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A Topology Preserving Level Set Method for
Geometric Deformable Models
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Abstract—Active contour and surface models, also known as deformable models, are powerful image segmentation techniques.
Geometric deformable models implemented using level set methods have advantages over parametric models due to their intrinsic
behavior, parameterization independence, and ease of implementation. However, a long claimed advantage of geometric deformable
models—the ability to automatically handle topology changes—turns out to be a liability in applications where the object to be
segmented has a known topology that must be preserved. In this paper, we present a new class of geometric deformable models
designed using a novel topology-preserving level set method, which achieves topology preservation by applying the simple point
concept from digital topology. These new models maintain the other advantages of standard geometric deformable models including
subpixel accuracy and production of nonintersecting curves or surfaces. Moreover, since the topology-preserving constraint is
enforced efficiently through local computations, the resulting algorithm incurs only nominal computational overhead over standard
geometric deformable models. Several experiments on simulated and real data are provided to demonstrate the performance of this

new deformable model algorithm.

Index Terms—Geometric deformable model, topology preservation, topological constraint, level set method, digital topology, simple

points, active contours.

1 INTRODUCTION

DEFORMABLE models are object-delineating curves or
surfaces that move within two-dimensional (2D) or
three-dimensional (3D) digital images under the influence of
both internal and external forces and user defined con-
straints. Since their introduction by Kass et al. [1], these
algorithms havebeen at the heart of one of the most active and
successful research areas in edge detection, image segmenta-
tion, shape modeling, and visual tracking. Deformable
models are broadly classified as either parametric deformable
models (see [1], [2], [3], [4], [5]) or geometric deformable models
(see [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16])
according to their representation and implementation. In
particular, parametric deformable models are represented
explicitly as parameterized contours' (i.e., curves or surfaces)
in a Lagrangian framework. They are the older of the two
formulations and have been extensively used in many
applications (see [17], for example). Geometric deformable
models, on the other hand, are represented implicitly as level
sets of higher-dimensional, scalar level set functions and
evolve in an Eulerian fashion [18]. Geometric deformable

1. In this paper, we use the word contour to refer to either a curve or
surface, and the words curve and surface are used explicitly only when the
dimensionality must be clear.
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models were introduced more recently by Caselles et al. [6]
and by Malladi et al. [7].

Geometric deformable models have several important
advantages over parametric models. First, they are com-
pletely intrinsic and, therefore, are independent of the
parameterization of the evolving contour. In fact, the model
is generally not parameterized until evolution of the level
set function is complete. Thus, there is no need to add or
remove nodes from an initial parameterization or adjust the
spacing of the nodes as in parametric models. Second, the
intrinsic geometric properties of the contour, such as the
unit normal vector and the curvature, can be easily
computed from the level set function. This contrasts with
the parametric case, where inaccuracies in the calculations
of normals and curvature result from the discrete nature of
the contour parameterization. Third, the propagating
contour can automatically change topology in geometric
models (e.g., merge or split) without requiring an elaborate
mechanism to handle such changes as in parametric models
(see [19], [20]). Finally, the resulting contours do not contain
self-intersections, which are computationally costly to
prevent in parametric deformable models (see [21]).

Topological flexibility has long been claimed as a major
advantage of geometric deformable models over parametric
deformable models. Such flexibility is so desirable in some
applications that methods to adaptively change the contour
topology have also been developed for parametric deform-
able models [19], [20]. But, topological flexibility is not always
desired. In particular, when a specific object (target) is sought
and its composition—i.e., the number of components and the
homology of each component—is known, then it is most
natural to seek the target in a way that yields the correct
composition or topology. For example, in the analysis of
3D brain images—the application that motivated our work on
this subject—itis desirable that a reconstruction of the cortical
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surface have a topology that is consistent with brain anatomy
[22], [21]. Recently, in fact, there have been several post-
processing methods reported to correct the topology of a
cortical segmentation that has the wrong topology [23], [24],
[25]. In this application, and others like it, the topology
flexibility of geometric deformable models is considered to be
a liability rather than an advantage [25].

When topology preservation is desired, parametric
deformable models are typically used because topology is
explicitly maintained by their Lagrangian formulation. Self-
intersections can become a problem in these algorithms,
however, when external forces drive the model vertices
together and step sizes are simultaneously selected to be
large in order to reduce convergence time. When simple
contours are required—as is usually the case in image
segmentation—some additional computations are necessary
in order to avoid self-intersections. Unfortunately, the
computational demands related to self-intersection detec-
tion are very high, especially for surfaces [21], and most
parametric models neglect this step, relying on smooth
external forces and extremely small step sizes instead.
Geometric deformable models inherently prevent self-
intersections because of the level set representation as well
as the entropy conditions imposed during level set
evolution [26], [18] and the way isocontours are typically
computed (see [27]). But, prior to this paper, there has been
no way to take advantage of this property (and the other
nice properties of geometric deformable models) and to
prevent topological changes during the level set evolution.
The difficulty of developing a level set method that
preserves topology has been noted by Hermosillo et al.
[28]. They speak of the need for a topology-preserving
evolution and then comment “[f]or planar curves, such an
evolution is given by the curvature flow, but unfortunately
this is not the case for surfaces. Much research has been
devoted to this problem, but it remains an open one.”

In this paper, we develop a topology-preserving level set
method (TLSM) for geometric deformable models that
guarantees that the final contour has exactly the same
topology as the initial one and does not contain any self-
intersection. Topology preservation is achieved by main-
taining the topology of the digital object enclosed by the
implicit contour, for which we make use of the simple point
criterion from digital topology [29], [30], [31]. We note that
our approach maintains the subpixel interpolation and
boundary regularization properties of geometric deform-
able models, which distinguishes our method from the
topology-preserving region growing method of Mangin et
al. [32]. The TLSM we describe can be used with any
existing 2D or 3D geometric deformable model, regardless
of the internal or external force definition, yielding a large
new class of deformable models, which we will refer to as
topology-preserving geometric deformable models (TGDM's).?

The remainder of the paper is organized as follows: In
Section 2, we present the basic notation and key ideas of the
geometric deformable models. We then present our topology-
preserving framework in Section 3. Experimental results on
both 2D and 3D phantoms and real data are shown in Section 4
to demonstrate the behavior and advantages of the new
TGDM'’s, which also serve as an illustration for their potential
applications. Section 5 summarizes the method, discusses the

2. The GDM acronym used here does not mean geometrically deformable
models, which is a different concept introduced by J. Miller et al. [33] and
shares the same acronym.

results, and gives more details on the connections between
previous work and our approach. Finally, we give a brief
conclusion in Section 6.

We note that preliminary results related to this work
have been described in a conference paper [34] and its
application to brain cortex segmentation has been described
in [35], [36].

