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ABSTRACT

Harmonic phase (HARP) magnetic resonance imaging
(MRI) is an image analysis method for measuring tissue
motion and strain from tagged MR images. Previous studies
in cardiac tagged MRI have demonstrated its utility in the
characterization of myocardial infarction, ischemia, and the
reperfusion of stunned myocardium. Recently HARP has
also been used in characterizing the motion of the tongue
during speech. In this paper, we characterize dynamic range
— limits of elongation, compression and rotation — of HARP-
MRI. Viewing HARP-MRI as a phase demodulation tech-
nique, a key simplifying relationship permits us to derive
approximate analytic expressions for these quantities. Sim-
ulations demonstrate the validity of our analysis and also
help to provide intuition for these results.

1. INTRODUCTION

The harmonic phase (HARP) technique was introduced as a
computational approach for the automated analysis of tagged
magnetic resonance (MR) images [1] and has recently been
shown to permit real-time imaging of myocardial motion
and strain [2]. HARP has been used in the imaging of my-
ocardial infarction and ischemia [3], in the evaluation of
reperfusion of stunned myocardium [4], and in the rapid
detection of ischemia in MR stress tests [5]. HARP has
also been used in estimating the motion of the tongue dur-
ing speech and swallowing [6]. It is important to understand
the performance limitations of HARP in these various appli-
cations, both to explain anomalous behavior and to optimize
imaging and processing parameters.

In this paper, we develop quantitative expressions for
the dynamic range of HARP analysis in the regional estima-
tion of elongation, compression, and rotation. Our approach
exploits an analogy between HARP and modulation theory
in communications. In particular, we interpret the instanta-
neous frequencies in tagged images in terms of Fourier fre-
quencies in the spectra of the tagged images. Although this
interpretation is valid only for small subset of images [7],
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Fig. 1: (a) Tagged MR image and (b) its Fourier magnitude spec-
trum with bandpass filter around the harmonic peak. Both images
are scaled and cropped for clarity.

we will see that this interpretation is valid for tagged images
under consideration. This relation leads readily to analytic
expressions that are both intuitively appealing and accurate
in the simulations we have conducted.

2. OVERVIEW OF HARP

Fig. 1 shows a sinusoidally tagged MR image and its spec-
trum. The tag pattern is a zero-mean sinusoid [8], which
yields only two spectral peaks in the frequency domain due
to amplitude modulation caused by tag application [9]. A
harmonic image can be computed by bandpass filtering one
of the harmonic peaks, as shown in Fig. 1(b), and taking its
inverse Fourier Transform. The resulting complex harmonic
image can be expressed as [1]

I(x, t) = D(x, t)ejφ(x,t) , (1)

where x = [x y]T represents the position on the image and
t the time interval after the application of the tags. The mag-
nitude image D(x, t) is proportional to the transverse mag-
netization at position x and time t. The harmonic phase
φ(x, t) is related to tissue displacement u(x, t) as follows.

φ(x, t) = −ωT
0 u(x, t) + ωT

0 x , (2)

where ω0 gives the orientation and frequency of the tag pat-
tern in the image plane. The harmonic phase image there-
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fore contains information about the displacement of the tis-
sue.

3. COMMUNICATIONS VIEWPOINT

We start by interpreting the underlying sinusoidal tag pat-
tern as a carrier signal. It is apparent from Fig.1(a) and
Eq. (1) that application of a tag pattern to a given image
slice is an amplitude modulation of the tag pattern by the
anatomy D(x, t). From Eq. (2), we see that the displace-
ment u(x, t) causes a phase modulation of the underlying
tag pattern, where the phase modulation index is −ωT

0 . The
Eulerian strain is the spatial derivative of displacement; there-
fore, Eulerian strain can be interpreted as the “signal” that
frequency modulates the carrier. Accordingly, the harmonic
image I(x, t) is an AM-FM signal whose instantaneous am-
plitude is D(x, t) and whose instantaneous frequency (IF) is
Eulerian strain.

