
Diffusion Tensor Estimation by Maximizing Rician Likelihood

Bennett Landman, Pierre-Louis Bazin, Jerry Prince
Johns Hopkins University School of Medicine

Baltimore, MD 21205
{blandma1,pbazin1}@jhmi.edu, prince@jhu.edu

Abstract

Diffusion tensor imaging (DTI) is widely used to char-
acterize white matter in health and disease. Previous ap-
proaches to the estimation of diffusion tensors have either
been statistically suboptimal or have used Gaussian ap-
proximations of the underlying noise structure, which is
Rician in reality. This can cause quantities derived from
these tensors — e.g., fractional anisotropy and apparent
diffusion coefficient — to diverge from their true values, po-
tentially leading to artifactual changes that confound clin-
ically significant ones. This paper presents a novel maxi-
mum likelihood approach to tensor estimation, denoted Dif-
fusion Tensor Estimation by Maximizing Rician Likelihood
(DTEMRL). In contrast to previous approaches, DTEMRL
considers the joint distribution of all observed data in the
context of an augmented tensor model to account for vari-
able levels of Rician noise. To improve numeric stability
and prevent non-physical solutions, DTEMRL incorporates
a robust characterization of positive definite tensors and a
new estimator of underlying noise variance. In simulated
and clinical data, mean squared error metrics show con-
sistent and significant improvements from low clinical SNR
to high SNR. DTEMRL may be readily supplemented with
spatial regularization or a priori tensor distributions for
Bayesian tensor estimation.

1. Introduction
Diffusion tensor imaging (DTI) provides unique insights

into in vivo tissue structure through contrasts sensitive to
the directional diffusion of water within restricted environ-
ments [2]. Derived tensor contrasts, including fractional
anisotropy (FA) and mean diffusivity (MD), have been
widely applied to characterize cytoarchitectural changes re-
lated to damage in cerebral white matter (e.g. see a review
by Horsfield and Jones [11]). At low signal to noise ra-
tios (SNRs), estimated contrasts tend to systematically di-
verge from their true values (increased bias in addition to in-
creased variability), which leads to artifactual changes that

confound clinically significant ones [3]. This study presents
a maximum likelihood (ML) approach of estimating ten-
sors from DTI data that accounts for (1) non-Gaussian dis-
tributed noise and (2) statistical dependence between ob-
servations to minimize bias. This novel approach specifi-
cally addresses the joint likelihood of all observations given
a tensor model (as opposed to the marginal likelihood of
each observation), denoted Diffusion Tensor Estimation by
Maximizing Rician Likelihood (DTEMRL).

In DTI studies, the degree and orientation of random
thermal (Brownian) motion of water are inferred from
the signal intensity obtained during sensitized, “diffusion
weighted” (DW) acquisitions relative to a reference. A typ-
ical DTI study consists of a reference image and series of 6
or more DW images, each of which are attenuated accord-
ing to the diffusivity along a particular linear direction. The
absolute intensity depends on the local relaxation properties
(e.g., T1, T2, PD) of the tissue which are not directly linked
to diffusivity. The ratio between the DW and reference sig-
nals provides the relevant information. The 3D diffusivity
is modeled as a tensor fit to these ratios.

Current methods of computing tensors do not fully ac-
count for the physical noise structure in magnetic resonance
(MR) data. The noise on acquired images is well charac-
terized by independent Rician distributions [10]. Indepen-
dence between the noise on the intensities at the same lo-
cation in different images is lost when the ratio between
DW and reference images is computed because a common
denominator is used. The most prevalent tensor estima-
tion method, the log-linear minimum mean squared error
(LLMMSE) approach [2], assumes the noise to be inde-
pendently and identically Gaussian distributed on the log-
arithms of the ratios. In support of the LLMMSE approach,
Gudbjartsson et al. [10] demonstrated that the distribution
of the logarithm of ratio of Rician random variables is
“nearly Gaussian” for SNRs greater than 2:1.

