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Abstract. Curves are often used as anatomical features to match sur-
faces that represent biological objects, such as the human brain. Auto-
mated and semi-automated methods for extracting these curves usually
rely on local properties of the surfaces such as the mean surface curva-
ture without considering the global appearance of the curves themselves.
These methods may require additional human intervention, and some-
times produce erroneous results. In this paper, we present an algorithm
that is based on the fast marching method (FMM) to extract weighted
geodesic curves. Instead of directly using the local image properties as a
weight function, we use the surface properties, together with the global
properties of the curves, to compute a weight function. This weight func-
tion is then used by the FMM to extract curves between given points.
The general framework can be used to extract curves with different global
properties. The resulting curves are guaranteed to be weighted geodesic
curves without cusps usually introduced by intermediate points through
which the curves are forced to pass. We show some results on both a
simulated image and a highly convoluted human brain cortical surface.

1 Introduction

The problem of finding curve features in an image arises in many computer vi-
sion and medical image analysis applications. In particular, curves representing
anatomical features can be used to match brain surfaces [1, 2, 3]. The curves
of sulcal fundi can be viewed as crestlines [5], sulcal roots [4], or as weighted
geodesic curves [3,6], where the weight is usually computed from the local prop-
erties (e.g., mean curvature) of the surface [3, 6, 7, 8].

In literature, there have been some methods on how such weighted geodesic
curves can be obtained. In [8], finding sulcal fundal curves is formulated as an
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Fig. 1. Left: A human cortical surface. Right: A flattened map [9] of the surface with
mean surface curvature of the region around the pre-central sulcus (yellow curve).

optimization problem, which is solved by using a dynamic programming method.
The resulting curve is restricted to travel along the edges of the surface, there-
fore depends on the parameterization of the surface and suffers from metric
distortion. More recently, an algorithm based on the FMM has been reported to
extract curves of sulcal fundi [3, 6]. In the algorithm, the weight is set to be a
function of local “valley-ness”. A FMM is used to compute the weighted distance
between any points on the surface to a given origin. A weighted geodesic curve
can be constructed by following the negative gradient directions. One of the ad-
vantages of this algorithm is that it treats the surface as a continuum; therefore,
the resulting curves are not restricted to triangle edges and are independent of
the surface parameterization.

A problem with both of the above methods is that there is little control over
the global properties of the curves. The method may fail in complicated geome-
tries such as the human cortical surface. As an example, consider the situation
shown in Fig. 1. When we use a weight function computed from only mean sur-
face curvature to extract the pre-central sulcal curve between a and b, we will
get the upper curve instead. Because the weight function is computed locally,
points in the neighborhood of c introduce large cost to curves passing them be-
cause they have small mean curvature values. Previously, people circumvented
this problem by manually picking intermediate points to force the curve to go
over the interruption, such as point c shown in Fig. 1. This solution, however, is
practical only with additional human intervention.

In order to address the above problem, we develop a novel algorithm based
on the FMM to extract weighted geodesic curves that have desired global prop-
erties. The method uses the desired properties of the curve to compute a weight
function, which is then used to extract the curve.

2 Weighted Geodesic Curves

Background. In this section, the problem of finding geodesic curves is stated
in 2D Cartesian space, but generalization to surfaces is straightforward with
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the FMM on triangulated meshes. For a 2D image domain Ω = [0, 1] × [0, 1]
and a positive weight function w(x) : Ω → �+, we define the cost for a curve
c(t) : [0, 1] → Ω as Φ(c) =

∫ 1
0 w(c(t))|c′(t)|dt.

