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Abstract

Active contour and surface models, also known as de-
formable models, constitute a class of powerful segmen-
tation techniques. Geometric deformable models imple-
mented via level-set methods have advantages over para-
metric ones due to their intrinsic behavior, parameteriza-
tion independence, and ease of implementation. However,
a long claimed advantage of geometric deformable models
— the ability to automatically handle topology changes —
turns out to be a liability in applications where the objects
to be segmented have a known topology that must be pre-
served. In this paper, we present a geometric deformable
model that preserves topology using the simple point con-
cept from digital topology. This algorithm maintains the
other advantages of standard geometric deformable mod-
els including sub-pixel accuracy and production of non-
intersecting curves (or surfaces). Several experiments on
simulated and real data are provided to demonstrate the
performance of the proposed algorithm.

1. Introduction

Active contour and surface models, also called de-
formable models, are curves or surfaces that deform within
two-dimensional (2D) or three-dimensional (3D) digital im-
ages under the influence of both internal and external forces
and user defined constraints. Ever since their introduction
by Kass et al. [1], these algorithms have been at the heart
of one of the most active and successful research areas in
edge detection, image segmentation, shape modeling, and
visual tracking. Deformable models are classified as either
parametric active contours (cf., [1-3]) or geometric active
contours (cf., [4-8]) according to their representation and
implementation. In particular, parametric active contours
are represented explicitly as parameterized curves or sur-
faces in a Lagrangian formulation. Geometric active con-
tours, on the other hand, are represented implicitly as level
sets of higher-dimensional level set functions which evolve
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according to an Eulerian formulation [9].

Parametric deformable models (PDMs) are the older of
two formulations and have been used extensively in many
applications (see [10], for example). Geometric deformable
models (GDMs) were introduced more recently by Caselles
et al. [4] and by Malladi et al. {5], and have several advan-
tages. First, they are completely intrinsic and independent
of the parameterization of the evolving contour. Thus, there
is no need to add or remove nodes from the initial parame-
terization or adjust the spacing of the nodes. Second, the in-
trinsic geometric properties of the contour (e.g., curvature)
can be easily determined from the level set function. Third,
the propagating contour can automatically change topology
(e.g., merge or split) without requiring an elaborate mecha-
nism to handle such changes. Finally, the resulting curves or
surfaces do not contain self-intersections, which are costly
to prevent in parametric deformable models.

There are some applications in which the topology of
the sought object is known, and the resulting deformable
model should conform to this topology. For example, in the
analysis of 3D brain images it is desirable that a reconstruc-
tion of the cortical surface have a topology that is consis-
tent with brain anatomy {11, 12]. Recently, in fact, there
have been several methods reported to correct the topol-
ogy of a cortical segmentation after the initial (topologically
wrong) segmentation {13, 14]. To enforce a given topol-
ogy during evolution of the deformable model, paramet-
ric deformable models have always been used because their
topology is explicitly maintained in the Lagrangian formu-
lation. Self-intersections can become a problem, however,
as simple curves and surfaces are generally required, and
the computational demands related to self-intersection de-
tection are very high [12]. Geometric deformable models
prevent self-intersection, but there has been no mechanism
prior to this paper to prevent topological changes during ge-
ometric curve/surface evolution.

Clearly, there is a need for geometric deformable mod-
els that enforce a topological constraint. In this paper, we
develop such a topology preserving mechanism for geomet-
ric deformable models that guarantees that the final curve or
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surface has exactly the same topology as the initial one. The
topology preservation is achieved by maintaining the topol-
ogy of the digital object enclosed by the implicit contour,
for which we make use of the simple point criterion from
digital topology [15, 16]. We note that our approach main-
tains the sub-pixel interpolation property of geometric de-
formable models, which sharply contrasts our method with
the topology preserving region growing method of Mangin
et al. [17]. The topology preserving mechanism we de-
scribe can be used with any existing 2D or 3D geometric de-
formable model, regardless of the internal or external force
definition, yielding a large new class of topology preserving
geometric deformable models.

2. Background

In this section, we first present a brief introduction to ge-
ometric deformable models and the evolution of level set
functions. We then introduce some basic notions about dig-
ital topology and simple points, concepts that will be used
to yield a topology preserving mechanism. We conclude
with a description of isosurface and isocontour algorithms,
which must be implemented correctly in order to yield an
accurate and topologically correct representation of the im-
plicit surface or contour extracted after topologically con-
sistent evolution of its level set function.