Given this interpretation, HARP analysis can be viewed
as a phase or frequency demodulation technique, and the
estimation of Eulerian strain is essentially the estimation of
the IF of an AM-FM image. In HARP the IF is estimated by
taking derivative of the phase of the harmonic image, which
is similar to the analytic signal used in the AM-FM signal
analysis [10, 11]. Even though the term instantaneous fre-
quency’ leads us to think of it as frequency of a local si-
nusoid at a particular position, IF and Fourier frequencies
are fundamentally different quantities [12]. IF and Fourier
frequencies not simply related except for a small subset of
AM-FM signals viz. ‘monocomponent’ signals [7, 13, 14,
15].

In this paper, we use the fact that a tagged image with
one tag direction is a monocomponent signal. We see the
IF as the frequency of a sinusoid that locally (in space) fits
the signal under analysis [13]. Even though we need tags in
two directions to estimate strain in 2-D, the bandpass filter-
ing and the subsequent estimation of IF is done separately
for each direction and later combined. Hence the approxi-
mation of a monocomponent signal still holds. In this paper
all the analysis is done for vertical tags and it extends to the
horizontal tags in a straightforward way.

4. DYNAMIC RANGE

Using the above viewpoint we develop a simple theory for
the dynamic ranges of elongation, compression, and rota-
tion of tags. In HARP, we extract one harmonic peak us-
ing a bandpass filter B(kx, ky) centered around [ω0 0]T

in k-space (Fig. 2). The position and the shape the filter is
determined by the tag frequency and the magnitude of mo-
tion [16]. In this discussion we assume a square filter [2]
centered around [ω0 0]T and the N∆k on the each side,
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Fig. 2: Schematic of the bandpass filter in frequency domain

where N and ∆k are the number of samples and sampling
interval (in mm−1) respectively.

The premise of HARP is that the IF of a tagged image is
estimated by calculating the spatial gradient of the harmonic
phase φ(x, t). The spatial gradient ∇φ(x, t) defines a vector
field of instantaneous frequencies. Viewing these IF vectors
in light of the theory mentioned in Section 3, these vectors
represent frequency of local sinusoids.

Let an IF vector be ω(x, t) = ω(x, t)∠θ(x, t). The
spectrum of an eternal sinusoid with frequency IF contains a
impulse at ω in frequency domain. So for each IF in the spa-
tial domain, there is impulse associated with it in frequency
space. Even though these sinusoids are not eternal, we use
an approximation here. We claim that HARP can detect a
tag pattern at x if the impulse in frequency (defined by IF at
x) remains within the bandpass filter. In other words, there
is a certain dynamic range of motion that can be imaged
by HARP which is determined by the size and position of
the box. Mathematically, this claim can be written down by
placing simple bounds on the x and y components of the IF.

Let W = 2πN∆k be size of the bandpass filter in rads/mm.
Let A = ω0 − W

2 and B = ω0 + W
2 , be the bounds of the

filter along the kx axis (Fig. 2). Given W,A and B the IF
ω∠θ will be perceived by HARP if the x and y components
are fall within the horizontal and vertical extents of the filter
i.e.

A ≤ ω |cos θ| ≤ B , (3)

0 ≤ ω |sin θ| ≤ W

2
. (4)

The maximum and minimum value of ω is the dynamic
range of compression and elongation respectively. The dy-
namic range of θ determines the dynamic range of the ro-
tation of tags. The dynamic range of θ also determines the
maximum tag bending HARP can see.

Equations 3 and 4 are coupled inequalities i.e. the dy-
namic range of elongation and compression is a function of
θ and vice versa. By decoupling the inequalities and plot-
ting them on ω − θ plane (or equivalently strain-rotation
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Fig. 3: Feasible region in strain-rotation space. White regions rep-
resent IFs that are within the dynamic range of HARP

space), we can visualize the dynamic ranges of elongation,
compression and rotation for a given tagging and imaging
parameters. By simple manipulations we can decouple eqs. 3
and 4. The decoupled inequalities are given as follows.

max
[

A

|cos θ| , 0
]
≤ ω ≤ min

[
B

|cos θ| ,
W

2 |sin θ|
]

,

cos−1

√
max

[
1 − W 2

4ω2
,
A2

ω2

]
≤ θ ≤ cos−1

√
min

[
1 ,

B2

ω2

]
.

