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Region of Interest Reconstruction From Truncated
Data in Circular Cone-Beam CT
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Abstract—The circular scanning trajectory is one of the most
widely adopted data-acquisition configurations in computed to-
mography (CT). The Feldkamp, Davis, Kress (FDK) algorithm
and its various modifications have been developed for recon-
structing approximately three-dimensional images from circular
cone-beam data. When data contain transverse truncations, how-
ever, these algorithms may reconstruct images with significant
truncation artifacts. It is of practical significance to develop algo-
rithms that can reconstruct region-of-interest (ROI) images from
truncated circular cone-beam data that are free of truncation
artifacts and that have an accuracy comparable to that obtained
from nontruncated cone-beam data. In this work, we have inves-
tigated and developed a backprojection-filtration (BPF)-based
algorithm for ROI-image reconstruction from circular cone-beam
data containing transverse truncations. Furthermore, we have
developed a weighted BPF algorithm to exploit ‘“redundant”
information in data for improving image quality. In an effort to
validate and evaluate the proposed BPF algorithms for circular
cone-beam CT, we have performed numerical studies by using
both computer-simulation data and experimental data acquired
with a radiotherapy cone-beam CT system. Quantitative results
in these studies demonstrate that the proposed BPF algorithms
for circular cone-beam CT can reconstruct ROI images free of
truncation artifacts.

Index Terms—Computed tomography (CT), cone-beam CT,
image reconstruction, region of interest (ROI), truncated projec-
tion.

1. INTRODUCTION

IRCULAR scanning trajectory has been widely used in
Ccomputed tomography (CT) for data acquisition because
it involves minimum hardware implementation complexity. It
has found important applications in micro-CT [1]-[3], dedicated
breast CT [4]-[6], and radiotherapy CT [7]-[10]. The circular
cone-beam configuration does not, however, satisfy Tuy’s suffi-
ciency condition [11], [12], and no stable algorithm exists for
exact reconstruction of three-dimensional (3-D) images from
circular cone-beam projections of a longitudinally nonuniform
object function. The so-called Feldkamp, Davis, Kress (FDK)
algorithm [13] and other modifications [14]—-[18] have been de-
veloped for reconstructing approximately 3-D images from cir-
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cular cone-beam data. For a relatively small cone angle and cer-
tain object functions, these algorithms can yield images that are
adequately accurate for some practical applications.

In imaging tasks involving micro-CT, dedicated breast CT,
and radiotherapy megavoltage (MV) and KV kilovoltage (KV)
CT , it is not uncommon that the field of view (FOV) of the
CT system is smaller than the support of the object function.
Also, in these applications, one is often interested in informa-
tion within a region of interest (ROI) of the subject; and, for
the sake of reducing radiation dose delivered to the subject, one
may intend to use an FOV that fully covers the ROI and that
is otherwise considerably smaller than the subject. These situ-
ations can lead to transversely truncated projection data from
which the existing algorithms [13]-[18] generally yield images
of the subject with severe artifacts. On the other hand, it is of
practical significance to develop algorithms that can, from trun-
cated circular cone-beam data, reconstruct ROI images with an
accuracy comparable to that obtained from nontruncated data. In
this work, we focus on investigating and developing such algo-
rithms for ROI-image reconstruction from circular cone-beam
data containing transverse truncations.

Recently, an algorithm has been proposed for exact image re-
construction on PI-lines from helical cone-beam data [19], [20].
This algorithm, which we refer to as the backprojection-filtra-
tion (BPF) algorithm, reconstructs images by first computing the
cone-beam backprojection of the data derivatives onto PI-lines
and then performing a one-dimensional (1-D) filtering of the
backprojection image along PI-lines. The BPF algorithm can ex-
actly reconstruct images by use of data less than that required by
other existing filtered-backprojection (FBP)-based algorithms,
such as Katsevich’s algorithm [21]. It has also been shown ex-
plicitly that the BPF algorithm can reconstruct an ROI image
within the subject from fan-beam data containing truncations
[22]-[24].

In this work, based upon the BPF algorithm for helical cone-
beam CT, we develop an approximate BPF algorithm for 3-D
ROI-image reconstruction from circular cone-beam data con-
taining truncations. We show that this algorithm, which is re-
ferred to as the BPF algorithm for circular cone-beam CT, can
reconstruct exactly an ROI image within the midplane and ap-
proximate ROI images within off-midplanes and that these ROI
images are free of truncation artifacts in images obtained with
the FDK algorithms. Furthermore, we generalize this approxi-
mate BPF algorithm to exploit “redundant” information in data
for further improving image quality. In addition to computer-
simulation studies, we also apply the proposed algorithm to re-
constructing ROI images from circular cone-beam data acquired
with a simulator-CT system for radiotherapy (Acuity, Varian
Medical Systems).
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Fig. 1. TIllustration of the helical cone-beam scanning geometry and a PI-line
segment. Rotation-coordinate system whose origin is fixed on the source point
A is specified by three unit vectors é&,,, &,, and &,,. PI-line segment jointing two
points on the helix is labeled by A, and A», where |A> — Ay| < 27; and @,
denotes a point on this PI-line segment.