Methods for compensating for Rician bias in DTI have
been proposed primarily in two categories, (1) characteriza-
tion of the noise structure in single images and (2) spatial
regularization of DTI data. Sijbers et al. [19] presented an
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ML approach for Rician bias compensation of single MR
images. Koay et al. [13] demonstrated an exact solution and
extended the method for images from multiple coils. Jones
et al. [12] presented an estimation method that incorporates
noise level estimation. Salvador et al. [18] reviews distri-
bution assumptions and describes a weighted least squares
procedure for addressing non-Gaussianity. Recent abstracts
indicate that a Rician noise model is more accurate than
Gaussian estimation (e.g., [1]). Spatial filtering of DTI data
to compensate for Rician noise has been proposed in multi-
ple contexts, including with wavelets [15], variational meth-
ods [22], anisotropic smoothing [8], and edge preserving
partial differential equations [6].

In this work, spatial regularization is avoided to demon-
strate improvements possible without compromise to spa-
tial accuracy. The DTEMRL framework can readily in-
corporate spatial consistency constraints as in the Frandsen
et al. Bayesian tensor field regularization [9] or the Basu
et al. maximum a posteriori smoothness integrating Ri-
cian bias compensation [4]. In contrast to these approaches,
DTEMRL assesses the likelihood as the joint probability of
observations rather than as a spatial regularization problem
given Rician marginal likelihoods.

In the tensor model of diffusion, the probabilistic mo-
tion of water is independent along three orthogonal axes
(i.e., tensor eigenvectors) with three independent diffusiv-
ities (i.e., tensor eigenvalues). Since physical diffusivities
cannot be negative, tensors that arise from diffusion must
be positive definite. However, common tensor estimation
methods, including LLMMSE, may result in tensors with
negative eigenvalues. Nonlinear approaches to limit solu-
tions to the manifold of positive definite tensors have been
proposed by Tschumperlé et al. [21], Niethammer [14], and
Cox et al. [7]. These methods have not specifically ad-
dressed both the eigenvalue constraints and the Rician noise
distributions.

Despite the “near-Gaussian” distributions of DTI exper-
imental data, DTEMRL offers substantial improvements at
high SNRs, up to and including 40:1. In simulations, mean
squared error metrics demonstrate consistent and significant
improvements with low clinical to high SNR acquisitions.

2. Theory

2.1. Diffusion Tensor Imaging

The DW images that form the basis of DTI are typically
created by augmenting a conventional spin echo MR study
with sensitization magnetic field gradients. Relative to a
traditional spin-echo reference, these “diffusion weighting
gradients” produce intensity changes that are dependent on
the orientation of the magnetic field gradients relative to the
underlying tissue microstructure. The tensor model of dif-
fusion models observed intensities by the Stejskal-Tanner

expression [2],

Si = S0e
−bgTi Dgi (1)

where Si is the observed signal for the ith direction, S0 is
the reference signal, b is a signal attenuation constant (the
“b-value”), gi is the unit direction vector of ith DW direc-
tion, and D is the diffusion tensor, a symmetric 3x3 matrix,

D =
∣∣∣∣Dxx Dxy Dxz
Dxy Dyy Dyz
Dxz Dyz Dzz

∣∣∣∣ . (2)

The DW directions and b-value are determined by experi-
mental settings and are generally known before data acqui-
sition. When a set of six or more non-collinear (and not
mutually coplanar) DW directions are acquired, the tensor
may be linearly estimated from the logarithm of ratios [2]:∣∣∣∣∣∣∣
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Linear regression of the right hand side “G” matrix on the
left hand side “log-observations ratio” vector is an ML es-
timate of the diffusion tensor when the noise on ln |Si/S0|
is independently and identically Gaussian distributed. The
ratio between DW and reference intensity is known as the
apparent diffusion coefficient (ADC).

2.2. Noise in MR Imaging

The physical MR observations of complex-valued
Fourier coefficient images are well described by Gaussian
distributions. In DTI however, the reference and DW im-
ages are real-valued magnitude images. Thus, the noise on
individual MR observations follows a Rician distribution,

p(x; ν, σ) =
x

σ2
e−

x2+ν2

2σ2 I0

(xν
σ2

)
, (4)

where x is the observed signal, ν is the true mean intensity,
σ is the standard deviation of noise on the original com-
plex valued image, and I0 is a zeroth order modified Bessel
function of the first kind. We define SNR as the magnitude
of the noise-free signal divided by the standard deviation of
the noise on the original complex image (σ). The distribu-
tion of the ratio of Ricians may be solved for special cases
or evaluated numerically, but a convenient closed form ex-
pression is not known. At low SNR, this distribution ex-
hibits significant non-Gaussian skew. Furthermore, a single
common reference image is used for all DW images to com-
pute ADCs, so the ADCs are not independent observations.
Finally, the LLMMSE model makes no constraints on the
eigenvalues of the resulting tensor, while physical diffusiv-
ities (the quantity associated with the tensor eigenvalues)
cannot be negative.