If two points a = (ax, ay),b = (bx, by) ∈ Ω are given, the problem of finding
the curve connecting a and b that minimizes the above cost can be expressed
as the following optimization problem:

min Φ(c) =
∫ 1

0
w(c(t))|c′(t)|dt, s.t. c(0) = a, and c(1) = b. (1)

By convention, we define F (x) = 1/w(x) as a speed function. The solution to
Equation (1) can be obtained by first solving the Eikonal equation for T (x):

‖∇T (x)‖ = F (x) = 1/w(x), with T (a) = 0, for x ∈ Ω, (2)

then following the negative gradient directions of the function T (x) starting from
b until reaching a. The Eikonal equation can be solved efficiently using the fast
marching method [10]. If the weight function w(x) ≡ 1, the cost Φ(c) is the
length of the curve. The solution to Equation (1) is a geodesic curve on the
surface.

Curves with Global Properties. For the purpose of clarity, the global property
is set to be the intensity profile along the curve segment connecting two given
points. Generalization to other properties is straightforward.

Given an image I : Ω −→ R and two points, a and b, we want to find a curve
c(t) = [x(t), y(t)] ⊂ Ω with c(0) = a, c(1) = b, such that the intensity values
of the image along the curve resemble a given function g(t) in the least square
sense. This problem can be written as the following optimization problem:

min E [x(t), y(t)] =
∫ 1
0 [I(x(t), y(t)) − g(t)]2

√
x′2(t) + y′2(t)dt, (3)

s.t. x(0) = ax, y(0) = ay, x(1) = bx and y(1) = by.

When g(t) is not a constant, the cost function also depends on the parame-
terization of the curve c(t), which means that the same curve with different
parameterizations will have different costs. One way to circumvent this difficulty
is to impose a constant parameterization constraint on the curve c(t), which can
be stated as |c′(t)| = L with L being the unknown length of the curve. Since L
is unknown, |c′(t)| = L cannot be used directly. Instead, we use an equivalent
constraint in differential form: d

dt |c′(t)| = 0 ⇔ x′(t)x′′(t) + y′(t)y′′(t) = 0.
By doing this, Equation (3) is modified to the following form:

min E [x(t), y(t)] =
∫ 1

0
[I(x(t), y(t)) − g(t)]2

√
x′2(t) + y′2(t)dt (4)

and satisfy the initial and final conditions: x(0) = ax, y(0) = ay, x(1) =
bx, and y(1) = by, and the second order differential equation: x′(t)x′′(t) +
y′(t)y′′(t) = 0. This is a Lagrange problem with optimality condition given by
Mayer Equations [11], which is a system of nonlinear partial differential equations
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of order four. Directly solving the problem is difficult. Later, we describe a two-
step algorithm to first find a speed function using these global properties, and
then extract the weighted geodesic curves using the speed function.

In the above discussion, we assume g(t) is determinant and known. Sometime,
we can only estimate the statistical distribution of g(t) from a set of training
data. For simplicity, we assume that for fixed t, g(t) follows a Gaussian distribu-
tion and for t1 	= t2, g(t1) and g(t2) are independent. The point-wise mean and
variation of g(t) are µg(t) and σ2

g(t). If we want to find a curve c(t) = (x(t), y(t)),
such that I(x(t), y(t)) has large probability according to the statistical properties
of g(t), the problem in Equation (3) can be written as:

min E [x(t), y(t)] =
∫ 1
0

[
I(x(t),y(t))−µg(t)

σg(t)

]2 √
x′2(t) + y′2(t)dt, (5)

s.t. c(0) = (ax, ay), c(1) = (bx, by), and x′(t)x′′(t) + y′(t)y′′(t) = 0.

Again, directly solving the above problem will involve a system of 4th order
nonlinear partial differential equations. In the following, we develop an algorithm
to find a solution to Equation (5), which we refer to as a statistical geodesic curve.
We will use speed function F (x) instead of the weight function w(x).

3 Finding Statistical Geodesic Curves

Suppose a curve c0(t) is the solution to the problem (5). It minimizes the cost
function E(c) and must be a weighted geodesic curve under a properly chosen
speed function. Since the speed function uniquely determines the curve when the
end points are specified, problem (5) is equivalent to finding the proper speed
function. When the speed function is obtained, the curve can be extracted as a
weighted geodesic curve using the method described before.

