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Abstract

Active contours, or snakes, are used extensively in computer vision and image processing applications, particularly to
locate object boundaries. A new type of external force for active contours, called gradient vector flow (GVF) was
introduced recently to address problems associated with initialization and poor convergence to boundary concavities.
GVF is computed as a diffusion of the gradient vectors of a gray-level or binary edge map derived from the image. In this
paper, we generalize the GVF formulation to include two spatially varying weighting functions. This improves active
contour convergence to long, thin boundary indentations, while maintaining other desirable properties of GVF, such as
an extended capture range. The original GVF is a special case of this new generalized GVF (GGVF) model. An error
analysis for active contour results on simulated test images is also presented. © 1998 Elsevier Science B.V. All rights
reserved.

Zusammenfassung

Aktive Umrisse, oder Schlangen, werden vielfach in Computervision- und Bildverarbeitungs-Anwendungen benutzt,
um insbesondere Objektgrenzen zu lokalisieren. Ein neuer Typ duBerer Krifte fiir aktive Umrisse, Gradient Vector Flow
(GVF) genannt, wurde kiirzlich eingefiihrt, um Probleme anzusprechen, die mit Initialisierung und schlechter Konvergenz
zu Grenzkonkavitaten zusammenhéngen. GVF wird als eine Diffusion des Gradientenvektors einer Graustufen- oder
‘Binary Edge’-Karte berechnet, die aus dem Bild gewonnen werden. In diesem Artikel verallgemeinern wir die GVF
Formulierung, so da zwei rdumlich variierende Gewichtsfunktionen eingeschlossen werden. Dies verbessert die
Konvergenz aktiver Umrisse zu langen, diinnen Grenzmarkierungen, wéhrend andere wiinschenswerte Eigenschaften
des GVF, wie erweiterter Einfangbereich, erhalten bleiben. Das urspriingliche GVF ist ein Spezialfall dieses neuen
verallgemeinerten GVF (GGVF) Modells. Eins Fehleranalyse von Ergebnissen aktiver Umrisse mit simulierten Testbildern
wird ebenfalls prisentiert. © 1998 Elsevier Science B.V. All rights reserved.

Résumé

Les contours actifs, ou serpents (snakes), sont utilisés intensivement en vision par ordinateur et pour les applications de
traitement d’images, particulierement pour localiser les contours d’objects. Un nouveau type de force externe pour les
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contours actifs, appele flux de vecteurs gradients (FVG) a été introduit récemment pour traiter les problémes associés
a I'initialisation et la faible convergence vers des concavités dans les contours. Le FVG est calculé comme une diffusion
des vecteurs gradients d’une carte des contours d’une image en niveaux de gris ou binaire. Dans cet article, nous
genéralisons la formulation du FVG pour y inclure deux fonctions de poids a variation spatiale. Ceci améliore la
convergence des contours actifs vers les indentations de contours fines et longues, tout en maintenant les autres
propriétés intéressantes des FVG comme la plage de capture étendue. Les FVG originaux sont un cas particulier des
modeles de FVG généralises. Une analyse de I'erreur des résultats de contours actifs sur des images de test synthétiques
est aussi présentée. © 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

Active contours, or snakes, are curves defined
within an image domain, that can move under
the influence of internal forces within the curve
itself and external forces derived from the image
data [9]. The internal and external forces are de-
fined so that the snake will conform to an object
boundary or other desired features within an
image. Snakes are widely used in many applications,
including edge detection [9], shape modeling
[7,12,13], segmentation [2,6,10] and motion track-
ing [10,14].

There are two key difficulties in the design and
implementation of active contour models. First,
the initial contour must, in general, be close to the
true boundary or else it will likely converge to the
wrong result. Second, active contours have difficulty
progressing into boundary concavities [1,5]. In
[15,16], Xu and Prince developed a new external
force, called gradient vector flow (GVF), which
largely solves both problems. GVF is computed as
a diffusion of the gradient vectors of a gray-level
or binary edge map derived from the image. The
resultant field has a large capture range, which
means that the active contour can be initialized
far away from the desired boundary. The GVF field
also tends to force active contours into boundary
concavities, where traditional snakes have poor
convergence. It still has difficulties, however,
forcing a snake into long, thin boundary indenta-
tions.

