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Abstract

Partial volume effects are present in nearly all medical
imaging data. These artifacts blur the boundaries between
different regions, making accurate delineation of anatomi-
cal structures difficult. In this paper, we propose a method
for unsupervised estimation of partial volume effects in sin-
gle-channel image data. Based on a statistical image mod-
el, an algorithm is derived for estimating both partial vol-
umes and the means of the different tissue classes in the
image. To compensate for the ill-posed nature of the estima-
tion problem, we employ a Bayesian approach that places a
prior probability model on the parameters. We demonstrate
on simulated and real images that the new algorithm is su-
perior in several respects to the fuzzy and Gaussian cluster-
ing algorithms that have previously been used for modeling
partial volume effects.

1 Introduction

Segmentation of three-dimensional volumetric images is
an important goal in many medical imaging applications
such as in the localization of pathology, quantification, and
computer integrated surgery. Because of the finite resolu-
tion of imaging devices, however, nearly all images suffer
from partial volume effects. These artifacts result when dif-
ferent tissue classes in the image contribute to a single vox-
el, thereby causing boundaries to be blurred and regions d-
ifficult to localize using standard segmentation methods. In
addition, standard segmentation techniques that do not ad-
dress partial volume effects fail to capture fine details that
may be present in the original image.

Partial volume effects have been a particular concern in
medical imaging applications because preservation of fine
details, accurate quantification, and precise delineation of
anatomical structures can all be critical in the diagnosis and
analysis of pathology. The most common method of dealing
with partial volume effects is to obtain a soft or fuzzy seg-

mentation. Rather than exclusively classifying a voxel as
belonging to a particular class, soft segmentation methods
allow for a continuous grade of membership within differ-
ent classes. A soft segmentation is illustrated in Figure 1.
Figure 1a shows one slice of a simulated magnetic reso-
nance (MR) image of the brain [3]. Figure 1b is a map of
the true partial volume contribution for gray matter in the
simulated image. It is a continuously-valued image ranging
from zero to one.

Because of the underdetermined nature of estimating par-
tial volumes, most methods in the medical imaging litera-
ture have focused on multi-channel images (cf. [2, 11, 5]).
Algorithms for estimating partial volumes in single-channel
images have been fairly limited. Rather than measure the
partial volume content, some methods have attempted to
segment out partial volume voxels as a separate class [10].
Other methods have employed soft clustering or classifica-
tion algorithms [4, 9, 8]. These algorithms, however, do
not explicitly model partial volume effects and are therefore
susceptible to certain artifacts in the resulting segmentation.
Figure 1c shows a gray matter membership function com-
puted using the fuzzy c-means algorithm (FCM), which has
been shown to provide reasonable estimates of tissue vol-
umes [1]. When compared to the true image in Figure 1b,
the FCM result possesses an artificial rim around the ventri-
cles near the center of the image. This is because the partial
volume averaging of white matter and cerebrospinal fluid
has the same intensity as gray matter. FCM operates purely
on the image intensities and cannot distinguish between the
two.

In this paper, we pose the segmentation problem in a
framework that explicitly considers partial volume effects
in scalar images. The true image is modeled as the union
of disjoint sets in continuous space. The acquired image is
a blurred, sampled, and noise degraded observation of the
true image. By estimating the response of the acquisition
to the different tissue classes in the image, we obtain a rep-
resentation which localizes the anatomy while preserving
nearly all the information present in the original image. As
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Figure 1. Example of a soft segmentation: (a) slice from simulated MR brain image, (b) true gray
matter partial volume, (c) FCM gray matter membership, (d) gray matter partial volume estimated
using proposed new algorithm.

shown in Figure 1d, an advantage of our approach is that
it can potentially avoid certain artifacts that occur in most
other intensity-based classification algorithms. Our method
is also unsupervised and fully automatic after the specifica-
tion of a few parameters. This work greatly expands and
improves upon our initial results presented in [7].