2 GEOMETRIC DEFORMABLE MODELS

Geometric deformable models are based on the theory of front
evolution and are implemented using the level set numerical
method [18]. In this section, we briefly review the main theory
and major results of geometric deformable models.

2.1 Front Evolution and Level Set Theory

Let C(p,t), defined as {z(p,t),y(p,t)} in 2D and
{z(p,t),y(p, 1), 2(p,t)} in 3D, denote a family of closed
contours (i.e., curves or surfaces) generated by evolving
an initial contour Cy(p) = C(p,0), where ¢ parameterizes
the family and p parameterizes the given contour. The
basic result from the front evolution theory is that the
geometric shape of the contour is determined by the
normal component of the evolution velocity, while the
tangential component affects only the parameterization.
Hence, after a possible reparameterization, the evolution
equation can be written as

{% = F(C(p, )(C(p.1)), W
C(p,0) = Co(p),

where F(C(p,t)) is a scalar function that often depends on
the curvature s of the contour (for surfaces, both mean and
Gaussian curvatures can be used), and 7(C(p, t)) is the unit
normal vector (conventionally chosen to be the inward
normal) along the contour C(p, ).

The Lagrangian approach to the above evolution equation
involves discretizing the contour into a set of elements (e.g.,
nodes connected by lines or triangles) and updating the node
positions using a numerical approximation to (1). This is the
approach of parametric deformable models. Frequent adjust-
ment of the node spacing is required in order to preserve data
fidelity and reduce numerical approximation errors. Com-
putationally complex approaches may also be required for
self-intersection avoidance.

The level set technique developed by Osher and Sethian
[26] represents the contour C(p,t) implicitly as the zero
level set of a smooth, Lipschitz-continuous scalar function
®(x,t), also known as the level set function, where x € R?in
2D and x € R? in 3D. The implicit contour at any time ¢ is
given by C(-,t) = {x|®(x,t) = 0}. Although there are
infinite many choices of the level set function, in practice,
the signed distance function is preferred for its stability in
numerical computations. The fast marching method pro-
posed in [37], [38] provides an efficient algorithm for
constructing the signed distance function from a given
initial contour. We used signed distance functions con-
structed in this way for all of our experiments in this paper.

By differentiating ®(x,t) =0 with respect to t and
substituting (1), the following associated equation of motion
for the level set function ®(x,t) can be derived:

{% = F(x,1)|V®(x,1)] @
@(Co(p). 0) =0,
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where V is the gradient operator and |V®| denotes the
norm of the gradient of ®. Note that the function F(x,t) is
only defined at the contour location originally and, hence,
needs to be extended to the whole computational domain
(see [18]) in order that (2) applies to the whole space.

2.2 Geometric Deformable Models

Caselles et al. [6] and Malladi et al. [7] applied the above
theory to the problem of image segmentation by multi-
plying the contour velocity by a “stopping” term ¢(|VI(x)|)
that is a monotonically decreasing function of the gradient
magnitude of the image I (or its smoothed version). In this
way, they arrived at the following evolution equation

0P (x, t)
ot

where ¢ is a constant inflation or deflation (depending on its
sign) speed term that aims to keep the contour moving in
the proper direction, and (x,t) is the (mean) curvature of
the level set of ®(-,¢) that passes through the point x, which
can be easily computed from the spatial derivatives of ®(-,t)
(see [18]). We note that, in [6], [7], the above formulation is
originally derived for planar curves, however, the very
same form applies to surfaces as well. In the remainder of
this paper, all of the equations apply to both curves and
surfaces unless stated otherwise.

The model of (3) does not arise from the minimization of
an energy functional as in the classical active contour
models. To address this, Caselles et al. [8], [9] and
Kichenassamy et al. [10], [11] derived another geometric
deformable model, called the geodesic active contour model.
The basic idea is to consider the object boundary detection
as a problem of geodesic computation in a Riemannian
space, according to a metric g(x) induced by the given
image I. This idea can be formally written as

9IVIF) (e + £, 1) [Ve(x, 1), ®3)

min J(C) = / 4(C(p))dC, (4)

where dC denotes the arc-length in 2D or the infinitesimal
area element in 3D, and g(x) is usually chosen to be the same
as the stopping term ¢(|VI(x)|) used in the previous model.

Minimizing J(C) using a steepest descent algorithm
starting from an initial contour C; gives the following
contour evolution equation

{“"“”’—( 9(Cp.1)s(Cp.t) —
C(p,0) = Co(p).

Vg(C(pt)-7(C(p,t)i(C(p,t),

®)

This geodesic active contour model can be readily cast
within the level set framework. This yields an equivalent
contour evolution process implemented using the following
level set function evolution equation

W = g(x)|V(x, t)\div(lv@( i‘) + Vg(x) - VO(x, 1)

= g(X)R(x, 1) VO(x, )| + Vg(x) - VO(x,1),
(6)

where div(-) denotes the divergence of its argument, and
k(x,t) is the (mean) curvature as in (3).

There are many other extensions of the basic geometric
deformable model in the literature (e.g., [13], [39], [40], [14],

[41], [15], [16]) which were designed either to improve the
overall performance of the original model or to adapt to
particular applications. In this work, we consider a very
general framework summarized by the following evolution
equation [18], [41]:

0P (x,1)
ot

= Foop(%,8)|VO(x, )| + Fourv (%, 1)|VO(x, t)] )
+ Fadv(x7 t) . V<I>(x, t)7

where F,p(x,1)|V®(x,t)| is an expansion or contraction
force or speed (people use “force” and “speed” inter-
changeably); Fiu(x,t)|V®(x,1)| is the part of the force that
depends on the intrinsic geometry, especially the (mean)
curvature k(x,t); and Fo(x,t) - V®(x,t) is an advection
force that passively transports the contour.

The right-hand side of (7) can arise from the gradient
descent minimization of an energy functional as in the
geodesic active contour model (6), where Fjop(x,t) =0,
Fowv(x,t) = k(x,t)g(x), and FldV (x,t) = Vg(x). In general,
however, one can choose a different form for each force
term for a given purpose. As an example, we can choose
Foop(x,t) = R(x) to be a region force® (see [15], [41]) or a
binary flow force [14], Fou (X, 1) to be proportional to the
(mean) curvature r(x,t), and Foa(x,t) = ¥(x) to be a
gradient vector flow force [4]. With these choices the
evolution equation becomes

dD(x,t)
o

R(x)|V®(x
+ wyV(x) - VO(x,t),

O]+ wek(x,1)| VO (x,t)] (®)

where wp, wi, and wy are weights for the respective forces.
For a binary-valued image I having values zero or one, it is
convenient to define R(x)=2I(x)—1 to provide an
expansion force inside the object and a contraction force
outside. The model in (8) is used in the 3D experiments
presented later in this paper.

