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ABSTRACT

Q-space imaging is an emerging diffusion weighted MR
imaging technique to estimate molecular diffusion probability
density functions (PDF’s) without the need to assume a Gaus-
sian distribution. We present a robust M-estimator, Q-space
Estimation by Maximizing Rician Likelihood (QEMRL), for
diffusion PDF’s based on maximum likelihood. PDF’s are
modeled by constrained Gaussian mixtures. In QEMRL,
robust likelihood measures mitigate the impacts of imaging
artifacts. In simulation and in vivo human spinal cord, the
method improves reliability of estimated PDF’s and increases
tissue contrast. QEMRL enables more detailed exploration
of the PDF properties than prior approaches and may allow
acquisitions at higher spatial resolution.

Index Terms— q-space, probability, diffusion, magnetic
resonance imaging; maximum likelihood

1. INTRODUCTION

Q-space imaging is an analysis technique for diffusion
weighted (DW) magnetic resonance (MR) imaging that shows
great promise as a tool to study tissue microstructure [1]. As
with other DW imaging techniques, the Brownian motion of
water within a voxel is noninvasively inferred from signal at-
tenuations observed in the presence of sensitization gradients.
Rather than assuming a Gaussian distribution for the water
diffusion probability density function (PDF) as in diffusion
tensor imaging (DTI), q-space analyses experimentally de-
termine non-parametric PDF’s for single diffusion directions.
The PDF represents the probability that a spin (i.e., water
hydrogen) diffuses a particular distance from its initial posi-
tion during the DW time. To date, q-space studies reported in
the literature have used limited diffusion models to regularize
noisy data. These models make ad hoc assumptions and do
not accurately account for the properties of MR noise. This
study presents a robust M-estimator for estimating PDF’s
from q-space data that accounts for Rician distributed noise.
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1029-A-2, NMSS TR-3760-A-3, NIH AG20012, and the Nancy Davis Center
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This novel approach specifically addresses the joint likeli-
hood of all observations within a general non-parametric
model, denoted Q-space Estimation by Maximizing Rician
Likelihood (QEMRL).

Noise in magnitude MR data is well to know to be Rician
distributed and to introduce intensity bias at low SNR [2]. The
observed signal intensity (S) distribution is
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where S0 is the noise free signal and σ is the standard de-
viation of the noise on the unobserved complex valued im-
ages. Maximum likelihood (ML) approaches for bias correc-
tion have been presented for scalar MR images [3]. Recently,
ML methods have been extended to estimate tensors in DTI
[4], but ML has not yet been applied to q-space imaging.

Rician noise distorts calculated PDF’s from GM (gray
matter) and WM (white matter) differently and, thus, reduces
tissue contrast. In q-space imaging, q is an experimental pa-
rameter that modulates signal attenuation related to diffusion.
In GM, the acquired signal at large q is highly attenuated
(indicating that diffusion is relatively unrestricted), so the
observed signal is substantially biased by Rician noise. The
bias in Fourier space leads to artifactual sharpening of the
calculated PDF (i.e., high pass filtering). Meanwhile, in WM,
the acquired signal at large q is less attenuated due to tight
restriction boundaries, so there is less bias and the PDF is
less distorted. Since the Rician noise introduces more PDF
sharpening in GM than WM, the calculated PDF’s for these
tissue types are more similar than they would be if calculated
from noise free data.