2.3. Maximum Likelihood Estimation

Consider a DTI study with a reference image andN DW
images. Since the noise on each acquired image is inde-
pendent, the log-likelihood, L, of the observed data can be
computed by combining Eq. 1 and Eq. 4:

L(D̂, Ŝ0, σ̂0:N ;S0:N ) =
N∑
i=0

ln p(Si; Ŝ0e
−bgTi D̂gi , σ̂i) (5)

where D̂ is the tensor estimate, Ŝ0 is the reference signal
estimate, and σ̂i is the estimated noise level on image i. For
notational convenience, g0 is defined as the zero vector.

Both the reference signal intensity and noise level are
anatomically dependent, spatially varying, and, in general,
unknown. The noise level is independent of DW, so a single
σ parameter per location is sufficient. If different numbers
of averages are used for different images, then the σi param-
eter may be computed from the single baseline parameter
by a constant scalar. So, the ML approach requires estimat-
ing eight parameters as opposed to a traditional LLMMSE
method which only estimates the six tensor parameters.

2.4. Model Parameterization

The globally optimal ML solution does not depend on
the diffusion tensor parameterization, yet investigation re-
veals differing susceptibilities to local maxima and sensi-
tivity to numeric precision (not shown). Diffusion tensors
are commonly represented by the six unique matrix coef-
ficients (Eq. 2). In DTEMRL, diffusion tensor are repre-
sented by three degree of freedom rotation (R) and eigen-
value (Λ) matrices:

D = RTΛR. (6)

This representation readily enables constraints on the eigen-
values. In particular, the diffusion tensor is restricted to
the space of positive definite tensors by parameterizing each
eigenvalue by its logarithm:

Λ =
∣∣∣∣ el1 el2

el3

∣∣∣∣ , (7)

where li is the ith eigenvalue parameter and eli is the ith
eigenvalue. The classical representation of rotation matrices
uses Euler angles. Yet, Euler angles are numerically diffi-
cult to jointly optimize because they are inhomogeneous,
correlated, and have numerous singularities. DTEMRL
exploits an alternative representation based on Rodrigues’
analysis and related to the quaternion form [5]:

R =
∣∣∣∣ 1−2b2−2c2 2ab−2cγ 2ac+2bγ

2ab+2cγ 1−2a2−2c2 2bc−2aγ‘

2ac−2bγ 2bc+2aγ 1−2a2−2b2

∣∣∣∣ , (8)

where a, b, and c are the angular parameters, γ =√
1− a2 − b2 − c2, and a2 + b2 + c2 is restricted to [0, 1].

The derivatives of the parameters are equal for all parame-
ters, and there is a single singularity at γ = 0. The remain-
ing two parameters, S0 and σ, in DTEMRL are represented
in their native forms for efficiency because non-negativity
problems were not encountered in practice.

3. Methods

3.1. Model Initialization

The numeric maximization of likelihood (Eq. 5) requires
an initial parameter estimate to seed the optimization. The
initial tensor parameters (l̂10,l̂20,l̂30,â0,b̂0,ĉ0) were derived
from an LLMMSE tensor estimate. Negative eigenvalues
and small magnitude eigenvalues (less than 1× 10−6) from
the LLMMSE result were replaced with 1× 10−6. The es-
timated reference signal Ŝ00 was initialized to the observed
reference signal S0.

Initial estimation of the noise level σ̂0 in DTI is more
involved. It has often been proposed to estimate the noise
level from background data [19]. Yet, clinical image re-
construction programs employ background suppression and
signal equalization, especially with parallel imaging recon-
struction (e.g. SENSE [17]). Therefore, the noise level
in the background is not representative of the noise level
within tissue. Furthermore, noise level varies with coil sen-
sitivity, which may be readily visualized on clinical data
[12]. In DTI, images are typically up-sampled by zero-
padding complex-valued Fourier coefficient images, so the
local noise structure is highly correlated. Hence, estimation
of noise level from local, homogeneous regions is difficult.