2.3 Numerical Implementation
One advantage of the geometric deformable model is that,
even though the implicit contour itself can develop
singularities (like cusps and corners) and can merge or
split to change topology, the level set function ® remains
well-defined. Thus, one can discretize the level set evolu-
tion equation on a fixed Cartesian grid and use a finite
difference scheme to robustly solve the evolution equation
numerically. In order to capture the singularities that might
develop along the implicit contour, Osher and Sethian [26]
proposed an upwind scheme that incorporates piecewise
continuous approximations to ® and utilizes one-sided (or
upwind) derivatives in the approximation of V&®. The
scheme is numerically stable and produces an entropy-
satisfying viscosity solution to (7).

Denote a grid point by x; and the discrete time scale by
tm, where i, m are integers. The resulting level set update
equation can be written as

(I:'(X,‘, tm+1) -

where At =t,,;1 —t, is the time-step size. Since we are
interested in a generic geometric deformable model, we use
A® to denote the upwind finite difference approximation to

(I)(X,,', tm) + AtA‘i)(Xi, t'm)a (9)

3. Also known as a signed pressure force.
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the right-hand side of (7) (see [18] for an explicit formula).
Given an initial level set function ®(-, %), (9) can be used to
update the level set function at successive time instants
tmi1,m=0,1,..., until convergence. Although not expli-
citly computed until the end, the zero level set of ®(-,t,,),
m =1,2,... represents the evolving contour(s).

As mentioned before, the forces are really only meaningful
atthe moving contour itself, i.e., the zerolevel set of ®. Yet, the
update equation (9) applies to all values of ®, not just those
around zero. In fact, it is clear from (6) that, in this
implementation of the geodesic deformable model, the forces
have been “naturally” extended to apply to all level sets, not
just the zero level set. By “naturally,” it is meant that the same
expression is used to evaluate the forces over the whole
computational domain. One implication of this particular
force extension is that all level sets are attracted to the desired
image feature, which tends to crowd the level sets closer
together as the iterations proceed. Because of this, periodic
reinitialization of the level set function (using the fast
marching method, for example) is required in order that it
closely approximates a signed distance function; this im-
proves numerical stability and accuracy of the overall
computation. An alternate extension method that preserves
® at any time as a signed distance function was presented in
[42],[18], but this requires more computation periteration and
is generally much slower than this simple periodic reinitia-
lization scheme.

There are several ways to increase the computational
speed of geometric deformable models including time-
implicit numerical schemes and the narrow band method.
In time-implicit numerical schemes [43], [44], the level set
function at the current time step is updated from its
previous values by solving a system of linear equations,
which means that the level set function at the grid points
are updated all at once. Time-implicit schemes, however,
are not compatible with the topology-preserving mechan-
ism that we describe herein, since they do not permit points
to be controlled individually. We require a time-explicit
step in order to be able to maintain explicit control of
topology at each iteration. The narrow band method [45],
[46] is perfectly compatible with our methods and, in fact,
provides a considerable computational advantage since
only a small set of grid points near the zero level set are
modified during each iteration. Furthermore, our method
can be expressed as a small, but critically important
modification to the standard narrow band method. For this
reason, we now give the explicit steps of the narrow band
implementation of a geometric deformable model.

Algorithm 1: Narrow Band Algorithm

1. Initialize—Set m = 0 and ¢, = 0. Initialize ®(-,0) to be the
signed distance function of the initial contour.

2. Build the Narrow Band—Find the narrow band points.
These are the grid points x; whose distance |®(z;,t,,)] is
less than the specified narrow band width.

3. Update—Set t,, 11 = t,,, + At. For every narrow band point
x;, update its level set function value ®(z;,¢,+1) using
9).

4. Reinitialize—If necessary, reinitialize ®(-,¢,,+1) to be the
signed distance function of its own zero level set.

5. Convergence Test—Check whether the iterations have
converged. If yes, stop; otherwise set m =m + 1. If
reinitialization was performed in Step 4, then go to Step 2
to rebuild the narrow band; otherwise, go to Step 3.

Itis worth making a few comments about the narrow band
method. First, we note that in Step 3, the narrow band points
can be processed in an arbitrary order since each point is
updated using function values from the previous time-step.
Second, reinitialization of the level set function is periodically
required not only to prevent “bunching” as described above,
but also to prevent the zero level set from moving out of the
current narrow band (see [18]). Third, the topology of the
embedded contour is normally free to change in an arbitrary
fashion during the evolution of ®. This means that the
topology of the final contour is ordinarily unpredictable;
images with clutter or noise can very easily produce
unexpected topological results involving multiple objects,
nested objects, or handles (which are found only on surfaces).

3 ToPoOLOGY-PRESERVING LEVEL SET METHOD

In this section, we describe a mechanism to preserve the
topology of one or multiple implicit contours during the
evolution of theembeddinglevel setfunction. We start withan
overview of the basic principles underlying this work,
especially the digital embedding of the implicit contour
topology. We then review the fundamental concepts and
notation from digital topology and introduce the definition
and computation of “simple” points. We also present our
topology-preserving narrow band algorithm. To better
understand the convergence properties of this algorithm, we
then present an interpretation of this algorithm as a
constrained gradient descent algorithm in the special case of
the geodesic deformable model. We then introduce 2D and 3D
connectivity consistent isocontour algorithms that are guar-
anteed to produce topologically correct explicit representa-
tion of the implicit contour embedded in a level set function.

3.1 Overview of Basic Principles

Digital Embedding of Topology. Although geometric
deformable models are formulated on the continuum, in
practice they are always implemented on a digital domain
—i.e., on a lattice of grid points connected by grid cells or
voxels. Without restrictions on their functional form, there are,
in general, an infinite number of contours having the same
sampled level set function. Since these contours can have
different numbers of components with different topologies, it
is clear that it is generally impossible to recover the “true”
topology of an arbitrary implicit contour from samples of its
level set function. Therefore, in order to give meaning to the
idea of “preserving topology” in a geometric deformable
model, we mustadopt certain conventions about the nature of
the implied contour given its sampled level set function. The
convention we describe below addresses the following two
broad ambiguities. First, a continuous implicit contour might
be entirely contained in one voxel or it might intersect a voxel
boundary any number of times. These phenomena basically
describe types of high frequency behavior not captured by the
digital samples. Second, even if the contour is slowly varying,
there might still be ambiguities as to how a cell is actually
partitioned by a contour (see Section 3.4 and the figures
therein). This ambiguity is directly tied to the classical
problems of ambiguous voxels and faces in isocontour
algorithms.