In this paper, we generalize the GVF formulation
to include two spatially varying weighting functions.
These weighting functions define a tradeoff between

smoothness of the resulting GVF field and its
conformity to the gradient of the underlying edge
map. The external force fields derived from this new
generalized GVF (GGVF) improve active contour
convergence into long, thin boundary indentations,
while maintaining other desirable properties of
GVF, such as the extended capture range. The
original GVF is a special case of GGVF. An error
analysis of active contour results on simulated test
images is also presented.

2. Background
2.1. Traditional snakes

A traditional snake is a curve x(s) = [x(s), y(s)],
se[0, 1], that moves through the spatial domain of
an image to minimize the energy functional

E= L% (@' ($)* + BI"(5)* + Eexdx(s)) ds, (1)

where o and f§ are weighting parameters that control
the snake’s tension and rigidity, respectively, and
X/(s) and x"(s) denote the first and second derivatives
of x(s) with respect to s. The external energy function
Ex is derived from the image so that it takes on its
smaller values at the features of interest, such as
boundaries. Examples of typical external energy
functions are =+ G(x, y)*I(x,y) for lines and
— [V(Go(x, y)=I(x, y))|* for step edges [3,9], where
I(x, y)is a gray-level image, G,(x, y) is a two-dimen-
sional Gaussian function with standard deviation
g, and V is the gradient operator.
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A snake that minimizes E must satisfy the Euler
equation

o x"(s) - ﬁ X(S) - VEexl =0. (2)

To find a solution to Eq. (2), the snake is made
dynamic by treating x as function of time ¢ as well
as s — i.e., x(s, t). Then, the partial derivative of
x with respect to t is then set equal to the left-hand
side of Eq. (2) as follows:

Xxs, ) = o0 x"(s, t) — fx"(s,t) — VEex. (3)

When the solution x(s, t) stabilizes, the term x(s, t)
vanishes and we achieve a solution of Eq. (2).

2.2. GVF snakes

In [15,16], we used Eq. (3) as a starting point to
define a new snake, called the GVF snake. We
proposed to replace the external force term — VEex
in Eq. (3) with a GVF field #(x, y) defined as the
equilibrium solution of the following system of
partial differential equations:

v = uV? — (0 — V)IVf %, )

where v, denotes the partial derivative of v(x, y, t)
with respect to t, and V2 = 0%/0x? + 0%/0y?* is the
Laplacian operator (applied to each spatial com-
ponent of v separately). Here f is an edge map
derived from the image I(x, y), having the property
that it is larger near image edges. This edge map
can be either gray-level or binary valued. It can
be computed using + Gu(x, y)*I(x,y) or
[V(G4(x, y)*I(x, ¥))|?, or any conventional image edge
detector (cf. [8]).

3. Generalized GVF

GVF has many desirable properties as an external
force for snakes [15,16]. It still has difficulties,
however, forcing a snake into long, thin boundary
indentations. We hypothesized that this difficulty
could be caused by excessive smoothing of the field
near the boundaries, governed by the coefficient
win Eq. (4). We reasoned that introducing a spatially

varying weighting function, instead of the constant
i, and decreasing the smoothing effect near strong
gradients, could solve this problem. In the following
formulation, which we have termed generalized
GVF (GGVF), we replace both g and |Vf|* in Eq. (4)
by more general weighting functions. An alternative
generalization, which follows from a variational
formulation, is given in Appendix A.

We define GGVF as the equilibrium solution of
the following vector partial differential equation:

v = g(IVf )V — h(Vf (v — Vf). )

The first term on the right is referred to as the
smoothing term since this term alone will produce
a smoothly varying vector field. The second term is
referred as the data term since it encourages the
vector field v to be close to Vf computed from the
data. The weighting functions g(-) and h(-) apply to
the smoothing and data terms, respectively. Since
these weighting functions are dependent on the
gradient of the edge map which is spatially varying,
the weights themselves are spatially varying, in
general. Since we want the vector field v to be
slowly varying (or smooth) at locations far from the
edges, but to conform to Vf near the edges, g(-) and
h(-) should be monotonically non-increasing and
non-decreasing functions of |Vf'|, respectively.