Prior approaches to q-space imaging have recognized that
using substantially biased observations has a detrimental im-
pact on the calculated results, but have not considered the
noise in a likelihood framework. Two compartment models
have been fit to limited datasets to reduce the impact of noise
and avoid complexities in calculated PDF’s [5]. For more
general q-space imaging, Assaf et al. replaced all observa-
tions below twice a noise level estimate with zero and extrap-
olated any non-zero signals with a bi-Gaussian [1]. Farrell et
al. calculated a “noise floor” and subtracted this level from the
observed signal and also extrapolated non-zero signals with a
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Fig. 1. In a general q-space experiment, data are observed
at regularly spaced q-values (left), which are transformed to
PDF’s (right). To improve reliability over direct calculations
(note ringing on data curve at right), data are typically fit with
a model. In QEMRL, the fitting process utilizes a maximum
likelihood model.

bi-Gaussian [6]. These level adjustment approaches can be
viewed as adaptive low-pass filters. The extrapolation step
uses prior parametric assumptions to increase apparent reso-
lution and reduce ringing. These methods partially address
the problem of sharpened PDF’s, but they are heuristics and
do not make optimal use of all available data.

The key principle of the new method is an explicit ac-
counting for the noise properties in the DW images that
constitute a q-space dataset. In simulation, we show that
QEMRL estimates PDF derived contrasts (e.g., mode proba-
bility, P0, full width at half maximum, FWHM, and the root
mean square displacement, RMSD) that are closer to their
true (i.e. noise-free) values. When applied to in vivo human
spinal cord dataset, QEMRL improves the reliability of PDF
estimation and increases tissue contrast. Finally, we present a
compact and intuitive visual representation of the information
obtained with the PDF, and discuss how robust estimation of
the PDF may aid the assessment of diffusion properties in
multiple sclerosis (MS) lesions.

2. METHODS

In q-space imaging, the Fourier transform of the diffusion
PDF is sampled through DW acquisitions with different dif-
fusion sensitizations (Fig. 1). The observed signal is

S(q) = S(0)
∫
pt(r) exp(i2πqr)dr ∼ F−1{pt(r)}, (2)

where S(q) is the observed signal at q (an experimental pa-
rameter) and pt(r) is the PDF that a spin moves a distance
of r in time t. Typically, the sampling locations are regularly
spaced in q (with fixed t), and a discrete Fourier transform is
used to recover pt(r) under the assumption that the PDF is
sufficiently band limited.

The attenuation signal was modeled as a positive mixture
of Gaussian distributions restricted to a physically realistic
range of diffusivities (3 × 10−5 to 3 × 10−3 mm2/s). The
number of Gaussian components was determined for each

voxel with sequential search using an L-curve criterion on
log-likelihood. To maintain a non-parametric approach, the
number of mixtures was intentionally selected higher than
would be indicated by a Bayesian information theoretic cri-
teria. Huberization (truncation) of the likelihood measure re-
duced the impact of artifacts; the truncation point was adap-
tively determined from the data. To regularize the estimate,
a Gaussian Bayesian prior was placed on the noise level with
a mean of the initial estimate (σ̂0) and ten percent standard
deviation. The optimal solution was numerically found by a
coordinate descent Nelder-Mead simplex algorithm[4]. For a
mixture of j components, the objective function was

{N̂1...j} = argmax
N1...j ,σ

L∗(S(q1...N ));N1...j , σ), (3)

where S(qi) are the observations at N q-values and Nj is a
zero mean Gaussian with restricted variance. The robust like-
lihood (L∗) incorporated Huberization (H) and a Bayesian
prior with the traditional likelihood (L) of each observation
under a Rician noise model (Eq.1),

L∗(S(q1...N ; •)) = p(σ; σ̂0)
N∏
i=1

H(L(S(qi); •)). (4)

The search was initialized with a minimum mean squared er-
ror solution and a spatially varying noise level estimate using
the method presented in [4] where a robust Qn scale metric
was used in place of the sample standard deviation [7].

The mixture model provides analytic representations of
the attenuation signals, so PDF’s may be recovered without
use of the discrete Fourier transform. Note that the inverse
Fourier transform of a positive mixture of zero-mean Gaus-
sians is also a positive mixture of zero-mean Gaussians. Thus,
the estimated PDF’s are guaranteed to be monotonically de-
creasing, strictly positive, and symmetric, which is in accor-
dance with physical principles. Since the Fourier transform is
linear, estimated ML attenuation signals represent ML PDF’s.