To resolve these topological ambiguities, in this paper,
we adopt a digital interpretation of the implicit contour
topology. First, we assume that the zero level set changes
sufficiently slowly that it can only pass between neighbor-
ing grid points once at most. In adopting this assumption,
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Fig. 1. Topology equivalence of the embedded contour and the digital
object it defines on the discrete grid: four-connectivity for dark points and
eight-connectivity for others. (a) Original contour. (b) The contour
passes over a simple point. (¢) The contour splits at a nonsimple point.

we are thereby ignoring topological details of the zero level
set that cannot be recovered under a given discretization of
the computational domain. As shown in Fig. 1, this
assumption ties the topology of the zero level set with that
of the digital object it encircles. More specifically, we
classify grid points for which ® < 0 as inside the zero level
set, and for which ® > 0 as outside. Then, the digital object
consists of all the inside points. To avoid further ambiguity,
we also adopt the convention that grid points for which
® = 0 are considered to be inside the zero level set.

The second ambiguity is resolved by specifying a pair of
consistent connectivity rules for the digital object (i.e., the
foreground) and its background. For example, in 2D, we
might choose the object to be four-connected, in which case
the background must be eight-connected (see [29] for the
definition of digital connectivities in both 2D and 3D).
Alternatively, we could choose the foreground to be eight-
connected and the background to be four-connected. The
consistent connectivity rules in 3D are (6, 18), (6, 26), (18, 6),
and (26,6), where the first number in each pair is the
foreground connectivity and the second number is the
background connectivity. These rules prevent topological
anomalies that might, for example, allow a closed path in the
background to pass through a connected foreground
component.

From now on, we always treat the topology of the zero
level set to be equivalent to the topology of the boundary of
the digital object it defines. We refer to this as the digital
embedding of the zero level set topology.

Topology Preservation. The digital embedding also
simplifies the topology preservation problem. Since the
digital object is defined by thresholding the level set
function at the zero isovalue, it is clear that the topology
of the implicit contour can change only if the level set
function changes sign at a grid point,* which corresponds to
a point moving from inside the digital object to the
background or vice versa.

From the above discussion, we conclude that it is only
necessary to be concerned about topological changes when
the level set function is going to change sign. But, switching
a grid point from background to foreground (or vice versa)
does not necessarily change the object’s topology. In fact,
from the theory of digital topology (see review in the next
section), we find that the topology of the digital object will
not change if the grid point under consideration is a so-
called simple point [29], [30], [31], [47], as illustrated in
Fig. 1b. On the other hand, if the grid point is not a simple
point, as illustrated in Fig. 1c, then the digital object’s

4. Note that, by our convention, a sign change also happens if a zero
value becomes positive or vice versa.

topology will change. Now, our entire strategy becomes
clear. During the evolution of the level set function, we
monitor the level set function for potential sign changes. If
the sign is scheduled to change at a simple point, then it is
allowed, but sign changes at nonsimple points are not
allowed. This prevents topology changes of the underlying
digital object and of the implicit zero level set as well. We
note that the deforming implicit contour need not “get
stuck” at a nonsimple point, since the point can become
simple after additional evolution of the contour; several
examples of this type of behavior are shown in Section 4.

There are two key observations to make about this
overall approach. First, since it is necessary to explicitly
monitor the sign of the level set function at each grid point,
a time-explicit implementation is required. The standard
narrow band approach is both time-explicit and computa-
tionally fast, so it represents an ideal framework for our
algorithm. Second, we observe that the topology of the
implicit contour is determined by the sign of the level set
function, not its particular value. Therefore, the level set
function is free to change its value in order to refine the
position of the implicit contour at a subpixel resolution. In
particular, despite the use of digital topology principles to
control topology, the accuracy of the deformable model
itself is still at the same subpixel level that is possible with
standard geometric deformable models.

Explicit Contour Topology. We have now presented the
basic notions describing how to relate the topology of the
implicit contour to the discrete level set function and how to
evolve the level set function in order to preserve topology. It
is also important that we be able to reconstruct an explicit
contour of the zero level set—a curve in 2D and a surface in
3D—and to guarantee that this reconstructed contour has
the same topology as the digital object’s boundary.

In a subsequent section, we describe how to modify a
basic marching algorithm in order to produce an explicit
contour having the same topology as the underlying digital
object’s boundary. It is this explicit model that we visualize
(see Section 4), and that we use to characterize the topology
of the evolving geometric deformable model. In particular,
the topology of a given distinct contour can be summarized
using its Euler characteristics x, which given an explicit
model can be computed using

X = Ny — Ng + Np,

where Ny is the number of vertices, N is the number of
edges, and N is the number of faces [48]. Note that N is
always zero for 2D curves.

In principle, it is possible to monitor topological changes
that are taking place during evolution of the level set
function by counting the number of distinct contours and
evaluating their Euler characteristics. The result of this
computation cannot be used to control the topology since it
is a global property of the contour(s), but it can be used to
verify that a topology preserving mechanism is actually
working properly. We used this computation in our
experiments (see Section 4) to verify that both the evolving
contour and the final contour had the correct topology. It is
not necessary, in general, however, to compute the Euler
characteristics in order to run TGDM.

3.2 Digital Topology
A 2D (respectively, 3D) digital (i.e., binary) image V C z?
(respectively, Z%) is defined as a square (respectively, cubic)
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array of lattice points. The topology of a digitalimage depends
on a pair of digital connectivities, one for the foreground and
one for thebackground. We follow the conventional definition
of n-neighborhood and n-connectivity, where n € {4,8} in 2D
andn € {6,18,26} in3D[29]. We denote the n-neighborhood of
apointzby N, (z),and the set comprising the neighborhood of
z with = removed by N (z). The set of all n-connected
components of X C V is denoted by C,,(X).

In order to avoid a connectivity paradox, different
connectivities, n and 7, must be used in a binary image
comprising an object (foreground) X and a background X.
For example, in 2D, if n is chosen to be 4, then 7 must be 8,
and vice versa. In 3D, (6, 18), (18,6), (6,26), and (26,6) are
four pairs of compatible connectivities. The following
definitions are from [31] and [47].

Definition 1 (Geodesic Neighborhood). Let X C V and
x € V. The geodesic neighborhood of x with respect to X of order
k is the set N¥(x,X) defined recursively by: N}!(x,X) =
Ni(x)N X and

N(x, X) = U{N,(y) N N;,(x) N X,y € N*'(x, X)},
where M = 8 in 2D and M = 26 in 3D.

Definition 2 (Topological Numbers). Let X C Vand x € V.
The topological numbers of the point x relative to the set X are:
Ty(x, X) = #C4(N2(x, X)) and Ty(x,X) = #Cs(Ni(x, X))
in 2D; and

Ts(x, X) = #Cs(NZ(x, X)), Te+ (x, X) = #Cs(N3 (x, X)),
Tis(x, X) = #Ci3(Nj(x, X)),

and Tog(x, X) = #Cos(Nag(x, X)) in 3D, where # denotes
the cardinality of a set.