2 Imaging model

In this section we describe the model that will be used
to describe the observed image. We begin with a continu-
ous model of the original image, and allow partial volume
effects to be introduced by the sampling process of the im-
age acquisition. It is shown that the standard constraints
on estimated partial volumes are valid under this model if
certain mild constraints are placed on the point spread func-
tion of the acquisition device. Segmentation of the image is
achieved by estimating the response of the imaging system
to the characteristic functions corresponding to each tissue
class. Because the estimation problem is severely ill-posed,
a Bayesian approach is used to incorporate prior informa-
tion and constrain the solution.

2.1 Image formation

We assume that the original image consists of K dis-
joint sets in the continuous (Euclidean) spatial domain 
c.
In medical images, each set corresponds to a different tis-
sue class. Each class need not be connected, and possesses
a distinct intensity ck for k = 1; : : : ;K, called the class
mean. We only consider the case when ck is scalar valued.
The true image I(x) maps a spatial location x 2 
c to a

class mean and can be written as

I(x) =

KX
k=1

�k(x)ck ;x 2 
c (1)

where �k(x) is the characteristic function of set k.
Figure 2 shows our model of the image acquisition pro-

cess. The original image is blurred by a linear shift invariant
filter h(x) (called the point spread function), point sampled,
and corrupted by additive noise. Let 
 � 
c be the set of
the discrete samples in the observed image. The observed
image can then be written as

yj =

KX
k=1

(�k � h)jck + �j ; j 2 
 (2)

where “�” denotes a convolution, �j is white Gaussian noise
with variance �2.

We define the tissue spread function sk(x) to be the con-
volution of the characteristic function for tissue k and the
point spread function:

sk(x) = (�k � h)(x) (3)

We define the the tissue spread coefficients sjk to be sam-
ples of the tissue spread function at j 2 
:

sjk = (�k � h)j (4)

We can therefore rewrite Eq. (2) as

yj =
KX
k=1

sjkck + �j ; j 2 
 (5)

Note that because of the blurring caused by the point spread
function, a class need not be physically present in a voxel
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Figure 2. Block diagram of image acquisition process.

to possess a non-zero spread coefficient. Ideally, a more ac-
curate representation of the actual partial volume could be
obtained by deconvolving the spread coefficients with the
point spread function to reconstruct the underlying charac-
teristic functions of each tissue class. Because the char-
acteristic functions are not bandlimited functions, however,
deconvolution is not practical. In this paper, we focus on
the more modest task of estimating sjk given the observa-
tions yj , yielding a soft segmentation of each tissue class.
Because the class means ck are also unknown, we will de-
scribe a procedure for estimating both the class means and
spread coefficients in Section 3.

2.2 Constraints on spread coefficients

Given an unconstrained point spread function, spread co-
efficients can have any value. For example, if the point
spread function is a sinc function (the case of an ideal low
pass filter), the resulting spread coefficients can be nega-
tive or positive valued. This unconstrained nature, however,
leads to difficulties in interpreting a segmentation based on
the spread coefficients as well as practical difficulties in de-
riving a robust estimation scheme.

It is therefore beneficial to restrict the spread coefficients
to behave as membership functions [12], which satisfy the
following constraints:

KX
k=1

sjk = 1; for all j 2 
 (6)

sjk � 0; for all j 2 
; k = 1; : : : ;K (7)

These constraints have a very intuitive notion and are al-
so satisfied by posterior probability functions computed us-
ing Gaussian classification and clustering algorithms. It can
be shown that the above constraints will be satisfied by the
spread coefficients given fairly mild conditions on the point
spread function [6]. We provide here two conditions that
ensure that Eqs. (6) and (7) will be true for any image.

Proposition 1 The spread coefficients satisfy Eq. (6) ifZ

c

h(x)dx = 1:

Proposition 2 The spread coefficients satisfy Eq. (7) if

h(x) � 0; for all x 2 
c

The first proposition states that the if the point spread
function integrates to unity, Eq. (6) will be satisfied. This
constraint is easily met because any non-unity scale fac-
tor that is introduced can be equivalently interpreted as a
scale factor on the class means. The second proposition is
more restrictive because the point spread function will not
be nonnegative for all images. In general, h(x) can pos-
sess negative lobes, such as in a sinc function. However, in
most situations, the total positive area will nearly always be
much larger than the negative area and Proposition 2 can be
assumed to be satisfied to good approximation.