2.1. Geometric deformable models Geometric de-
formable models are based on the theory of curve evo-
lution and are implemented using the level set numerical
method [9]. Let I : U — R™ be a given image, where
U C R?in2Dand U C R? in 3D. In geometric deformable
models, the evolving 2D curves or 3D surfaces are embed-
ded as the zero level set of a higher dimensional level set
function ®(z,t) : U x R* — R, and propagate implicitly
through the temporal evolution of ®. By convention, ® is a
signed distance function to the curves or surfaces with neg-
ative value inside the contour and positive outside. It can be
computed efficiently by the fast marching method (cf., [9]).

The evolution of the level set function @ is usually pre-
scribed by a PDE of the following form (cf., [9]):

(I)t = prop‘vq’l + Fcurvlvq’| + Fadv ° V{), (1)

where Fprop, Feoury and Fapgy are speed or force terms that
can be spatially varying. Firop is an expansion or contrac-
tion speed. Feyyv is a part of the speed that depends on the
intrinsic geometry, especially the curvature  of the contour
and/or its derivatives. F,4y is an underlying velocity field
that passively transports the contour. As an example, we can
choose Fj,;op to be a region force (also known as a signed
pressure force) R(zx), and Foq, to be a gradient vector flow
force U(z) [3], and the evolution equation becomes:

®,(z) = wrR(z)|VE|+w.k(z)| V| +wsT(z) -V, (2)
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where wgr, w,, and wy are the weights for the respective
forces. For a 0-1 valued binary image I, R(z) can be de-
fined to be R(z) = 2I(z) — 1, so that R(z) is an expansion
force inside the object and a contraction force outside.

The numerical solution of Eq. (1) can be obtained by
approximating the time derivative by a forward difference
and the spatial derivatives on the right-hand side by upwind
numerical schemes (for details see [9]), which gives:

o™+ (z) = ®™(x) + AtAD™(z), 3)

where A® represents a discrete approximation to the right-
hand side of Eq. (1), and At is the time step-size. Then, at
each time step (m + 1)At, we update the value of the level
set function & at each grid point z ({(i, 7) in 2D and (3, j, k)
in 3D) from its previous value ™, until convergence or
after a user specified number of time steps.

In this framework, updating of the level set function ®
is performed on fixed grid points; thus, no parameterization
of the curves or surfaces is needed during the deformation.
The parametric representation is only computed after the
evolution is completed, that is, by taking the zero level set
of the function ® at the last time step. This step requires an
isocontour or isosurface algorithm.

For efficiency, the narrow-band method can be used to
update the level set function only at a small set of points in
the neighborhood of the zero level set instead of at all the
points of the computational domain. This scheme, however,
requires recomputing the level set function after a certain
amount of time steps, since the zero level set might move
out of the updating region [9].

Another issue is that the speed function is meaningful
only at the moving contour, i.e., the zero level set, and thus
it is sometimes necessary to “extend” the speed function at
the zero level set to the entire computational domain. One
extension method can be found in [9] which aims to keep
the level set function @ to be a signed distance function
throughout the evolution and thus eliminates the need for
re-initialization.

It is well known that the topology change of the embed-
ded contour is automatic during the evolution of the level
set function ®, which also means that the topology of the
final contour is unpredictable.

2.2. Digital topology A 2D (resp. 3D) digital (i.e. bi-
nary) image V. C Z2 (resp. Z%) is defined as a square
(resp. cubic) array of lattice points. We follow the con-
ventional definition of n-neighborhood and n-connectivity,
where n € {4,8} in 2D and n € {6, 18,26} for a 3D im-
age. We denote the n-neighborhood of a point z by N, (z),
and the set comprising the neighborhood of = with z re-
moved by N, (z). The set of all n-connected components
of X C V is denoted by C,,(X).

In order to avoid a connectivity paradox, different con-
nectivities, n and 7, must be used in a binary image com-
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Figure .1: (a) An ambiguous face; (b) and (c) are two possible
tilings. (d) An ambiguous cube; (¢) and (f) are two possible tilings.

prising an object (foreground) X and a background X. For
example, in 2D, if n is chosen to be 4, then 7i must be 8,
and vice versa. In 3D, (18, 6) and (26, 6) are two pairs of
compatible connectivities. Following [16], we distinguish
the 6-connectivity associated with the 18-connectivity by
61 -connectivity, which is required to correctly compute the
topological numbers (see below). The following definitions
are from [16] and [18], where M = 8 in2D and M = 26
in 3D.

