structures can now be studied in a
more precise way. The reconstructed cortical surface can be
unfolded to facilitate visualization of geometrical features [47].
Also, functional data can be mapped onto the reconstructed
cortical surface to study the relationship between structure and
function, especially in deep sulcal regions [48].

Future work includes further reduction of manual inter-
vention and improved convergence of the deformable surface
into narrow extended gyri. A promising way to improve the
deformable surface convergence is to incorporate additional
brain anatomical knowledge as demonstrated in [49] and [50].
Also, theoretical justification of applying median filtering to
correct topology as well as finding improved methods for
generating a topologically correct initial surface are important
topics for future work.

APPENDIX

LANDMARK PICKING AND LANDMARK ERRORS

To pick landmarks, an IBM Data Explorer visual program
was written to display three 2-D orthogonal views of the
raw MR brain volume. Within each view, the positions of
the other two slices were superimposed forming a cross. An
operator then selected three views such that the center of
the cross in each view lay on the central layer of the GM
within a designated volume of interest (VOI). The landmark
coordinates were recorded as the physical positions of these
three views.

Landmarks determined in this way were treated as the
truth in the calculation of landmark errors in Section III. It is
important to understand the effect of operator error, however,
on the reported errors. Referring to Fig. 16, we see that the
picked landmark will, in general, be some distance from
a point on the true central layer and the reported error

will be different from the true error . It
is straightforward to show that which leads
to the conclusion that is a good measure of error provided
that is small relative to It remains to determine what is
the operator error

We found that an operator can pick a point on the central
layer of the cortex very accurately, using the described pro-

Fig. 16. Illustration of the configuration of ideal landmark, actual landmark,
and closest point on the surface.

cedure. The main reason for this accuracy is that the operator
does not need to pick a specific point, but only a point within
a VOI that is on the central cortex in all three views. To
get an approximate measure of this accuracy, we designed a
Monte Carlo simulation to approximate the landmark picking
error introduced by the operator. We assume that our VOI is
10 10 10 voxels, each voxel is 1 mm, and the central
cortical surface in the VOI is a plane. For a plane passing
through the VOI with arbitrary location and orientation, we
assumed that the operator could pick the grid point closest to
the plane, and the distance between this grid point and the
plane is the operator error for this particular experiment. By
varying the plane position and orientation randomly, we can
measure the mean operator error and use it as our estimation
of the landmark picking error introduced by the operator. We
uniformly sampled 10random planes from all possible planes
passing through the VOI, yielding a mean operator error of
0.04 mm. Even if the true operator error were 2–5 times this
error, it would still be relatively small in comparison to the
typical errors reported in Section III.
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