Intuitively, a n-connected neighbor of point x belongs to its
geodesic neighborhood N*(x, X) if there is a path in X of
length no greater than k between the neighbor and the
given point. The topological numbers are the numbers of
connected components within certain geodesic neighbor-
hoods. We note that, in the above definition of topological
numbers in the 3D case, there are two notations for six-
connectivity. This follows the convention introduced in [31],
wherein the notation “6+” implies six-connectivity whose
dual connectivity is 18, while the notation “6” implies six-
connectivity whose dual connectivity is 26. This distinction
is needed in order to correctly compute topological
numbers under six-connectivity, and does not imply a
different definition of connectivity.

Topological numbers are used to classify the topology
type of a grid point, especially for the characterization of
simple points. A point is simple if its addition to or removal
from a digital object does not change the object topology. It is
proven in [31] that a point z is simple if and only if T,,(x, X) =
1 and Ty(x,X) =1, where (n,n) is a pair of compatible
connectivities. In other words, characterization of a simple
point requires only the computation of two topological
numbers. These numbers can be computed using connected
component labeling inside the 3 x 3(x3) neighborhood of the
candidate point.

3.3 Topology-Preserving Narrow Band Algorithm

In this section, we present the implementation of TLSM. The
implementation consists of a subtle but important mod-
ification to the standard narrow band algorithm, which

keeps the topology of the contour defined by the zero level
set unchanged during the entire evolution. Two important
questions that remain are considered in subsequent
sections: 1) how does one create a topologically correct
explicit representation of the final (or evolving) contour and
2) what are the convergence properties of the geometric

deformable model implemented using TLSM?
In the following algorithm, it is convenient to store a

binary-valued indicator function B(-), defined on the digital
grid. For a grid point x;, B(x;) equals 1 if ®(x;,t,,) <0, and
equals 0 otherwise, where ¢, is the last time the point x; is
visited. The array B(-) is initialized by ®(-,0), and is
updated whenever the level set function ® undergoes a sign
change at a grid point x;. The sign change is computed
using the following sign function definition, which reflects
our convention that a zero valued grid point belongs to the
interior of the zero level set:

. 1, ifx<0;
sgn(@) =1 1 >0

The algorithm is summarized below. Here, x; is used to
denote a general grid point and y; denotes a narrow band
point.

(10)

Algorithm 2 (Topology-Preserving Level Set Method)

1. Initialize—Set m = 0 and ¢,,, = 0. Initialize ®(+,0) to be the
signed distance function of the initial contour. Initialize
the binary indicator function B.

2. Build the Narrow Band—Find all grid points
vi,t € {1,...,Q} such that |®(y,,tm)| < Wub, where Wy,
is the user-specified narrow band width, and @) denotes
the total number of narrow band points.

3. Update—For i =1, --, (), compute the level set function
at the narrow band point y; at time t,,11 = t,, + At by:

(a) Using (9), compute
q)tenlp(yl‘) = q)(Yi7t7n) + AtA CD(Yi7tnz)~

(b) If sign(Premp(y;)) = sign(®(y;, tm)), then set
D(y;, tm+1) = Premp(y;), keep B(y;) unchanged, and
go to Step 3(f). Otherwise continue to Step 3(c).

(c) Compute the topological numbers T, (y;, X) and
Tu(y;, X), where (n,n) is the chosen digital
connectivity pair, X = {x;|B(x;) = 1}, and

(d) If the point is simple—i.e.,

T.(y;, X) = Tu(y;, X) = 1—then set
Dy tmi1) = Premp(yi), Bly:) = (B(y;) + 1)mod 2,
and go to Step 3(f). Otherwise continue to Step 3(e).

(e) Point y; is not simple. To preserve the topology,
we do not allow the sign change and set
D(y;, tms1) = € - sign(®(y;, tm)), where € is a small
positive number. Note that B(y;) remains
unchanged.

(f) Increase i. If i > @, go to Step 4.

4. Reinitialize—TIf the zero level set of ®(-,t,,,1) is near the
boundary of the current narrow band, reinitialize
(-, t;41) to be the signed distance function of its zero
level set.

5. Convergence Test—Test whether the zero level set has
stopped moving. If yes, stop; otherwise, set m = m + 1. If
reinitialization was performed in Step 4, then go back to
Step 2 to rebuild the narrow band; otherwise, go back to
Step 3.
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Compared with Algorithm 1, the TLSM algorithm differs
only in the Update step, which performs a simple point
criterion check whenever the level set function is going to
changesignata grid point. The sign change is prohibited if the
point is not a simple point, and the evolution of the level set
function at that point is limited. One might ask how this
limiting operation would affect the convergence property of
the new model. We will show later that the above algorithm is
a direct analog of the gradient-descent-with-bending algo-
rithm in the literature of constrained optimization [49] and,
thus, is guaranteed to converge to a constrained optimum.

We would like to point out that there can be some
arbitrariness in the specific result of the algorithm depend-
ing on the order in which the points are visited in the
narrow band. This situation is also present in skeletoniza-
tion algorithms where the result depends on the order of
simple point removal [50]. The problem is not as significant
here, however, as in skeletonization, since the overall
motion of the deforming contour is controlled by the
internal and external forces. The simple point criterion only
takes effect at locations where topological changes are
otherwise going to occur, and these locations ordinarily
comprise a very small portion of the overall contour. Still,
we have compared the results of two different orderings for
visiting the narrow band points. In one case, we ordered the
points by the magnitude of their external force, and in the
other case, by a natural ordering that “rasters” through the
coordinates of the points. The difference was trivial and did
not favor either approach. In the experiments reported
herein, we visit the narrow band points by the natural
“raster” ordering of their coordinates.

3.4 Connectivity Consistent Isocontour Algorithms

The design of a level set method is not complete without
studying the isocontour algorithm that produces an explicit
representation of the final contour from the embedding
level set function. The choice of a suitable isocontour
algorithm is especially critical for the new topology-
preserving models where the algorithm must faithfully
recover the topology of the implicit contour from the
discrete samples of the level set function. In the following
discussion, we will focus on the 3D case where we modify
the standard marching cubes (MC) algorithm and arrive at a
new connectivity consistent marching cubes (CCMC) algorithm
that is consistent with our topology preservation principle.
The 2D case is a simplified version and is referred to as the
connectivity consistent marching squares (CCMS) algorithm.
The MC algorithm is a standard isosurface algorithm that
produces a triangulated surface whose vertices lie on the
edges of the cubic lattice [27]. As shown in Fig. 2, the way in
which an isosurface intersects a cube is not always unique,
which results in the so-called ambiguous face and ambiguous
cube cases. The major difference between different MC
algorithms lies in how they choose between the two possible
tilings for each ambiguous case. A well-accepted criterion is
that the surface tiling should correctly reflect the topology of
the true underlying implicit surface. Under the assumption
that the embedding function is densely sampled and
approximately linear on each cube, face saddle points and body
saddle points can be used to produce isosurfaces that are
topologically equivalent to the embedded implicit surfaces
[51]. We note that the saddle points are the critical points of

Fig. 2. (a) An ambiguous face; (b) and (c) are two possible tilings. (d) An
ambiguous cube; (e) and (f) are two possible tilings.

the embedding function—that is, the points where the first
order derivatives of the function vanish.