Definition 1 (Geodesic Neighborhood) Let X C V and
z € V. The geodesic neighborhood of x with respect to
X of order k is the set N¥(z,X) defined recursively by:
N} (z,X) = Nxi(z) N X and N¥(z,X) = U{N.(y) N
Ni ()N X, y € N¥1(z, X)}.

Definition 2 (Topological Numbers) Let X C V
and ¢ € V. The topological numbers of the
point z -relative to the set X are: Ty(z,X) =
#C4(N2(z,X) and Ts(z,X) = #Cs(Ng(z,X) in
2D; and Te(z,X) = #Cs(NE(z,X)), Te+(z,X) =
#Cs(N¢ (2, X)), Ths(z,X) = #Cis(Nis(z, X)), and
Tos(z,X) = #Cas(Nis(z, X)) in 3D, where $# denotes
the cardinality of a set.

Topological numbers are used to classify the topology
type of a grid point, especially for the characterization of
simple points. A point is simple if its addition to or removal
from the object does not change the topology of either the
object or the background, in other words, it does not change
the number of connected components, number of cavities
and handles of both the foreground and the background.
It is proven in [16] that a point z is simple if and only if
To(x,X) = 1 and Tr(z, X) = 1, where (n, fi) is a pair of
compatible connectivities.

2.3. Isosurface/isocontour algorithms In 3D, the march-
ing cubes (MC) algorithm is a standard isosurface algorithm
that produces a triangulated surface whose vertices lie on
the edges of the cubic lattice [19].

As shown in Fig. 1, the way in which an isosurface inter-
sects a cube is not always unique, which results in the so-
called ambiguous face and ambiguous cube cases. The ma-
jor difference between different MC algorithms lies in how
they choose between the two possible tilings for the am-
biguous cases. A well-accepted criterion is that the surface
tiling should correctly reflect the topology of the isosurface
itself. Under the assumption that the embedding function is
densely sampled so that it is approximately linear on each
cube, face saddle points and body saddle points can be used
to produce isosurfaces that are topologically consistent with
the embedded implicit surfaces [20]. We note that the sad-
dle points are the critical points of the embedding function
— that is, the points where the first order derivatives of the
function are all zero.

In this paper, we need an isosurface algorithm that can
correctly represent the topology of a binary object pre-
scribed by a given digital connectivity. For this purpose, we
propose the use of a connectivity consistent MC (CCMC)
algorithm. In this algorithm, the coordinates of surface
intersections are still computed through linear interpola-
tion, but which surface tiling to choose depends on the pre-
defined digital connectivity. In particular, we choose the
tilings in Figs. 1(c) and 1(e) for the corresponding ambigu-
ous cases respectively if the black points are assumed to
be 18-connected while the white points are 67 -connected.
If the black points are assumed to be 26-connected, then
Figs. 1(c) and 1(f) should be used instead.

The corresponding algorithm in 2D can be called the
connectivity consistent marching squares (CCMS) algo-
rithm. The only ambiguous case that needs special care
is an ambiguous square (e.g., the front face of the cube
in Fig. 1(a)). The correct tiling should separate the white
points while connect the black ones if the black points are
8-connected, and vice versa.

3. New Algorithm

Our topology preserving mechanism exploits the binary
nature of the object that is delineated by the level set func-
tion. In this framework, the topology changes at the zero
level set are directly related to the sign changes of the level
set function. A constraint can then be imposed to keep
the topology unchanged while the implicit contours deform.
The resulting deformable model behaves exactly as the un-
derlying model except at places where topology changes
can occur. In particular, the model still deforms continu-
ously, and sub-pixel accuracy is maintained.

Assume that the implicit contour is embedded as the zero
level set of a level set function. Then at a given time step
each grid point is either inside or outside the contour de-
pending on the sign of the level set function at that point.
We arbitrarily assign points with zero distance to be inside
the contour. The topology of the digital object defined to be

II-767



inside can only change if the inside/outside status at a point
is changed or, equivalently, if the level set function changes
sign at a grid point. Therefore, to preserve the topology
of the object, the level set function can only be allowed to
change sign at simple points. This is the principle of the
topology preserving constraint that we impose. We now
give a detailed description of its implementation.