3 Estimation algorithm

In this section, we derive an algorithm for estimating the
spread coefficients and class means. Note that even if the
constraints (6) and (7) are satisfied, this estimation problem
is still ill-posed. Thus, we further constrain the spread co-
efficients such that only two classes contribute to a single
voxel. This is a reasonable assumption for high resolution
images. We also place a prior probability model on both the
spread coefficients and the class means.

3.1 MAP Estimation

Let s denote the vector of spread coefficients and c de-
note the vector of class means. Then the maximum a poste-
riori (MAP) estimate is given by

[s; c]T = argmax
[s;c]T

f(yjs; c)f(s)f(c) (8)

where y is the vector of observed voxel intensities. We as-
sume y is conditionally independent given the spread coef-
ficients. Then from Eq. (5), we obtain the joint conditional
probability function:

f(yjs; c) = 1p
2��2

exp

0
@� 1

2�2

X
j2


(yj �
KX
k=1

sjkck)
2

1
A
(9)
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For simplicity and without loss of generality, we assume
that 2�2 = 1. To further constrain the estimation problem,
we assume that up to two classes, denoted class a and b,
contribute to any single voxel. Thus, Eq. (9) simplifies to

f(yjs; c) = 1p
�
exp

0
@�X

j2


(yj � sjaca � sjbcb)
2

1
A
(10)

where sjb = 1� sja. Here, a and b are implicitly functions
of j.

3.2 Prior on spread coefficients

A prior probability model is placed on s to enforce two a
priori assumptions: (1) spread coefficients tend to be close
to one or zero and (2) a spread coefficient tends to have a
value similar to its neighbors. The former assumption is rea-
sonable in high resolution data where the spread coefficient
is less likely to be influenced by tissue boundaries. Based
on these two assumptions and the constraints of Eqs.(6) and
(7), we use the following marginal prior probability model:

f(sj) /

8>><
>>:

�(sj) exp

0
@� X

i2Nj

(sTj si)

1
A sjk 2 [0; 1]

0 otherwise
(11)

where sj = [sj1; : : : ; sjK ]T , Nj is the set of neighbors of
voxel j, and �(sj) is a stationary prior used to weight dif-
ferent configurations of sjk. The parameter � controls the
strength of the prior and is selected empirically. As a sim-
ple rule of thumb, � should be in the range of the standard
deviation of the noise in the image so that the log of the
prior has a similar magnitude to the log of the joint condi-
tional probability function (10). The joint prior probability
is given by

f(s) =
1

Z

Y
j2


f(sj); (12)

where Z is a normalizing constant.
Given K classes and the fact that only two classes may

contribute to a single voxel, there areD =

�
K
2

�
possible

combinations of classes with nonzero spread coefficients.
As we will show in Section 4, situations arise where cer-
tain classes are more likely to exhibit partial volume effects
than others. The stationary prior probability function �(sj)
takes this into account by assigning a higher probability to
more likely configurations. We constrain the stationary pri-
or such that

PD

d=1 �d = 1, where the index d corresponds
to a unique class configuration. In the absence of this prior
knowledge, one can set �d = 1=D.

Eq. (11) is maximized when sjk is similar to its neigh-
bors and when all sjk are close to one or zero. Note also

that this form of a prior possesses an adaptive smoothing
quality; greater smoothing is enforced where voxels repre-
sent pure tissue than in voxels that are partial volume aver-
aged. This can be seen in the following example. Suppose
sia = 0:5 and sib = 0:5 for some i 2 Nj . Then s

T
j si is

equal to 0.5 for any value of si, as long as the contribut-
ing classes are the same for the two voxels. Conversely, if
sia = 1, the term is maximized only if sja = 1.