From the discussion in Section 3.1, it is clear that what
we need in this paper is an isosurface algorithm that can
correctly recover the digital topology embedded in the
level set function, which depends on the predefined
digital connectivity rule. For this purpose, we propose the
use of a connectivity consistent MC (CCMC) algorithm. In
this algorithm, the coordinates of surface intersections are
still computed through linear interpolation (which gives
subpixel resolution), but which surface tiling to choose
depends on the given digital connectivity. In particular,
we choose the tilings in Figs. 2c and 2e for the
corresponding ambiguous cases respectively if the black
points are assumed to be 18-connected while the white
points are six-connected. If the black points are assumed
to be 26-connected, then Figs. 2c and 2f should be used
instead. As can be expected, the tilings for unambiguous
cases are the same as in the standard MC algorithm.

The corresponding algorithm in 2D can be called the
connectivity consistent marching squares (CCMS) algorithm.
The only ambiguous case that needs special care is an
ambiguous square (e.g., the front face of the cube in Fig. 2a).
The correct tiling should separate the white points while
connect the black ones if the black points are eight-
connected, and vice versa.

After the level set iterations have converged, we extract
the final contour using the CCMS (2D) or CCMC (3D)
algorithm. As stated above, the contour location is computed
by linear interpolation of the level set function, but the tiling
for the ambiguous cases is selected based on the chosen
digital connectivity pair. If the level set function value is
exactly zero at a grid point, it is explicitly adjusted before
interpolation to prevent a singularity in the resulting
contour.” Since we consider zero-valued points to be inside
points, i.e., as negative distance points, we set a zero function
value to some small negative value, say —e.

5. This is one of several major artifacts that exist in most existing
isocontour software.
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3.5 Convergence Analysis

To analyze the convergence property of TLSM-based
geometric deformable models (i.e., a TGDM), we focus on
the case where the model is derived from an energy
minimization framework, for example, the geodesic de-
formable model. In the original formulation of the geodesic
deformable model, the energy to be minimized is defined as
a functional on the family of explicitly parameterized
contours. The level set evolution equation is then derived
by applying the level set method. By adopting the
techniques presented in [52], [40], we can derive the
evolution equation of the geodesic deformable model
directly from an energy functional defined on the level set
function itself. We can then show that the corresponding
TGDM algorithm in this case is a constrained gradient
descent algorithm, and is guaranteed to converge to a
constrained optimal point of the energy functional. Assume
that the level set function ®(x),x € Q where Q C R’
(respectively, R?) is Lipschitz-continuous. Then, it can be
proved by the co-area formula [53] that the length
(respectively, area) of the zero level set of ® is given by:

L@®) = [ 8@()IVe()ix.

where §é(-) is the one-dimensional Dirac delta function.
Similarly, the weighted length or area L, under an image
derived metric ¢g(x) is given by

Ly(®) = /ﬂ 5(B()) VB (x)|gdx.

To make the equations shorter, in the following derivation
we omit the function argument x when there is no potential
for confusion.

The Frechet derivative of L, with respect to ®(x) in the
direction h(x), which is denoted by dL,(®,h), can be
computed as

V& -Vh

—d
Ve[

dL,(®.h) = / b (@) VB|gdx + / 5(®)g

Q Q
where §'(-) denotes the first derivative of the delta function.
Applying Green’s formula [54] to the second term yields

Vo -7

——ds
T vel @

dL,(®, h) :/(;hé/(é)w@gdx—kéﬂ hé (D)

—/th- <6(¢>)g%>dx,

where V - is the divergence operator, 7 is the normal vector
to the boundary, and ds is a differential element on the
boundary.

Since V@ - 7 = 0®/0n and

v (st ) = s @ivel s (o).

under the natural boundary condition ®/97 = 0 we get

dL,(®,h) = — /Q §(D)V - @%) hdx

Vo
e

=< —6(P)V - (gw

where < -, > denotes inner product in the L? sense. From
the Schwartz inequality [54], it is clear that the direction that
reduces the energy functional L, most rapidly, that is, the
steepest descent direction A, is given by

et (o) -5 (55}

where the second equality follows from a vector calculus
identity. Thus, starting from an initial estimate ®(x,0), the
gradient descent algorithm with an infinitesimal time step
o0t gives the level set evolution equation as

0P(x,t)
ot

hs(x) =6(P(x, t)){

Vy(x) - VO(x,t) e Vo(x,t)
oo+ (o t>|)}’
()

such that the family of level set functions ®(-,t) will
converge to the (local) minimum of the energy functional L,
as t goes to infinity.

We can see that the only difference between (6) and (11)
is that the scale factor 6(®(x,¢)) in (11) is replaced by
|[V®(x,t)| in (6), which corresponds to extending the
evolution equation to all the level sets of ® [52]. Since the
energy functional L, depends only on the zero level set of
®, we note that (6) also gives a steepest descent minimiza-
tion of L.

When topology preservation is required, the gradient
descent process must be constrained to the admissible set
(or feasible domain) of level set functions that satisfy the
topology constraint. In our case, this feasible domain
comprises level set functions whose zero level sets share
the prescribed model topology. From an optimization
viewpoint, we can think of a single step of the gradient
descent algorithm as a modification of the entire level set
function in order to produce a new level set function. If that
new function were outside of the feasible domain (i.e., its
zero level set did not have the correct topology), then one
possible modification to the algorithm would be to reduce
the step size until the modified function remained in the
feasible domain. Unfortunately, this simple strategy has
been shown in the literature on constrained optimization to
suffer from the “jamming” effect and nonconvergence [49],
[55]. To avoid the jamming effect (and thereby to guarantee
convergence), McCormick [49] proposed the constrained
gradient descent with bending algorithm. The key idea is that
instead of reducing the whole step size, which is equivalent
to multiplying the descent vector by a small constant, only
that component of the descent vector which leads outside
the feasible domain should be reduced (or truncated) while
the other components should keep the usual step size. This
strategy has been shown to avoid the jamming effect and to
always converge to a constrained stationary point, i.e., a
Kuhn-Tucker point [55].