5. RESULTS AND DISCUSSION

Feasible region in “strain-rotation” space Consider the
following tagging and imaging parameters: tag separation
7mm, FOV 280 mm, and a bandpass filter with 33 samples
on each side centered about tag frequency(used in [2]). Fur-
ther assume Nyquist sampling of the image;∆k = 1/FOV.
These parameters will be consistently used throughout this
section. The dynamic ranges can be visualized in feasible
region images (Fig. 3) in strain-rotation space. The feasible
region is calculated using the decoupled inequalities.

Now let’s interpret Fig. 3 in terms of cardiac imaging.
With the above parameters, the dynamic range of strain of
±41.25% (negative is compression, positive is expansion)
and maximum rotational angle range from 16o − 34o de-
grees depending of the magnitude of strain. These ranges
are quite ample for both normal and diseased hearts.

We generally use the “rule of thirds” when specifying
the HARP imaging parameters. If the tag frequency is ω0

then the size of box on each side should also be ω0. This rule
splits up the frequency space into 3 boxes of equal sizes: 2
around the harmonic peaks and 1 around the DC peak. With
these parameters it is straightforward to show that ±50%
strain and the maximum rotational angle of 18o − 46o de-
grees can be successfully imaged.

(a) (b)

(c) (d)

Fig. 4: (a) Tagged image (b) Feasible regions in space domain:
white regions indicate regions where IF inside the bandpass fil-
ter. (c) Reconstructed tagged image; note the blurring in regions
where the tags bend a lot (d) Phase estimate; Note the phase cuts
in regions corresponding to regions of blurred tags.

Computer Simulated Phantom A computer simulation
is shown in Fig. 4. Panel (a) shows three underlying tis-
sue regions. The top region is under a horizontal strain of
−10% and the bottom region is under a horizontal strain of
−35%. In the middle region, the strain varies in a cosine
fashion, yielding a continuous bending of tags. The tagging
and imaging parameters are the same as in the previous sec-
tion. Panel (b) shows the set of points (white) whose IF
is contained within the Fourier acquisition box implied by
these parameters. Panel (c) shows the reconstructed tags
after bandpass filtering; there is significant loss of tag fi-
delity in object regions that are black in Panel (b). In fact,
misalignments of the tags in those regions, faintly appar-
ent in Panel (c), are quite evident in the harmonic phase
map shown in Panel (d). HARP tracking and Eulerian strain
computations are erroneous in those regions as a result.

We can use Figure 3 to gain an intuitive appreciation of
the results in Fig. 4. All object strains in this simulation lie
in the range −35–−10%, the range indicated by the verti-
cal dash-dot lines in Fig. 3. The feasible domain in Fig. 3
indicates that the largest rotations that will be visible given
this range of strains are in the range 18◦–22◦, depending on
the amount of strain. Those IFs in Fig. 4(a) disappearing
after bandpass filtering are precisely those that have rotated
beyond this visible range.

Cardiac MR data Figs. 5(a)-(d) demonstrate the validity
of this theory on real cardiac MR image during mid-systole.
All images in Fig. 5 have been cropped and masked for bet-
ter visualization of the myocardium. Fig. 5(a) is a recon-
structed tagged image, after applying a bandpass filter of
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(a) (b)

(c) (d)

Fig. 5: (a) Reconstructed tags with N = 33. (b) Phase estimate
with N = 33. (c) Reconstructed tags with N = 15; Note the
loss in contrast in region where the tags bend or compress a lot (d)
Phase estimate with N = 15; Note in regions of blurred tags the
estimate of phase is inaccurate.

size 33. The original (uncropped) tagged image is shown in
Fig. 1(a). From Figs. 5(a) and (b) we see that for bandpass
filter size of 33, both the tags and the phase are faithfully re-
produced. Figs. 5(c) and (d) shows the effect of reducing the
filter size to 15. We see that in both regions of steep bend-
ing of tags and high radial expansion the tags get blurred
out and corresponding phase estimates are inaccurate.

6. CONCLUSION

In this paper we provided a criterion for the selection of
imaging and tagging parameters in order to use HARP suc-
cessfully. Using an approximate relation between instanta-
neous and Fourier frequencies, we derived simple expres-
sions for the dynamic range of elongation, compression,
and rotation of tags. We concluded that the relatively small
bandpass filter commonly used in current HARP applica-
tions is adequate for capturing the strains and rotations for
both normal and diseased tissue. In the future, we will use
this criterion to evaluate HARP in imaging tongue motion
and extend this framework to characterize HARP resolution.
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