3. SIMULATIONS

Simulations were performed with two-component exponen-
tial mixtures (with diffusivities drawn at random from 3 ×
10−5 to 3× 10−3 mm2/s) (Fig. 2). Each simulation consisted
of two repetitions of 32 data points that linearly spanned the
signal decay curve from q=0 to 400 cm−1 at an SNR of 7:1
on the q=0 images. The SNR on other DW images is variable
and depends on signal attenuation. For comparison, a tradi-
tional two compartment bi-Gaussian (Bi-Gaus) method was
implemented that discarded all data with intensity less than
the noise level.

QEMRL reduced the median MSE on the estimated PDF
by 95% (25th-75th quantiles: 78-99%) compared to the Bi-
Gaus method. For simulations that used low diffusivities (rep-
resentative of WM, Fig. 2A), QEMRL offered less of an im-
provement over Bi-Exp (21%), which is to be expected as the



bi-exponential model contains a parsimonious representation
of the truth model when little Rician bias is present. However,
for simulations that used high diffusivities (representative of
GM, Fig. 2B), QEMRL was able to more accurately account
for the bias due to the “noise floor” and offered substantial
improvements (98%).

4. IN VIVO EXPERIMENTS

The QEMRL technique was studied in the in vivo human
spinal cord. Four repetitions of a standard q-space proto-
col were acquired for a healthy volunteer on a 3T Philips
MR scanner. Thirty axial slices were acquired perpendic-
ular to the long axis of the spinal cord covering C2 to C6
(1.3x1.3x3.0 mm, FOV=84x84x90 mm, matrix=64x64, 32
linearly spaced q-values from 0 to 414 cm−1) with single-
shot EPI (SENSE=1.8, TR/TE=7000/106 ms). To improve
SNR and mitigate the impacts of artifacts, each DW image
was collected with diffusion weighting along two orthogonal
directions ([Gx, Gy, Gz]=[1,1,0] and [1,-1,0]) with a total
acquisition time of ∼10 min. The SNR was ∼7:1 on the
q=0 images. A second control and one patient with MS were
each scanned once with a similar q-space protocol (TE=112
ms, FOV=62x62x90 mm, matrix=48x48). Structural images
were acquired for lesion identification (spin density/T2*w
3D-GRE with three-shot EPI, SENSE=2). Informed writ-
ten consent and local institution review board approval were
obtained prior to study.

In the scan-rescan dataset, QEMRL reduced the mean
variability of estimated PDF’s within the spinal cord by 30%
over the Bi-Gaus method. The adaptive model order selec-
tion procedure identified 3.6 ± 1.1 mixture compartments
per voxel within the spinal cord. QEMRL more clearly re-
vealed GM/WM contrast in the cervical spinal cord in the P0,
FWHM, and RMSD contrasts (Fig. 3).

Results for a representative slice for the healthy control
(Fig. 4) show that PDF’s in WM are tall and narrow, whereas
PDF’s in GM are low and broad. Results are also shown for
the MS patient with lesions in the lateral columns (hyperin-
tense on the T2*w GRE, not shown). MS lesions show abnor-
mal height and shape of PDF’s; however, quantitative analy-
sis of the PDF’s is complicated by the high dimensionality.
To address this complexity, the PDF shape is often summa-
rized by the P0 and FWHM properties, however, this fails to
describe the extent to which the observed PDF is truly non-
Gaussian. Analysis of the RMSD captures information relat-
ing to the heavy tails.

These contrasts may be fused into a color image that im-
parts greater information about the PDF than any single con-
trast (Fig. 4 top row: red corresponds to P0, green to FWHM,
and blue to RMSD). With this visualization technique, the dif-
ferences between narrow and wide PDF’s and the presence of
heavy tails can be readily appreciated. P0 is most sensitive
to strongly peaked PDF’s which are indicative of highly re-
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A. Simulated q-Space PDF Estimate in White Matter

B. Simulated q-Space PDF Estimate in Gray Matter
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Fig. 2. Two compartment (bi-Gaussian) simulations demon-
strate that QEMRL slightly improves performance for white
matter (A) and greatly improves performance for gray matter
(B). QEMRL estimates show much less bias towards artifac-
tual sharpening of broad PDF’s than a traditional approach.