Our TGDM algorithm is an adaptation of McCormick’s
approach. To see this, we note that an individual
component of the gradient descent vector in the geodesic
deformable model is exactly the force function evaluated at
an individual grid point. Those components that lead to a
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Fig. 3. A 2D phantom illustrating the self-intersection problem of PDM. (a)-(f) Propagation of the PDM contour at several time steps. (g)-(l) Evolution

of the SGDM contour. (m)-(r) Evolution of the TGDM model.

violation of the topology constraint and, therefore, would
move the whole level set function out of the feasible
domain, can be determined by the simple point criterion.
Step 3(e) in the topology-preserving narrow band algorithm
thus corresponds to the truncating of the component of the
gradient descending vector that would lead to movement
out of the feasible domain; the other components remain
unchanged. This is exactly the bending of the gradient
descent direction as described in [49].

As pointed out previously, there can be some arbitrari-
ness in the specific result of the algorithm depending on the
order in which the grid points are visited in the narrow
band. This arbitrariness reflects the fact that the feasible
domain of the topology-constrained minimization problem
is nonconvex. As a result, at a concave corner of the feasible
domain, there can be more than one possible direction to
bend the original gradient descent vector. Which direction
the bending actually occurs then depends on the order in
which the grid points are visited.

We note that as the unconstrained model can only be
guaranteed to converge to a local optimum depending on
the initialization, the TGDM may also only converge to a
constrained local optimum. We also note that in a general
geometric deformable model where the evolution equation
does not come from an energy minimization formulation,
the above optimality and convergence analysis does not
apply. But, from our experience and as demonstrated in the
presented experiment results, the TGDM algorithm shares
the same convergence property as its nonconstrained
counterpart.

4 RESULTS

In this section, we present several experiments which apply
the new topology-preserving geometric deformable models
in 2D and 3D. Since the new models can be obtained from
existing geometric deformable models by applying the

TLSM narrow band implementation, we will refer to the
original models without topology constraint (implemented
by the standard narrow band algorithm) as standard
geometric deformable models (SGDM’s) and the corresponding
(i.e., with the same set of force terms) topology-preserving
models as topology-preserving geometric deformable models
(TGDM'’s). When a parametric deformable model with a
similar set of force terms is also compared, it will be
referred to as the parametric deformable model (PDM). Note
that for the TGDM, the CCMS or CCMC algorithm must be
used in order to correctly extract the final curves or surfaces
from the level set function. The SGDM, on the other hand,
requires a standard isocontour algorithm, preferably one
that uses face saddle points in 2D and both face and body
saddle points in 3D [51]. In the following experiments, we
choose (n,7n) = (4,8) as the pair of 2D digital connectivities
and (n,7n) = (18,6) for 3D.

2D Experiments. Fig. 3 shows a 2D example that
compares the behavior of PDM, SGDM, and TGDM. All
three models apply a curvature force as the smoothing
internal force and a region force that expands inside the
white circular cell and contracts outside. The top row of
Fig. 3 shows the propagation of the PDM contour at several
time steps starting from the initialization shown in Fig. 3a.
The curve intersects with itself and then goes unstable
because the normal direction gets flipped over after the
curve self-intersects and the region force begins to push the
curve in the wrong direction. The SGDM curve (the middle
row) changes topology twice, first splitting in Fig. 3i and
then losing one curve in Fig. 3k. On the other hand, the
TGDM curve maintains the same topology throughout its
evolution and does not suffer from the self-intersection
problem. It is apparent that in this case the SGDM and the
TGDM produced the same final contour.

The second 2D experiment, shown in Fig. 4, used the
same phantom but a different initialization. A variation of
the geodesic deformable contour model of (6) was used as
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Fig. 4. lllustration of TGDM reaching the same global optimum as SGDM. (a)-(f) SGDM result and (g)-

W
W

(a) (b) (c) (d) (e) )
() (h) U] )] (k) U]

(I) TGDM result.

(d)

(h)

Fig. 5. Segmentation of a hand phantom using both SGDM (top row) and TGDM (bottom row).

the SGDM model, where an additional expansion force
cg(x)|V®(x,t)| (with ¢ constant) was added to increase the
speed of convergence [8]. The final contour thus corre-
sponds to the solution of the geodesic energy minimization
problem. The corresponding TGDM model was derived
from the SGDM by imposing the topology-preserving
constraint. Comparing the two rows of Fig. 4, it can be
seen that the two models achieve the same global optimum
through different optimization paths: the SGDM curve
changed topology twice, whereas the TGDM curve main-
tains the same topology throughout the entire evolution. It
is important to notice that the TGDM curve is able to evolve
out of an unfavorable configuration formed during the early
stages, and that the topology constraint takes effect early,
but is released automatically later in the evolution. This
demonstrates that the TGDM curve was not “jammed” by
the topology constraint into the configuration of Fig. 4h or
Fig. 4i; instead, it successfully converges to the global
optimum.

Fig. 5 shows another 2D example in which the SGDM
and the TGDM geodesic active contour models used in
previous experiment were applied again to find the

boundary of a hand-shaped object. The original image
(220 x 190 pixels) and the initial curve are shown in both
Fig. 5a and Fig. 5e. Figs. 5b and 5c show the SGDM contour
at an intermediate and the final stage, respectively. Because
the two middle fingers touch, the initial curve changes
topology and splits into two separate curves as the final
result (a larger outer curve and a disjoint inner curve as
shown in Fig. 5c and zoomed up in Fig. 5d). We note that
the two middle fingers in the hand become one “finger”
with a hole in it in the final segmentation, which is
obviously an undesirable result. The corresponding defor-
mations of the TGDM contour are illustrated in Figs. 5f and
5g. TGDM keeps the boundary of each finger separated,
and the final contour correctly reflects the shape of the
hand, as can be seen clearly in the zoomed view of Fig. 5h.

As a final 2D example, we apply an SGDM model and
the corresponding TGDM model to find the boundary of
two adjacent bone cells in a CT image. The deformable
model we adopt here is the binary-flow model proposed in
[14]. The model applies a dynamic region force which tries
to maximally separate the mean of the region encircled by
the evolving contours from that of its complement. The
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Fig. 6. Segmentation of a carpal bones CT image using both SGDM and TGDM. (a) and (f) The initialization. (b)-(e) Evolution of the SGDM contour.
(9)-(j) Evolution of the TGDM contour. (Original image courtesy of B. Kimia.)

curvature force is also used as a regularization force to
counteract with the effect of image noise. Figs. 6a and 6f
show the image overlaid with the initial curves. Without the
topology constraint, the two separate curves merge at the
weak gap between the two bone cells and one single
contour that encloses both bones is produced as the final
result. Again, the TGDM curves keep separated throughout
the evolution and correctly find the boundary of each cell.

3D Experiments. In 3D, a promising area of application of
the new topology-preserving deformable model is the human
brain mapping. Some preliminary results have been reported
in a conference paper [35]. More detailed work will appear in
aseparate paper. In the following, we present the results from
two 3D experiments for illustration purposes.