We follow the narrow band implementation of geomet-
ric deformable models since it is computationally fast. In
the standard implementation, the level set function ® is up-
dated at each iteration using Eq. (3) in the narrow band, and
is periodically recomputed over the whole grid after several
or many iterations. In our topology-preserving implementa-
tion, it is convenient to store a binary-valued indicator func-
tion B, defined on the digital grid, which is 1 where @ is
negative or zero and is 0 otherwise. Our method replaces
the computation of Eq. (3) with the following algorithm,
where the level set function ® at time m + 1 is to be up-
dated from its previous value ™:

Algorithm 1 (Topology Preserving Update)
grid point z in the narrow-band:

1. Compute Btemp(z) = ™ (z) + AtAEP™(z).

2. If ®iemp(z) has the same sign as @™ (z), then set
®"+1(g) = Pyemp(z) and go to Step 6. Otherwise
continue to Step 3.

3. Compute the topological numbers Ty, (z,X) and
Tr(z, X), where (n,72) is the chosen digital connectiv-
ity pair, X = {z|B(z) = 1},and X = {z|B(z) = 0}.

4. If the point is simple — i.e., Tn(z, X) = T(z,X) =

.1 —then set 8™+ (1) = Dyemp(z), B(z) = (B(z)+

1) mod 2, and go to Step 6. Otherwise continue to
Step 5.

S. Point z is not simple. Do not allow the front to pass
over z by making sure $™ does not change sign at z.
Accordingly, set ®™+1(z) = e®™(z), where € is a
small positive number.

6. Pick up the next point z in the narrow band, and go to
Step 1. n

For each

We note that there can be some arbitrariness in the spe-
cific result of this algorithm depending on the order in
which the points are visited in the narrow band. This sit-
uation is well known in skeletonizing algorithms where the
result depends on the order of simple point removal. Cur-
rently, we do not have a criterion to prefer one ordering
over another one. But we feel that this problem is not as
significant as in skeletonizing since the overall motion of
the deformable model is controlled by its speed terms. The
simple point criterion only takes place at locations where
topological changes are bound to occur otherwise, which is
ordinarily a very small portion of the overall deforming con-
tour. In the experiments reported in the paper, we followed
exactly the same ordering as in the standard narrow band
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implementation, where points are ordered by their natural
coordinates. N

To accelerate the convergence rate, most geometric de-
formable models are implemented in a multiscale fash-
ion [5]. The level set function is first constructed and
evolved on a coarser grid than the underlying image, then
it is upsampled to a finer resolution after it converges in the
coarser scale. Usually, a first-order, linear interpolation is
applied to refine the level set function. This procedure, how-
ever, may yield a different topology than the coarse volume.
To be consistent with our approach, the correct upsampling
method is zero-order duplication, which copies the value of
a point at the coarser grid to all its children at the finer grid.
This preserves the topology from coarse to fine scales.

After the level set iterations have converged, we extract
the final contour using the CCMC (or CCMS) algorithm.
In these algorithms, the surface or contour location is com-
puted by linear interpolation of the level set function, but the
tiling for the ambiguous cases is selected based on the cho-
sen digital connectivity pair. If the level set function value
is exactly zero at a grid point, it is explicitly adjusted before
interpolation to prevent a singularity in the resulting surface
mesh or contour.! Since we consider zero-valued points to
be inside points, i.e., as negative distance points, we set a
zero function value to some small negative value, say —e.

4. Experiments

In this section, we present several experiments that apply
our new topology preserving geometric deformable mod-
els in 2D and 3D. Since the new models can be obtained
by imposing the topology preservation constraint on ex-
isting geometric deformable models (GDMs), we will re-
fer to the standard models without topology constraint as
SGDMs and the corresponding (i.e., with the same set of
speed terms) topology preserving models as TGDMs. Note
that in TGDMs, the CCMC or CCMS algorithm must be
used in order to correctly extract the final curves or surfaces
from the level set function, while the SGDMs require a stan-
dard isocontour or isosurface algorithm (preferably using
face and body saddle points). In the following experiments,
we choose (n,A) = (4, 8) as the pair of 2D digital connec-
tivities and (n,n) = (18,6%) for 3D.

Fig. 2 shows a 2D example that illustrates the topology
preservation ability of a TGDM model. Fig. 2(a) shows the
original image (65 x 140 pixels) consisting of two circular
cells placed side-by-side. The two initial curves are also
shown on this figure. Figs. 2(b) and 2(c) show the loca-
tion of the implicit curves of the SGDM at an intermedi-
ate and the final stage. Because of the weak edge between
the two cells, the two initial curves merged into one final
curve — an undesirable result in this example. Figs. 2(d)

!This is one of several major artifacts that exist in most existing isosur-
face and isocontour softwares.
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Figure 2: A 2D image and boundary detection using both SGDM
and TGDM (see text for details).
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Figure 3: Segmentation of a hand phantom using both SGDM
and TGDM (see text for details).

and 2(e) show the corresponding deformations when the
topology preservation constraint is enforced (and otherwise
the two models are identical in internal and external force
terms). We note that TGDM keeps the two curves sepa-
rated throughout the evolution and also correctly finds the
boundary of each cell. Fig. 2(f) demonstrates the sub-pixel
resolution of the result.