Now, suppose in addition to the point-wise statistics of g(t), we also know
that the length of the curve connecting a and b, �, follows a Gaussian distri-
bution that is independent of g(t). The probability density function is fL(�) =
1/

√
2πσL exp

{
−(� − µL)2/2σ2

L

}
. The probability density function of the inten-

sity value along the curve is fG(g; t) = 1√
2πσ2

g(t)
exp

{
− (g−µg(t))2

2σ2
g(t)

}
.

We use these probability density functions to find the proper speed function
(see Fig. 2 for an illustration). For an image I, on which the end points a and b
are given, the speed function in the image domain is initialized to be an arbitrary
constant. Then an iterative algorithm is applied to successively larger regions
surrounding a, until the regions cover the entire image domain. At each iteration,
for every point p [Fig. 2(c)] in the region being processed, a tentative curve,
cap(t), is reconstructed connecting a and p using the current speed function.
The length of cap(t) and the intensity along cap(t) are compared to those of the
appropriate segment of the desired curve between a and b. This step results in
a measure of how good cap(t) resembles the corresponding part of the desired
curve cab(t). We use this measure to update the speed value at p.

When we update the weight at p, we assume that p is on the final optimal
curve [dotted curve in Fig. 2(c)] and compute the ratio τ = �ap/�, where � is the
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Fig. 2. Demonstration of the iterative algorithm for finding the speed function

curve length of cab(t). By assumption, � follows a Gaussian distribution with
mean µL and variance σ2

L. The probability distribution of τ is:

fT (τ |� ≥ �ap) =
dFT (τ |� ≥ �ap)

dτ

∣
∣
∣
∣
τ=τ

=
1
Z

�ap

τ2
√

2πσ2
L

exp

{

− (�ap/τ − µL)2

2σ2
L

}

,

(6)
where Z =

∫ ∞
�ap

fL(s)ds is a normalization factor. With the distribution of τ , we

compute the distribution of the intensity at p, f(g) =
∫ 1
0 fG(g; τ)fT (τ)dτ :

f(g) =
�ap

2πZσL

∫ 1

0

1
τ2σg(τ)

exp

{

− (g − µg(τ))2

2σ2
g(τ)

− (�ap/τ − µL)2

2σ2
L

}

dτ. (7)

The speed value at p is updated as:

F (p) =
∫ I(p)+δ

I(p)−δ

f(g)dg, (8)

where I(p) is the image intensity at p and δ is a parameter. To summarize, the
algorithm proceeds as follows.

Step 0. Initialize the speed function to be an arbitrary positive constant F0;
Step 1. For each point p ∈ N a

k = {p : p ∈ Ω, (k − 1)R ≤ ‖p − a‖ < kR},
perform steps 2 and 3.

Step 2. Reconstruct a tentative curve cap(t) using speed function F (k−1)(x).
Step 3. Update the speed function at point p using Equations (6)–(8).
Step 4. Increase k by 1 and go to Step 1.

The above process proceeds until the speed function at every point x ∈ Ω has
been updated. We use the speed function at the final iteration to reconstruct a
weighted geodesic curve between a and b. The image intensity at every point
along the resulting curve resembles that presented in the training datasets.

There are two parameters in the algorithm. The first parameter, R, controls
the size of the region whose speed function is updated at each iteration. With
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large R, we need fewer iterations to cover the entire image domain Ω, and there-
fore need less computation time. But we will also get less accurate results, since
at each iteration, the updating of the speed function for two points p,q ∈ N a

k

may depend not only on the speed function already updated for N a
j , j < k, but

also on the speed values of each other. In practice, we choose R to be the pixel
size of the image. The parameter δ controls how restrict we are on the intensity
at a given point. If δ is large, we allow a point with a wide range of intensity to
have relatively large speed value. An extreme is when δ tends to ∞, F (p) = 1,
no matter what I(p) is. The resulting curve is a true geodesic curve. If δ is small,
we require the resulting curve to have an intensity profile very close to the mean
intensity profile presented in the training datasets.