QEMRL Bi-Gaus

P0
FW

H
M

RM
SD

0

1.2

 x104

0

25 

 µm

0

15 

 µm

LC
LC

VC

DC

GH

GH

Fig. 3. QEMRL increases contrast between the gray matter
horns (GH) and the spinal cord white matter, include the lat-
eral (LC), dorsal (DC), and ventral (VC) columns.
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Fig. 4. Slices at the level of C4 are shown for a control (left)
and a MS patient with a LC lesion (center). Mean PDF’s
within the indicated regions are presented at right.

stricted diffusion environments, such as in WM. FWHM tends
to measure the width of the primary lobe, so a high FWHM
indicates a weakly restricted diffusion environment. RMSD
is also sensitive to weakly restricted environments, but places
more emphasis on the tails of the distribution. In the multi-
spectral images for the control, WM columns are primarily
red/magenta, indicating peaked PDF’s with narrow FWHM
and RMSD. The central areas of the GM horns are green/teal,
indicating a high FWHM, but a low RMSD. The dorso-lateral
GM horns demonstrate a purple or light blue color, which in-
dicate both a high FWHM and high RMSD. The purple hue
appears to point out the transition between the dorsal and lat-
eral columns in the control. These features may also be used
to observe the regional extent of the MS lesions. The large
lateral column lesions reduce P0 and increase FWHM (a de-
crease in the purple color) near the lesion boundaries.

5. DISCUSSION

Through improved estimation, QEMRL permits the wealth
of information in diffusion PDF’s to be more fully explored
and utilized to assess microstructure in both healthy and dis-
eased tissue. QEMRL improves the accuracy and reliability
of PDF’s derived from q-space by accounting for the Rician
noise properties in magnitude images. Specifically, while the
Rician bias at low SNR causes the PDF’s computed with the
Bi-Exp method to be artificially narrow (Fig. 2), QEMRL
produces PDF’s that more closely resemble the true PDF. Out-
lier rejection and stable numerical optimization reduce the im-
pact of imaging artifacts and result in increased empirical q-
space PDF reliability. Incidentally, QEMRL estimates a pro-
jection of PDF’s onto a finite basis set, which has a physical
interpretation as the mixture of diffusion compartments and

may be useful as a biomarker for micro-structural changes.
For example, the GM heterogeneity in the RMSD images seen
in the posterior dorsal horns compared to the dorso-lateral an-
terior horn would not be apparent if the RMSD were derived
from the FWHM (Fig. 3). With QEMRL, future studies may
employ measures of Gaussianity beyond RMSD, such as kur-
tosis. These contrasts may be indicative of cytoarchitecture
and structure within the GM, for example, due to differing
WM concentrations related to merging of the dorsal root col-
laterals. Additionally, analysis of q-space data with QEMRL
improves reliability of estimation process, which may allow
acquisition at higher spatial resolution images that provide
contrasts at an equivalent SNR to current techniques.

PDF’s for water diffusion can be measured in vivo in the
spinal cord, and are sensitive to tissue damage caused by MS.
These PDF’s contain a wealth of information (beyond the typ-
ically reported P0 and FWHM) and reveal interesting and sub-
tle properties of the biophysical diffusion restriction environ-
ment. There is visual and quantitative heterogeneity in the
spinal cord, which may be indicative of substructure within
WM and GM. Further histological and theoretical validation
will be necessary to determine if it is possible to attribute spe-
cific observations of PDF’s to intra-voxel compartments (i.e.,
substructural differences) or to partial volume effects (i.e.,
mixtures of WM and GM within voxels).
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