The physical noise level (σ) at any given voxel is not
dependent on diffusion weighting. However, the number
of averages used in the observed data must be taken into
account. An additional complicating factor is that signal
intensity varies on the reference (S0) and each of the in-
dividual DW images (Si). To overcome this difficulty, an
estimate of noise level (σ̃) is formed based on a repeated
acquisition (i.e., a complete duplicate set of reference and
DW images), which is commonly available in practice. For
voxels with high signal intensity, the intensity distribution
is approximately Gaussian but with variable mean. The dif-
ferences between repeated observations with the same dif-
fusion weighting are also approximately Gaussian, but with
zero mean and

√
2 increased standard deviation. Since the

distribution of the difference of Gaussian random variables
does not depend on the original mean, differences from the
reference and DW images may be treated as repeated obser-
vations from the same distribution. Accordingly, we form
the following estimator of σ̃ based on the sample standard
deviation while correcting for the

√
2 increase in standard



deviation,

σ̃ =

√√√√ 1
2N

N∑
i=0

(ξidi −
1

N + 1

N∑
i=0

ξidi)2, (9)

where di is the difference in signal intensities between the
ith repeated pair of images (with the same diffusion weight-
ing) and ξi is the square root of the number of (k-space)
averages acquired for the ith image.

Estimates of σ̃ using Eq. 9 tend to exhibit low SNR and
spatial variations that are inconsistent with coil sensitivity
profiles. Therefore, we regularize the initial noise field σ̃ us-
ing Chebyshev polynomial regression on non-background
voxels with a third degree two-dimensional polynomial to
create physically realistic noise level estimates (σ̂). Al-
though other regularizers are possible, we note that Cheby-
shev polynomials are numerically stable and have been pre-
viously used to model coil sensitivity profiles [16].

3.2. Maximum Likelihood Estimation

ML estimates of tensor parameters were obtained by nu-
meric optimization of Eq. 5 using the Nelder-Mead simplex
algorithm in Matlab (Mathworks, Natick, MA). To improve
stability, optimization proceeded in three stages. First, a re-
fined estimate of the tensor parameters was determined by
fixing the noise and baseline intensity estimates,

{l̂11, l̂21, l̂31, â1, b̂1, ĉ1} = argmax
l1,l2,l3,a,b,c

L(•; Ŝ00, σ̂0). (10)

Second, the estimates of reference intensity and noise level
were refined holding the tensor definition constant,

{Ŝ0, σ̂} = argmax
S0,σ

L(•; l̂11, l̂21, l̂31, â1, b̂1, ĉ1). (11)

Third, the tensor parameters were refined based on the up-
dated estimated reference intensity and noise level,

{l̂1, l̂2, l̂3, â, b̂, ĉ} = argmax
l1,l2,l3,a,b,c

L(•; Ŝ0, σ̂). (12)

In practice, iterative optimization is possible to avoid local
minima. However, empirical simulations found that a single
pass was within 0.02 percent of the maximum likelihood
found after 10 iterations under realistic clinical conditions.

3.3. Simulation Study

Simulation experiments were performed with prolate
tensors (i.e., tensors with identical second and third eigen-
values). The maximum (parallel) diffusivity was set to
2 × 10−3 mm2/s and the radial diffusivities were adjusted
to create tensors with fractional anisotropies of 0, 0.2, 0.5,
and 0.8. Simulated DTI studies were conducted at b-value
of 1000 s/mm2 with the 30 DW directions described by

Jones and tabulated by Skare et al. [20]. One thousand
Monte Carlo iterations were performed at each of 36 lin-
early spaced noise levels between 5:1 and 40:1. First, the
reliability of LLMMSE and DTEMRL tensor estimation
methods were assessed when noise estimates were correctly
initialized (σ̂ = σ). Second, the simulations were repeated
with the initial noise level randomly set to either 80 percent
or 120 percent of the correct value (σ̂ = σ ± 0.2σ). Note
that DTEMRL adapts its estimate of noise level based on
observed data (Eq. 11) both when the noise level was cor-
rectly and incorrectly specified. Both methods were eval-
uated in terms of the mean squared errors (MSEs) on the
tensor coefficients and derived scalar measures.