As the first 3D example, we applied a 3D version of the
geometric deformable model of (8) to find the boundary
surface of the 3D object depicted in Fig. 7a. The object is
actually a piece of a white matter segmented from a magnetic
resonance (MR) brain image. Due to data noise, the white
matter piece has a handle, which is the wrong topology from
an anatomical standpoint. In fact, we desire a topology
equivalent to that of a sphere. We applied both SGDM and
TGDM starting from two different initializations: a large
sphere that encloses the whole object and a small ellipsoid
that intersects with the object. A 2D slice showing the object
and the two initial surfaces is shown in Fig. 7b.

Figs. 7c and 7d are the final surfaces obtained by SGDM.
The two results are the same since standard geometric
deformable models are insensitive to initialization. The final

surface has a handle, however, which is the incorrect
topology. With the sphere as the initialization, TGDM gives
the final surface shown in Fig. 7e, and with the ellipsoid, it
gives the result shown in Fig. 7f. Both surfaces have the

(d) (e) )

Fig. 7. (@) A 3D phantom, (b) large sphere and small ellipsoid
initializations, (c) SGDM result from sphere, (d) SGDM result from
ellipsoid, (¢) TGDM result from sphere, and (f) TGDM result from
ellipsoid.
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(a) (b) (c)

Fig. 8. (a) Result of cortical surface reconstruction. (b) Self-intersection
from PDM and (c) no intersection with TGDM.

correct topology, but the topology is preserved in a different
way. The surface obtained from the sphere initialization
yields a thin membrane across the tunnel—a handle in the
background image—through the original object, while the
ellipsoid initialization makes a cut in the handle. The
dependency of TGDM on initialization is discussed in detail
in the next section.

Our second 3D experiment applies SGDM, TGDM, and a
parametric deformable surface model (PDM) to extract the
central cortical surface from an initial fuzzy segmentation of
a brain MR image volume. We used exactly the same
initialization (a topologically correct surface near the gray-
matter/white-matter interface), the same external forces,
and similar internal forces for the geometric deformable
models and the PDM. The results are presented in Fig. 8.
Fig. 8a shows the final surface extracted from the para-
metric model. The SGDM and TGDM surfaces look
identical at this level of detail, but on close examination,
there are important differences. The parametric model
result, for example, has self-intersections as shown in
Fig. 8b, while the TGDM surface does not, as shown in
Fig. 8c. Also, the SGDM result has 40 handles, whereas both
the parametric model result and the TGDM result have no
handles and, hence, are topologically equivalent to spheres.
Thus, TGDM produces both the correct topology and a
valid manifold; hence, it is the only model that gives a legal
cortical surface reconstruction.

5 DiISCUSSION

Several issues are discussed in this section, including the
dependency of the final segmentation results on different
initializations, the computational complexity of imposing the
topology constraint, and some related investigations in the
literature.

The example shown in Fig. 7 points out a weakness in
our overall approach that should be addressed in future
work. First, the result can clearly depend on the initializa-
tion in a dramatic way. The two results, one that fills the
tunnel and the other that breaks the handle, are dramati-
cally different ways to address the issue of topology
preservation. At present, we have no formulation of an
optimality criterion that would choose one of these
solutions over the other. This situation is not atypical in
deformable models, where the particular initialization very
often determines the exact details of the final solution. As a
step towards reducing the dependency on particular
initialization, one can drop the topology constraint initially,

Fig. 9. (a) The final result without topology constraint (SGDM),
(b) initialization by topology correction, and (c) final result with TGDM.

that is, apply the standard geometric model to achieve an
initial unconstrained optimal solution. After the uncon-
strained optimum is obtained, one can then apply a
topology correction method to “project” the temporary
solution back to the feasible domain, and start the
constrained deformation from this “better” initialization.
As one example, we applied the topology correction
method of [25] on the SGDM result of Fig. 7c (which is
also shown in Fig. 9a for clarity) to get the initialization
shown in Fig. 9b. The TGDM model then produced the final
result as shown in Fig. 9c. The new result is similar to that of
Fig. 7f, but it is now the unique solution, independent of
initialization. We note that such a topology correction
(projection) method is not generally available for all
topologies (the particular method can only be used to
achieve a spherical topology), and when such an approach
is taken, the initialization is determined by the optimality
criterion applied in the topology correction method.

We note that the topological numbers are computed
locally, which makes the simple point checking process
straightforward and efficient. As a result, the topology
constraint does not add much computational burden as
compared to the standard narrow band implementation.
For the phantom experiments, the time difference between
standard and new geometric models are barely noticeable;
and for the brain cortical surface reconstruction, the extra
time taken by the topology constraint enforcement is less
than 7 percent of the total processing time.

A related work is the shock detection method of [57], [58]. It
is known from the Morse theory [59] that the implicit contour
(zero level set of a level set function) undergoes topology
changes if a critical point (extremal or saddle point) of the
level set function, known as a shock point in [57], [58], passes
through the zero level set, or in other words, it changes sign
(see also [60]). Although the shock detection algorithm is
promising in analyzing static shapes, it is time-consuming
and unreliable in detecting and tracing sign changes of all
shocks of a level set function evolving under a general
velocity field, especially in 3D. One reason is that the level set
function is sampled on discrete grids while its critical points
are usually located between grid lines. In the topology-
preserving mechanism proposed in this paper, the topology
change is directly correlated with sign-change of the level set
function itself on the grid points, which provides a simple
way to detect and prevent topology changes. However, the
level set function itself is still evolving continuously, thus
subpixel accuracy is maintained.

Another related work is the skeletally-coupled deform-
able model proposed by Sebastian et al. [56] for 2D carpal



HAN ET AL.: A TOPOLOGY PRESERVING LEVEL SET METHOD FOR GEOMETRIC DEFORMABLE MODELS 767

bone image segmentation. In this work, each bone cell is
represented by a distinctly labeled region, and no two
regions are allowed to merge during a seeded region
growing. This approach only deals with one type of
topological change—the merging of two disjoint regions.
It cannot be easily generalized to deal with the splitting of a
single region like the example shown in Fig. 5, nor can it be
generalized to deal with one single region developing a
handle in 3D. Overall, we believe that the most efficient and
straightforward way to guarantee topology preservation in
a deformable model algorithm is by applying the simple
point criterion, as we have proposed herein.

6 CONCLUSION

In summary, we have developed a novel topology-preser-
ving level set method from which we derived a new class of
geometric deformable models where the topology of the
implicit curves or surfaces is preserved throughout the
deformation. The topology is preserved by checking a
simple point criterion during the level set evolution, which
requires a relatively straightforward modification to the
standard narrow band implementation of the traditional
level set method. We have also shown that, for energy
minimizing geometric deformable models, their topology-
preserving counterpart is a special constrained gradient
descent algorithm that does not suffer from the jamming
effect and is guaranteed to converge to a constrained
optimal point of the energy functional. Several 2D and
3D experiments were conducted to show the success of the
new models and illustrate their potential applications.
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