3.3 Prior on class means

A prior probability model can also be placed on the class
means to provide more robust estimation. We note that
Eq. (9) is maximized only if two class means are equal to
the minimum and the maximum of the observed intensities,
respectively. This condition is counterbalanced somewhat
by the prior on the spread coefficients. However, we have
found that the estimation is more robust when the following
prior probability is applied:

f(ck) =
1p
2��2c

exp

�
� 1

2�2c
(ck � �)2

�
(13)

where �c = �i=K and �I and � are the overall standard
deviation and mean of the observed data, respectively. This
biases the estimation of the class means towards being in
the center of the intensity space, and in practice, we have
found this to yield good results.

3.4 Algorithm description

To maximize the joint posterior probability function, a
coordinate descent method is employed. The algorithm it-
eratively seeks a zero gradient condition of Eq. (8) with re-
spect to the spread coefficients and class means by maxi-
mizing the marginal posterior probability at each voxel. To
enforce the assumption that only two classes may contribute
to a single voxel, sj must be solved for all D possible com-
binations, and the configuration yielding the highest proba-
bility is selected. This procedure will allow the algorithm to
avoid some of the rim artifacts found in standard clustering
methods.

The estimator for the spread coefficients is derived by
taking the first derivative of Eq. (8) with respect to sja and
setting it to zero. This yields

sja =
(cb � yj)(cb � ca) + �

�P
i2Nj

(sia � sib)
�

(cb � ca)2
:

(14)
Values of sja are restricted to lie between zero and one.
The value of sjb is computed as 1� sja. Similarly, the zero
gradient condition on the class means leads to the following
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Figure 3. SETS applied to a four class test image: (a) one slice of the test image, (b) isosurface
reconstruction of gray sphere using FCM, (c) isosurface reconstruction of gray sphere using SETS.

equation:

ck =

P
j2
 sjk(yj �

P
l6=k sjlcl) + �=2�2cP

j2
 s2jk + 1=2�2c
: (15)

To initialize our algorithm, we obtain initial class means as
in [8] and then apply the simplified, voxel independent esti-
mation algorithm as described in [7]. Our algorithm, which
we call Statistical Estimation of Tissue Spread (SETS), can
be stated as follows:

SETS Algorithm:

1. Obtain initial class means.

2. Estimate spread coefficients using simplified model.

3. Estimate spread coefficients using the following pro-
cedure:

(a) Compute (14) for D combinations of a and b.

(b) Select spread coefficient configuration with high-
est probability.

(c) Repeat 3(a) & 3(b) for all voxels in the image.

4. Estimate class means using (15).

5. Repeat 3 & 4 until convergence.

Convergence is assumed to be achieved when the maxi-
mum change over all spread coefficients between iterations
is less than 0.01. Because the joint posterior probabili-
ty function is rather shallow– different spread coefficient
configurations can yield almost identical probabilities– os-
cillations can result during early iterations of the algorith-
m. Thus, we employ a simple relaxation procedure which
weights the current estimate with the previous estimate. This
relaxation is eventually removed as iterations are increased
and the algorithm nears convergence.

4 Results

Figure 3 shows the results of applying SETS and FCM
to a three-dimensional simulated image consisting of three
solid spheres. Figure 3a shows one slice from this image.
Each sphere has a distinct intensity and the overall image
has been slightly blurred. Both the FCM and SETS algo-
rithms were applied to this image for four classes, corre-
sponding to background, dark gray, gray, and white. Fig-
ure 3b shows an isosurface computed from the gray sphere’s
FCM membership function, at a level of 0.5. The figure has
been cropped to focus on the non-empty regions. Similar to
the example in Section 1, FCM cannot distinguish between
the gray sphere and partial volume averaging of the white
sphere and background, thus forming a broken shell around
the region of the white sphere. Figure 3c shows the same
isosurface computed from the SETS estimate of the gray
sphere’s spread coefficients. SETS correctly identifies the
partial volume effects and no rim artifact is present.