3.4. Empirical Study

Repeated acquisitions of a single subject were ac-
quired from the Biomedical Informatics Research Net-
work (BIRN) repository (http://www.nbirn.net). Briefly,
the dataset consists of 15 DTI scans of a healthy 24 year
old male volunteer, acquired using a 1.5T MR unit (Intera,
Philips Medical Systems, Best, The Netherlands) with body
coil excitation and a six channel phased array SENSE head-
coil for reception. Each DTI dataset was acquired with the
following imaging protocol. A multi-slice, single-shot EPI
(SENSE factor = 2.0), spin echo sequence (90◦ flip angle,
TR/TE = 3632/100 ms) was used to acquire 25 transverse
slices parallel to the line connecting the anterior and pos-
terior commissures, with no slice gap and 2.5 mm nomi-
nal isotropic resolution (FOV = 240 x 240, data matrix =
96 x 96, reconstructed to 256 x 256). A slice at the level
of the corpus callosum was selected for comparative pro-
cessing. Diffusion weighting was applied along 30 DW
directions described by Jones et al. [20] with a b-value of
1000 s/mm2. Five minimally weighted reference images
(S0) were acquired and averaged on the scanner as part of
each DTI dataset. The SNR on the resulting S0 images was
approximately 23:1 within the corpus callosum (white mat-
ter). The total scan time to acquire one DTI dataset was 2
min 18s. DTI data were corrected for subject motion with a
public DTI software package.

Empirical noise level was estimated by computing the
standard deviation on each voxel measurement type (15 ob-
servations per voxel per image), averaging across all images
(1 reference and 30 DW images), and fitting a Chebyshev
model. The pairwise noise estimation procedure was evalu-
ated on all 105 combinations (15 choose 2) of two data sets
to evaluate its reliability.

LLMMSE and DTEMRL methods were run on each of
the 15 datasets. As the noise level initialization procedure
requires two datasets, an arbitrary second dataset was used
in the noise field initialization stage. To provide a “high
SNR” comparison, both methods were also run on all ac-
quired data (15 reference images and 450 DW images).
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Figure 1. Simulation results. DTEMRL consistently improves tensor reliability in terms of tensor coefficients (A-C) and FA (D-F) when
SNR is above an FA dependent threshold. Typical clinical DTI studies exhibit SNR greater than 20:1. Mis-specification of the noise level
raises the threshold for improvement (B vs. C and E vs. F), but improvement magnitude is unchanged for anisotropic tensors (FA≥0.2).

4. Results

4.1. Simulation

Simulations with correctly initialized noise level (σ̂0 =
σ) demonstrate that DTEMRL exhibits two distinct modes
of behavior depending on the relationship between SNR and
FA (Fig. 1 A, B, D, E). When SNR is above a threshold,
then DTEMRL results in substantial improvement in the es-
timation of tensor coefficients. The simulated methodolog-
ical differences with SNR greater than 20:1 demonstrate a
mean improvement in tensor coefficient MSE of 4.4±1.7%,
6.9±1.1%, 20.3±1.3%, and 33.3±1.68% (mean± standard
deviation) for tensor FAs of 0, 0.2, 0.5, and 0.8, respectively
(Fig. 1 B). At SNRs less than 18:1, 13:1, 10:1, and 6:1 for
tensor FAs of 0, 0.2, 0.5, and 0.8 respectively, DTEMRL
reliability is less than that of LLMMSE.

Initialization with an incorrect noise level degrades
DTEMRL performance, which corresponds to approxi-
mately a 5:1 decrease in SNR. Yet, we observe the same
bimodal behavior as with correctly initialized simulations.
Above an SNR of 25:1, there are mean changes in tensor
coefficient MSE of -2.1±3.1%, 4.4±0.92%, 19.8±1.2%,
and 33.1±1.5% (mean± standard error) for tensor FAs of 0,
0.2, 0.5, and 0.8, respectively (Fig. 1 C). Mis-specification
decrease performance in isotropic areas, yet differences

after compensating for the SNR shift are not significant
for FA≥0.2 (p=0.08, 0.78, 0.94 for FA=0.2, 0.5, 0.8).
For isotropic tensors, reliability is significantly degraded
(p≤0.05).