Fig. 3 shows another 2D example in which the same
models as in the previous example were applied to find
the boundary of a hand-shaped object. The original im-
age (220 x 190 pixels) and the initial curve are shown in
Fig. 3(a). Figs. 3(b) and 3(c) illustrate the deformation of
the SGDM contour at an intermediate and the final stage.
Again, without the topology preservation constraint, the ini-
tial curve changes topology and gives two separate curves
as the final result (the dark outer curve and the dashed in-
ner curve of Fig. 3(c)). We note that the two middle fingers
in this hand become one with a hole in it in the final seg-
mentation. The corresponding deformations of the TGDM
contour are illustrated in Figs. 3(d) and 3(e). TGDM keeps
the boundary of each finger separated, and the final con-
tour correctly reflects the shape of the hand, as can be seen
clearly in the zoomed view of Fig. 3(f).

)

(Y (e ®

Figure 4: A 3D phantom and the segmentation results of using
both SGDM and TGDM and two different initializations.

(b

Figure 5: (a) Result of cortical surface reconstruction. (b) Self-
intersection from PDM, and (c) no intersection with TGDM.

Next, we applied a 3D version of the geometric de-
formable model of Eq. (2) to find the boundary surface of
the 3D object depicted in Fig. 4(a). The object is actually
a piece of a white matter (WM) volume segmentation from
a magnetic resonance brain image. Due to data noise, the
WM piece has a handle in it, which is the wrong topology
from an anatomical standpoint. In fact, we desire a topology
equivalent to that of a sphere. We applied both SGDM and
TGDM starting from two different initializations: a large
sphere that encloses the whole object and a small ellipsoid
that intersects with the object. A 2D slice showing the ob-
ject and the two initial surfaces is shown in Fig. 4(b).

Figs. 4(c) and 4(d) are the final surfaces obtained by
SGDM. The two results are the same since geometric de-
formable models are insensitive to initialization. The final
surfaces both have a handle, however, which is the incorrect
topology. With the sphere as the initialization, TGDM gives
the final surface shown in Fig. 4(e), and with the ellipsoid,
it gives the result shown in Fig. 4(f). Both surfaces have the
correct topology, but the topology is preserved in a differ-
ent way. The surface obtained from the sphere initialization
yields a thin membrane across the tunnel through the orig-
inal object, while the ellipsoid initialization makes a cut in
the handle.

11-769



Our final experiment applies SGDM, TGDM, and a para-
metric deformable surface model to extract the central cor-
tical surface from an initial fuzzy segmentation of a brain
MRI image volume. We used exactly the same initializa-
tion, the same external forces and sirnilar internal forces for
the geometric deformable models as in the parametric one.
The resuits are presented in Fig. 5.

Fig. 5(a) shows the final surface extracted from the para-
metric model. The SGDM and TGDM surfaces look very
similar, but on close examination there are important dif-
ferences. The parametric model result, for example, has
self-intersections as shown in Fig. 5(b), while the TGDM
surface does not, as shown in Fig. 5(c). Also, the genus
(number of handles) of the SGDM result is 40, while that
of both the parametric model result and the TGDM result is
0. Thus, TGDM produces both the correct topology and a
valid manifold; hence it is the only model that gives a legal
cortical surface reconstruction.

5. Discussion and Conclusion

The example shown in Fig. 4 points out a weakness
in our overall approach that should be addressed in future
work. First, the result can clearly depend on the initializa-
tion in a dramatic way. The two results, one that fills the
tunnel and the other that breaks the handle, are dramatically
different ways to address the topological preservation. At
present we have no formulation of an optimality criterion
that would choose one of these solutions over the other. This
is not atypical in deformable models, where the particular
initialization very often determines the exact details of the
final solution, but it deserves to be addressed nonetheless.

We note that the topological numbers are computed
locally, which makes the simple point checking process
straightforward and efficient. As a result, the topology con-
straint does not add much computational burden as com-
pared to the standard geometric deformable models. For
the phantom experiments, the time difference between stan-
dard and new geometric models is barely noticeable; and
for the brain cortical surface reconstruction, the extra time
taken by the topology constraint enforcement is less than 7
percent of the total processing time.