Figure 4 shows the results of applying SETS, FCM, and
the AGEM [9] algorithms to a real T1-weighted, 3-D MR
image of the brain. AGEM is basically a Gaussian cluster-
ing algorithm with a Markov random field prior to enforce s-
moothness on the segmentation. It produces posterior prob-
ability functions for each class which can also be considered
as an indicator of partial volume. The AGEM algorithm was
performed without gain field correction. Figure 4a shows
one slice from the original image. Figures 4b-d are the
FCM membership functions for cerebrospinal fluid (CSF),
gray matter (GM), and white matter (WM). Figure 4e is the
FCM hard segmentation, computed by assigning the voxels
to the class with highest membership. Note that the FCM
result has two main problems. A rim around the ventricles
is present in the GM membership, even though this is partial
volume averaging of WM and CSF. In addition, the ventric-
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Table 1. Error measures from simulated data
results computed from four different method-
s: first three columns show the RMS error
between the truth model and the estimated
partial volumes; last column shows the mis-
classification rate (MCR) of the hard segmen-
tations.

Error measure
Method GM WM CSF MCR

FCM 0.1393 0.1262 0.1251 3.988%
AGEM 0.1900 0.1632 0.2001 3.950%
SETS1 0.1518 0.1105 0.1194 3.808%
SETS2 0.1163 0.1122 0.1003 3.863%

ular CSF is darker than the sulcal CSF. This is an exam-
ple of the asymptotic behavior of FCM (see [7]): in FCM,
as an observed intensity becomes more distant from all the
means, the membership values for all K classes converges
to 1=K.

Figures 4f-j show the results computed using the SETS
algorithm (� = 15, �d = 0:45 for partial volume averaging
of GM and WM, �d = 0:45 for GM and CSF, and �d = 0:1
for the partial volume averaging of WM and CSF, denoted
SETS1). Figure 4f is simply the result of reconstructing the
original image using the estimated class means and spread
coefficients. Nearly all the information present in the orig-
inal image has been retained. The SETS results do not ex-
hibit either the rim artifact nor the poor asymptotic behavior.
However, because the prior does not favor large regions of
partial volume voxels, some of the subcortical GM details
has been removed. This can be alleviated somewhat by ad-
justing the parameters. Despite this problem, details of the
cortical GM have been very well preserved. The next row
shows the same results computed using SETS (� = 15 and
�d = 0 for partial volume averaging of WM and CSF, de-
noted SETS2). The result is more similar to the FCM result,
but the poor asymptotic behavior is not present.

The last row shows the results using the AGEM algorithm.
In general, AGEM’s posterior probability functions are too
hard to be used for partial volume estimation, causing it to
lose some of the anatomical details present in the original
image. Furthermore, the AGEM result also possesses the
rim artifact. Although not observed in this image, the incor-
rect asymptotic behavior for partial volume estimation can
sometimes occur in Gaussian clustering algorithms as well.

As a preliminary validation experiment, all four algo-
rithms were applied to a simulated 3-D MR image, taken
from the McGill University Brainweb database [3], with
3% noise and no inhomogeneity. A slice from this image
is shown in Figure 1a. The first three columns of Table 1

show the average root mean squared (RMS) error between
the truth model and the GM, WM, and CSF partial volume
estimates. For FCM, the fuzzy membership functions were
used as the partial volume estimates. For AGEM, the poste-
rior probability functions were used. The last column shows
the misclassification rate (MCR), computed as the ratio of
misclassified voxels over the total number of voxels. The
SETS algorithms generally provides improved results over
the other methods. The only exception is the GM error for
SETS1 is higher than for FCM. This is because of the loss
of some of the subcortical gray matter structures outweighs
the removal of the rim artifacts. As indicated by the hard
segmentation results, however, these gray matter structures
corresponded to voxels that were mostly white matter.

5 Future work and discussion

By varying the parameters of the prior probability mod-
els, a tradeoff was found in the SETS segmentation of MR
brain images: on one hand, a rim artifact around the ventri-
cles was obtained, and on the other hand, some subcortical
gray matter details were lost. In some applications where
accurate recovery of these structures is not required (eg.
cortex reconstruction), this loss may be permissible. In fu-
ture work, we plan to investigate modification of the prior
models to limit this loss. Incorpoartion of atlas information
might be one approach to alleviate this problem. In addi-
tion, extensions of the algorithm to simultaneously adapt
to intensity inhomogeneities would be helpful for the pro-
cessing of magnetic resonance images that possess shading
artifacts.
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