4.2. Noise Level Estimation

The empirically estimated (“high SNR”) noise level
(Fig. 2 A) demonstrates strong spatial variability, with the
noise level near the center of brain more than double that
in the cortex. The spatial variability and general structure
of the noise field are preserved with Chebyshev polynomial
regularization (Fig. 2 B). The bias between the high SNR
regularized noise level (Fig. 2 B) and the estimated regular-
ized field from pairs of DW datasets is less than 5 percent
bias (Fig. 2 C), which indicates a high degree of accuracy
even when using limited data. The reliability of estimates
from pairs of DW datasets is very high; variability across
the brain was much less than 5 percent (Fig. 2 D), except
near the frontal poles which are highly susceptible to dis-
tortion artifact.

4.3. Tensor Estimation with Acquired Data

The LLMMSE and DTEMRL methods demonstrate con-
sistent differences even when using all available clinical
data. FA was higher in white matter structures (Fig. 3
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% Chg.C D % Chg.

Figure 2. Reliability of noise level estimation. Empirical noise
(A) shows clear spatial dependence. Regularization of the em-
pirical noise (B) preserves spatial structure. The proposed noise
estimation method demonstrates reliability. Both the mean differ-
ence between estimate noise and regularized empirical noise (C)
and the estimated noise variability (D) are within 5 percent.

A, B) with the degree of difference proportional to tissue
anisotropy. On single datasets, LLMMSE resulted in higher
FA in gray matter (note putamen and globus pallidus) and
lower FA in white matter (Fig. 3 C, D). Variability of the
LLMMSE was greater across the brain except for the ven-
tricles (Fig. 3 E, F).

To assess systematic differences in estimated FA with
LLMMSE and DTEMRL, voxels were binned by the FA
estimated with DTEMRL. For voxels in each bin, the mean
methodological differences in FA was computed. These
mean differences are indicative of the known systematic
bias with LLMSE and depend on FA (Fig 4). At low FA, the
bias is slightly positive, with DTEMRL resulting in slightly
lower FA. At increasing FA, the bias shifts negative with
DTEMRL resulting in higher FA.

The DTEMRL variability of tensor coefficients was re-
duced by more than 40 percent in white matter, unchanged
in gray matter, and increased in the cerebro-spinal fluid
(Fig. 5 A). The DTEMRL variability of MD was slightly
reduced in white matter and substantially increased in the
cerebral spinal fluid (Fig. 5 B).

The “shape” of a diffusion tensor (i.e., orientation and
eigenvalues) may be visualized by rendering the directional
ADC functions. The visual variability of ADC functions es-
timated from distinct datasets provide a qualitative sense as
to degree of improvements with DTEMRL over LLMMSE
(Fig. 6). The illustrations show representative white mat-
ter regions of interest. DTEMRL results in more reliable

Processed by Difference
DTEMRL LLMMSE-DTEMRL
FA computed with all data (15x) ∆FA

Mean FA computed with one scan ∆FA

Standard deviation of FA with one scan ∆FA

Figure 3. FA estimates with acquired data. Systematic bias is seen
between DTEMRL and LLMMSE when simultaneously using all
15 datasets (A,B). Mean differences (bias) between methods are
preserved when single datasets are analyzed (C,D). Variability of
DTEMRL is lower throughout the brain (E,F).

orientation estimates (a narrow angular spread of the major
axis of the “peanuts”) and eigenvalues (consistent size of
the “peanut” along each axes).

5. Discussion
5.1. Tensor Estimation

Simulations demonstrate that tensor estimates may be
considerably improved by exploiting the Rician noise dis-
tributions of MR data (Fig. 1). However, using this infor-
mation requires estimating two additional parameters (the
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(B). Dark tones indicate improvement with DTEMRL.
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Figure 6. Representative tensor estimates. Renderings show all
estimates for 4 voxels with DTEMRL (left) and LLMMSE (right)
in the corpus callosum (A) and internal capsule (B).