The above equation reduces to that of GVF when

g(Vr D =, (6)
h(Vf ) = [Vf 2. ™)

Since g( - ) is constant here, smoothing occurs every-
where; however, h( - ) grows larger near strong edges,
and should dominate at the boundaries. Thus, GVF
should provide good edge localization. The effect of
smoothing becomes apparent, however, when there
are two edges in close proximity, such as when
there is a long, thin indentation along the boundary.
In this situation, GVF tends to smooth between
opposite edges, losing the forces necessary to drive
an active contour into this region.

To address this problem, weighting functions can
be selected such that g(-) gets smaller as h(-)
becomes larger. Then, in the proximity of large
gradients, there will be very little smoothing, and
the effective vector field will be nearly equal to the
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gradient of the edge map. There are many ways to
specify such pairs of weighting functions. In this
paper, we use the following weighting functions for
GGVF:

g(IVf]) = e~ VI, t)
h(Vf1) = 1 — g(IVfD. ©

The GGVF field computed using this pair of weight-
ing functions will conform to the edge map gradient
at strong edges, but will vary smoothly away from
the boundaries. The specification of K determines
to some extent the degree of tradeoff between field
smoothness and gradient conformity.

As in GVF [16], the partial differential equation
(5) specifying GGVF, can be implemented using an
explicit finite difference scheme, which is stable if
the time step At and the spatial sample intervals Ax
and Ay satisfy

< AxAy

A[ A >
4G max

where gmax 1S the maximum value of g(-) over the
range of gradients encountered in the edge map
image. While an implicit scheme for the numerical
implementations of Eq. (5) would be uncondi-
tionally stable and therefore not need this condition,
the explicit scheme is faster. Still faster methods —
for example, the multigrid method — are possible.

4. Experimental results

In the following experiments, all edge maps used
in GVF computations were normalized to the range
[0, 1] in order to remove the dependency on abso-
lute image intensity value. The snakes were dynam-
ically reparameterized to maintain contour point
separation to within 0.5-1.5 pixels (cf. [11]). The
GVF, GGVF and snake parameters are given for
each case.

A comparison between the performance of the
GVF snake and the GGVF snake is shown in
Fig. 1. Using an edge map obtained from the orig-
inal image shown in Fig. 1(a), both the GVF field
(v = 0.2) and the GGVF field (K = 0.05) were com-
puted, as shown zoomed in Fig. 1(b) and 1(c),

respectively. We note that in this experiment both
the GVF field and the GGVF field were normalized
with respect to their magnitudes and used as ex-
ternal forces. Next, a snake (¢ = 0.25, f = 0) was
initialized at the position shown in Fig. 1(d) and
allowed to converge within each of the external
force fields. The GVF result, shown in Fig. 1(e),
stops well short of convergence to the long, thin,
boundary indentation. On the other hand, the
GGVF result, shown in Fig. 1(f), is able to converge
completely to this same region. It should be noted
that both GVF and GGVF have wide capture
ranges (which is evident because the initial snake is
fairly far away from the object), and they both
preserve subjective contours (meaning that they
cross the short boundary gaps).

It turns out that a good result similar to that of
GGVF in Fig. 1(f) can be achieved using GVF with
u = 0.01. Because u is small in homogeneous regions
as well as near the edges, the convergence of GVF is
very slow — it takes an order of magnitude longer
than GGVF or GVF with u=0.2. If the GVF
iterations are terminated early, then the result has
an undesirably small capture range. This result
shows that GGVF can be thought of as a faster
GVF that preserves boundary detail and has a large
capture range. The GGVF and GVF results will
never be exactly the same, however, since the
smoothing parameter of GGVF goes to zero at
edges, an impossibility for GVF.