In summary, we have developed a class of new geomet-
ric deformable models where the topology of the implicit
curves or surfaces is preserved throughout the deformation.
The topology is preserved by checking a simple point cri-
terion during the level set evolution, which requires a rel-
atively straightforward modification to standard implemen-
tation of geometric deformable models. Experiments were
conducted to show the success of the new models and illus-
trate their potential applications.

Acknowledgments This work was supported in part by
NSF/ERC grant CISST#9731748 and NIH/NINDS grant
ROINS37747.

References

[1] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active
contour models,” Int. J. Comp. Vision, 1:312-333, 1988.

[2] L. D. Cohen, “On active contour models and balloons,”
CVGIP: Image Understanding, 53:211-218, 1991.

3] C. Xu and J. L. Prince, “Snakes, shapes, and gradient vector
flow,” IEEE Trans. Imag. Proc., 7(3):359-369, 1998.

[4] V. Caselles, F. Catte, T. Coll, and F Dibos, “A geometric
model for active contours in image processing,” Numerische
Mathematik, 66:1-31, 1993.

[5] R.Malladi, J. A. Sethian, and B. C. Vemuri, “Shape modeling
with front propagation: A level set approach,” IEEE Trans.
PAMI, 17:158-175, 1995.

[6] V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic active con-
tours,” Int J. Computer Vision, 22:61-79, 1997.

[71 A. Yezzi, S. Kichenassamy, P. Olver, and A. Tannenbaum,
“A geometric snake models for segmentation of medical im-
agery,” IEEE Trans. Med. Imaging, 16:199-209, 1997,

[8] K. Siddiqi, Y. B. Lauziere, A. Tannenbaum, and S. W. Zucker,
“Area and length minimizing flow for shape segmentation,”
IEEE Trans. Image Proc., 7:433-443, 1998,

[91 J. A. Sethian, Level Set Methods and Fast Marching Methods.
Cambridge, UK: Cambridge University Press, 2 ed., 1999.
[10] T. Mclnerney and D. Terzopoulos, “Deformable models in
medical image analysis: A survey,” Medical Image Analysis,

1(2):91-108, 1996.

[11] C. Xu, D. L. Pham, M. E. Rettmann, D. N. Yu, and J. L.
Prince, “Reconstruction of the human cerebral cortex from
magnetic resonance images,” IEEE Trans. Med. Imaging,
18(6):467—480, 1999.

[12] D. MacDonald, N. Kabani, D. Avis, and A. C. Evans, “Au-
tomated 3-D extraction of inner and outer surfaces of cerebral
cortex from MRI,” Neurolmage, 12:340-356, 2000.

[13] D. W. Shattuck and R. M. Leahy, “Topologicaily constrained
cortical surfaces from MRI,” in Proceedings of the SPIE,
vol. 3979, (San Diego, USA), pp. 747-758, February 2000.

[14] B. Fischl, A. Liu, and A. M. Dale, “Automated manifold
surgery: Constructing geometrically accurate and topolog-
ically correct models of the human cerebral cortex,” IEEE
Trans. Med. Imaging, 20:(1):70-80, 2001.

[15] P. K. Saha and B. B. Chaudhuri, “Detection of 3D simple
points for topology preserving transformations with applica-
tion to thinning,” IEEE Trans. PAMI, 16:1028-1032, 1994.

[16] G. Bertrand, “Simple points, topological numbers and
geodesic neighborhoods in cubic grids,” Pattern Recognition
Letters, 15:1003-1011, 1994.

[17] J.-F. Mangin, V. Frouin, 1. Bloch, J. Regis, and J. Lopez-
Krahe, “From 3D magnetic resonance images to structural
representations of the cortex topography using topology pre-
serving deformations,” J. Math. Imag. Vision, 5:297-318,

1995.

[18] G. Bertrand, J. C. Everat, and M. Couprie, “Image segmen-
tation through operators based on topology,” Journal of Elec-
tronic Imaging, 6:395-405, 1997.

[19] W. E. Lorensen and H. E. Cline, “Marching cubes: A high-
resolution 3D surface construction algorithm,” ACM Com-
puter Graphics, 21(4):163-170, 1987.

[20] B.K. Natarajan, “On generating topologically consistent iso-
surfaces from uniform samples,” Visual Computer, 11(1):52~
62, 1994.

II-770



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