4 Results

In this section, we describe two experimental results of finding the curves con-
necting two given points with global properties on the intensity profile of the
curve. The first experiment is on a simulated image. And the second one is a
segment of the pre-central sulcus on a highly convoluted cortical surface.

A simulated example. The simulated image is a gray level image with some bright
structures (Fig. 3 left). In the image we specified the end points of the desired
curve. If the speed function is set to be the intensity value, the resulting curve
will run through regions with high intensity values as much as possible. This
is the upper curve in the figure. If instead, the lower curve is desired, without
constraints on the global appearance of the curve, we need to specify some
intermediate points (circles in the figure). The intensity profile along the desired
curve is shown in the right plot of Fig. 3. If we use this intensity as g(t) to solve
problem (3), we get the speed function shown in the left image of Fig. 4. By
using the FMM with this speed function and the usual curve tracking technique,
we get the curve as shown in the right image of Fig. 4.

A curve of sulcal fundi on a cortical surface. In this experiment, we computed the
point-wise statistics of the surface mean curvature along a segment of the curve
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Fig. 3. Left: A simulated image. Right: The intensity profile along the lower curve in
the left image.
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Fig. 4. Left: Speed functions at different iterations. The small crosses are the interme-
diate points picked in order to get the desired curve. Right: Statistical geodesic curve
(thick curve) extracted from two given end points. The thin curve is reconstructed with
manually picked intermediate points and the intensity alone as the speed function.

Pre-Central Central

Statistical geodesic curve

using both surface properties

and desired curve properties

Weighted geodesic

curve using only

surface properties

Fig. 5. A statistical geodesic curve on a cortical surface (left), the curve mapped onto
the unit sphere with the computed speed function (right, for visualization only)

of pre-central sulcus, and used this information to extract a statistical geodesic
curve between two given points on a cortical surface. We used a training set of
30 subjects to estimate the distributions of the length of the sulcal curve and
the mean curvature profile along the curve. In the training set, each sulcal curve
is extracted using a semi-automatic method with point correspondence built by
constant speed parameterization. The results are shown in Fig. 5. When only
the mean curvature of the surface is used to extract the curve, we get a segment
that connects the pre-central sulcus to the central sulcus (right curve in the
figures) because of the structures connecting these two sulci have large local
“valley-ness” measure. If we use the statistical information, we are able to get
the desired curve representing the part of the pre-central sulcus.
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5 Conclusions and Discussion

In this paper, we presented an algorithm to extract curves as weighted geodesics
using the FMM. The speed function for FMM is computed using both the surface
properties and the global properties of the curves. The algorithm can be easily
extended to incorporate different global properties.

There are several advantages of the proposed method. The first advantage is
automation. The proposed method allows us to extract the curves from only the
most distinctive points, which are relatively easy to be automatically located,
while manually picked intermediate points do not necessarily have clear features
to facilitate automatic localization. The second advantage is that the entire curve
extracted as a statistical geodesic curve is always a weighted geodesic curve
under the speed function computed, while curve obtained using manually picked
intermediate points consists of pieces of weighted geodesic curve segments, and
any intermediate point is a cusp of the curve, where the tangent vector is not
continuous.

Future work includes investigation on the optimality of the speed function
with given constraints. Although the iterative algorithm presented in this paper
solves the problem of finding weighted geodesic curves that satisfies given global
constraints, it is not known what the optimal speed is for given properties of
the curves. A theoretical understanding of the optimality condition of the speed
function, as well as the optimality condition in problem (4) is also needed. An-
other topic of interest is to use other properties of partically reconstructed curve
segments, such as curve shape, as the global properties for curve reconstruction.
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