We compared the accuracy of different active
contour formulations using the simple harmonic
curves. These curves were generated according to
the equation

r=a+ bcos(ml + c)

by setting a, b, ¢ to suitable values and varying m.
Curves corresponding to m =0, 2, 4, 6 and 8 were
digitized on a 201 x 201 grid to give the images in
Fig. 2. In order to eliminate the problem of capture
range for traditional active contours so that com-
parisons could be made, we initialized the active
contours at the true curves, and let them deform
under the different external forces. After conver-
gence, we computed the maximum distance in the
radial direction between the true boundary and
each active contour as in [5]. To compute the
maximum radial error (MRE), all the final active
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(£)

Fig. 1. (a) A square with a long, thin indentation and broken boundary; (b) original GVF field (zoomed); (c) proposed GGVF field

(zoomed); (d) initial snake position for both the GVF snake and the GGVF snake; (e) final result of the GVF snake; and (f) final result

of the GGVF snake.

Fig. 2. Harmonic curves: r = a + b cos (mf + c).

pixels and ¢ = 6 pixels). The fourth curve resulted
from the use of the distance potential forces of
Cohen and Cohen [4]. The last two resulted from

GVF
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in Fig. 3. The first three curves shown in this figure

resulted from traditional active contour external

forces

the test intensity images were used as edge maps.

We see that traditional potential forces with small

¢ yield small errors. Since the capture range of this
type of force is very small, however, larger ¢’s are

for three

, )

, y)xI(x

X

o

G

(

-V

ext —

— VE

Gaussian standard deviations (¢ = 1 pixel, ¢ = 3



136 C. Xu, J.L. Prince | Signal Processing 71 (1998) 131—139

2-0 T T T
& —to=1 /A
&-—00=3 -7
Ve
5—AG=6 e
15 F  'v—vdistance ey iy
*—* GVF Payad
x—x GGVF AT
B s
S e Ve
o ~ e
[ Ve //
S 10+ e .
L p.gnd
© ///@/
= e
-

0.0 : !

Fig. 3. Maximum radial error (MRE).

often used as the figure shown, these forces do not
yield high accuracy, especially at larger m’s. The
distance potential forces, GVF forces and GGVF
forces, all yield high accuracy consistently. Distance
potential forces, however, have been shown to have
poor performance on boundary concavities [16].
We note that the fluctuations of the error curves
with increasing m arise due to discretization of the
curves on the image grid and to the underlying
performance variations of active contours.

Active contour algorithms can sometimes be
extremely sensitive to noise. To test the noise sensi-
tivity of GVF and GGVF, we added impulse noise
to the m = 8 harmonic image in Fig. 2. The resulting
image is shown in Fig. 4(a) with an initial active
contour plotted as a circle. The active contour was
then allowed to converge, being driven by external
force fields calculated from the noisy image. The
results for traditional snakes with o =1 and ¢ =9
are shown in Fig. 4(b) and 4(c), respectively. The
problem with Fig. 4(b) is that the snake is simply
captured by the local impulsive spikes, rather than
the dominant figure. In Fig. 4(c), the large ¢ blurs

the boundary too much and the snake cannot latch
onto the detail. The contour resulting from the
distance potential forces is shown in Fig. 4(d). Since
this external force uses a binary edge map to begin
with, it is attracted to the nearest detected edge
points, which do not belong to the dominant figure.
The results of GVF and GGVF are shown in
Fig. 4(e) and 4(f), respectively. These results, barely
distinguishable from each other, demonstrate a re-
markable ability to be both captured from a long
distance and to converge extremely well to the
dominant shape.

It is natural to ask whether there might be
a smoothing strategy that would improve the results
of the distance potential forces. For example, it may
be possible to improve the edge map by prefiltering
the image before creating the edge map or by
applying a nonlinear filter to the edge map itself.
We have tried several approaches along these lines
and have found that it is very difficult to eliminate
extraneous boundary points while simultaneously
preserving the boundary itself. Another approach is
to filter the distance potential itself in order to
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(d) MRE = 52.3

(e) MRE = 2.3

P

(¢) MRE = 7.2

(f) MRE = 2.2

Fig. 4. (a) Impulse noise corrupted image and the initial snake; (b) and (c) snake results using traditional external forces V(G,(x, y)=I(x y))
where ¢ = 1 and 9; (d) snake result using distance potential force; (¢) GVF snake result with u = 0.1; and (f) GGVF snake result with
K =0.2. The edge map used for both GVF and GGVF snake is = G,(x, y)*I(x, y), where ¢ = 1, respectively. All snake results are

computed using o = 0.25 and § = 0.