intensity of the reference signal and noise level) which are
not needed for LLMMSE. Thus, a minimum of seven dif-

fusion weighted images and a reference image are required.
At moderate and high SNR, DTEMRL improves the relia-
bility of tensor estimation, and the magnitude of improve-
ments is greater for tensors of high anisotropy. For very
low SNR, simulations indicate that the DTEMRL method
may reduce estimation performance, likely due to variabil-
ity introduced with the additional parameters. These results
suggest the need for regularization of DTEMRL when the
SNR is very low or, similarly, when very few DW images
are acquired. Experiments with clinical data demonstrate
consistent improvements with DTEMRL. DTEMRL oper-
ates in the stable, “high SNR” regime for DTI studies using
only one acquisition at 1.5T. Typically, 3 to 5 averages are
acquired at 1.5T to improve SNR by 70 to 120 percent. Sim-
ulations indicate that improvement in SNR would reduce
the likelihood that DTEMRL would continue to out perform
LLMMSE without decreasing proportional improvement of
DTEMRL over LLMMSE.

Experiments with clinical data demonstrate that
DTEMRL remains robust in spite of the approximate na-
ture of the tensor model, presence of artifact, and spatially
heterogeneous tissue. Reproducibilities of FA (Fig. 3 E, F),
tensor coefficients (Fig. 5 A), and MD (Fig. 5 B) are greater
(lower standard deviation) for DTEMRL than LLMMSE.
The percent improvements are greatest for tensor coeffi-
cients in white matter. Negative impacts of reduced SNR
are mitigated by high FA. Once data is of sufficient SNR
for DTEMRL to offer improved reliability, the proportional
benefits are essentially constant across SNR while the
magnitude of the improvement increases with FA (Fig. 1
B, E). Although numeric optimization depends upon the
initialization accuracy, DTEMRL tensor estimates remain
stable in spite of a 20 percent mis-specification of initial
noise level (Fig. 1 C, F).

Without a valid ground truth, the full reliability cannot be
assessed with in vivo data. The “high SNR” estimates are
not a suitable proxy because the estimates with LLMMSE
and DTEMRL are different. In LLMMSE, including addi-
tional observations reduces the variability in the DW im-
age intensity, but also reinforces bias on each DW image.
With DTEMRL, additional observations enable refinement
of the noise estimate, and reduce both variability and bias
in the estimated DW image intensities during tensor esti-
mation. Low SNR tends to positively bias FA in regions
of low anisotropy and negatively bias FA in regions of high
anisotropy with the LLMMSE method [12]. The systematic
bias between FA estimated with LLMMSE and DTEMRL
(Fig. 4) is in the opposite direction, which suggests that
DTEMRL would reduce bias in the estimated tensors. How-
ever, additional acquisitions using k-space averaging and/or
complex-valued imaging data are required to generate unbi-
ased, high SNR clinical data and verify potential DTEMRL
bias correction properties.



5.2. Noise Level Estimation

The underlying noise estimation procedure (Fig. 2) is
stable, accurate, and does not depend on spatial correla-
tions or the existence of a background region. It also avoids
dealing with spatially correlated noise, which is common
in DTI due to up-sampling and/or interpolation. With the
widespread use of parallel imaging methods, this noise level
estimator – while specifically developed for use in our im-
proved tensor estimation procedure – could also have far
wider utility beyond diffusion tensor imaging.

5.3. Conclusion

The bimodal performance of DTEMRL suggests an op-
portunity for a hybrid approach to tensor estimation even
when SNR is unknown. Simulations indicate that DTEMRL
either substantially improves tensor estimation or results in
degraded reliability (Fig. 1) which is influenced by initial-
ization. The newly presented noise level estimation method
provides a robust SNR estimate that does not depend on ten-
sor estimation, while the LLMMSE method estimates FA.
Together, these estimates may enable a decision framework
to transition between DTEMRL and LLMSE based on ex-
pected performance.

DTEMRL provides a platform on which to develop ML
approaches for robust DW image analysis, regularization,
and spatial filtering. MR images are often corrupted by ar-
tifacts which are not well modeled by additive or Rician
noise. Detection and/or removal of these artifacts could be
accomplished directly with likelihood measures. Alterna-
tively, DTEMRL could be desensitized to outliers through
use of a robust likelihood function. Furthermore, prior
probabilities could be associated with spatial distribution
for tensor field regularization or with the tensors them-
selves to transform this maximum likelihood approach into
a Bayesian maximum a posteriori approach. To facilitate
clinical applications and further research, the DTEMRL re-
search software may be optimized, as the current Matlab
implementation requires 200 ms per voxel on a PC.
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