smooth out the energy valleys caused by the ex-
traneous edge points. This approach flattens the
valley in which the true edge is located and does not
eliminate the extraneous valleys, and the converged
active contour has poor fidelity to the truth.
GVF and GGVF both improve over the distance
potential forces by applying a very narrow filter to
the edge map, followed by a vector diffusion that
allows the dominant edge map to obliterate the
effects of the extrancous edge points scattered
throughout the image. It should be noted that if
GVF were run with a small u parameter, it would
not smooth out the extraneous edges. This high-
lights an important advantage of GGVF over GVF:
that GGVF can support convergence to very thin

boundary concavities while simultaneously elimin-
ating extraneous edge points.

Finally, we compared the qualitative performance
of GVF and GGVF active contours on a magnetic
resonance image of the left ventricle of a human
heart. The original image is shown in Fig. 5(a), and
its gray-level edge map is shown in Fig. 5(b). The
goal in this experiment is to extract the boundary
description of the inner wall or endocardium of the
left ventricle. The initial positions of both GVF and
GGVF active contours are shown as circles in gray
overlaid on the real images (Fig. 5(c) and 5(d)). The
final contours are shown in white. Many details
of the endocardial border are captured by both
GVF and GGVF, however, the papillary muscle
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Fig. 5. (a) A 160 x 160-pixel magnetic resonance image of the left ventrical of a human heart; (b) the edge map |V(G, (x, y)*I(x, y))|
with ¢ = 2.5; (c) the result of GVF snake with ¢ = 0.1; and (d) the result of GGVF snake with K = 0.15. The parameters used for both

snakes are o = 0.1 and ff = 0.

protruding into the cavity at about the 1 o’clock
position is represented best by GGVF.

In many cases, GGVF and GVF will perform
very similarly. Our experiments have revealed cer-
tain differences, however, and these may be impor-
tant in practice. GGVF will generally show better
convergence to thin boundary concavities. If the
u parameter is sufficiently small, however, GVF
may achieve similar convergence properties. But in
this case, GVF will require significantly longer
computation time, and noise in the edge map may
cause erroneous convergence. In short, GGVF can
be thought of as a computationally faster version of
GVF, with better boundary localization, especially

with respect to concave boundaries, and with better
noise immunity.

5. Conclusion

We have presented a new class of external force
models for active contours. It is a generalization of
the GVF formulation that includes two spatially
varying weighting functions. We showed that
GGVF improves active contour convergence into
long, thin boundary indentations, and maintains
other desirable properties of GVF, such as an
extended capture range. We also showed that



C. Xu, J.L. Prince | Signal Processing 71 (1998) 131—-139 139

GGVF has excellent performance on noisy and real
medical images. Further investigations into the
nature and uses of GGVF are warranted. Also,
making connections between GGVF with other
applications in image processing and computer
vision might provide some new insights or even
new solutions to existing problems.

Appendix A. Variational framework for
generalizing GVF

GVF can also be generalized by starting from the
variational formulation proposed in [15]. Spatially
varying weighting functions can be used, leading to
the following new variational formulation:

= j ngwnmﬁ (VDo — VY I? dx dy,

where || is a vector norm and Vv is second-order
tensor. Using the calculus of variations, we obtain
the following Euler equation:

V-[g(Vf Vel — (VS (v — Vf) = 0.

The solution of this vector equation can be obtained
by computing the steady state of the following
generalized diffusion equation:

v, = V-[g(V/ Vel — h(IVf (v — Vf),
or written more explicitly
v = Vg(IVf1)- Vo + g(IVf V0 — (VS )(© — Vf).

This result is different than GGVF. To under-
stand the nature of the difference, we note that if
V,/(Vf])- Vv =0, we get GGVF. This condition is
data-dependent, however, and is satisfied in homo-
geneous regions, but is generally nonzero near the
edges. We have implemented this generalized GVF
and found that it has very similar properties as
GGVF and usually yields a very similar result. This
version is more computationally demanding, how-
ever. Therefore, despite the aesthetically pleasing
property that it satisfies a minimum principle, we

advocate GGVF when a generalization to GVF is
desired.
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