The paper is organized as follows. In Section II, following a
brief review of the BPF algorithm for helical cone-beam CT, we
derive an approximate BPF algorithm for circular cone-beam
CT and subsequently generalize it to incorporate data redun-
dancy information. In Section III, we present results of our nu-
merical studies by using both computer-simulation data and ex-
perimental data for validation and evaluation of the proposed
BPF algorithm for circular cone-beam CT. In the experimental
study, we acquired circular cone-beam data by using a simu-
lator-CT system for radiation therapy. Finally, we make remarks
and conclusions in Section IV.

II. THEORY

A. BPF Algorithm for Helical Cone-Beam CT

We first briefly review the BPF algorithm for helical cone-
beam CT [19], [20]. In a helical cone-beam scan, the imaged
object is translated longitudinally while the X-ray source and
detector rotate. Consider a coordinate system {z,y, z} that is
fixed on the imaged object. As shown in Fig. 1, from the per-
spective of the object, the source trajectory is a helix and can be
written in the fixed-coordinate system as

T
7o(N) = (Rcos A, Rsin A, 2}—;/\> (1)

where A denotes the rotation angle of the X-ray source, R the
distance from the source point to the rotation axis, and h the
pitch of the helical trajectory, which is defined as the translation
distance of the imaged object during one turn of gantry rotation.
The cylindrical volume enclosed by the helical trajectory is re-
ferred to as the helix cylinder, and we assume that the support
of the object function f(7) is within the helix cylinder.

We introduce a rotation-coordinate system whose origin is
fixed on the source point. In the fixed-coordinate system, the
three unit vectors of the rotation-coordinate system can be
written as

é, = (—sin A, cos A, 0)T
é, =(0,0,1)T
& = (cos \,sin X, 0)7. 2)

Without loss of generality, we consider a flat-panel detector,
which has a normal direction along é,, and is at a distance S
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from the source point. Any point on the detector can be specified
by two parameters v and v. At angle A, the cone-beam projec-
tion of the object function f(7) at a point (u,v) on the detector
can be expressed as

P(u,v,\) /dsf
0

where the unit vector ﬁ indicates the direction of the ray starting
from source point 7%o(\) and passing through the point (u,v) on
the detector and can be written as

N 1

= ———————[uéyu () + vé,(N) —
b= Farr e e e
A Pl-line is a straight line intersecting with the helical trajec-

tory at two points labeled by A and A2, where | A2 — A1| < 27;
and the segment on the PI-line within the helix cylinder is re-
ferred to as the Pl-line segment. We use

o+ _ T0(A2) = 70(M)
T o(Ae) = o(A)]

to denote the direction of the PI-line segment and x to index a
point on the PI-line segment. It has been shown that (2, A1, A2)
can specify a unique point within the helix cylinder and any
point within the helix cylinder can be uniquely described by
(Zx, A1, A2) [25]. Therefore, {z, A1, A2} can be referred to as
the PI-line coordinate system. For a point 7 within the helix
cylinder, the relation between PI-line coordinates and 7 is given
by

)+ 50) 3)

Sew(MN]. @)

(&)

7= FCO + xﬂéﬂ (6)

where 7. = (FO(AI) + 7?0()\2))/2, Tr € (3?771, .177‘—2), and 2.1
and x 2 denote the two end points of a PI-line segment. More-
over, we use x51 and x 4o to denote the two end points of the in-
tersection of the PI-line segment with the support of the object
function. We refer to this intersection as the support segment on
the PI-line. Because the object function is enclosed completely
within the helix cylinder, we have [Z,1, Tr2] D [Ts1, Ts2].

The concept of PI-line segment plays an important role in the
development of algorithms for image reconstruction in helical
cone-beam CT [19], [25]-[27]. It is clear that a given point 7
within the helix determines a unique PI-line segment and that
the PI-line segments can completely fill the helix cylinder [25].
Therefore, the image reconstruction within the helix cylinder is
equivalent to the image reconstruction on PI-line segments. Let
fx(xx, A1, A2) denote the image function on a PI-line segment,
which can be reconstructed by use of the BPF algorithm as [19],
[20], [28]

.fﬂ'(xﬂ'7 )‘17 )‘2)

1 1
20 o —wn) (g — wa)
F dz’
X /wﬂ—ww;\/(xB_x)(w —Z4)

X0r (x;n/\l;)‘Z) +27FP0(U7T7U7T7)\1)] (7)
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where 24 and zp are any points satisfying [2,1,Zx2] D
[£a,2B] D [Ts1,%s2], the integral is to be considered as a
Cauchy principal value, (u,v,) indicates the intersection of
the PI-line on the detector, the constant term Py indicates the
cone-beam projection of the object function along the PI-line,
the backprojection image g, (z/., A1, A2) on the PI-line segment
is determined by

Ao
dA d
/ — R — ~
g‘l\'(£7‘r7)\17A2>_'/ |7:7—7_"0(A)|d/\P(u7’U7)\)|’8. (8)
AL

For given (2., A1, A2), 7 is determined by (6) and (u,v) are
determined by
ST - &, (N)
= - d =
TR e,y

It can be seen that the BPF algorithm reconstructs the image on a
PI-line segment by first backprojecting the data derivatives onto
the PI-line segment [i.e., the integration over A in (8)] and then
performing a 1-D filtering along the PI-line. [i.e., the integration
over 7 in (7)].

S -8, (N)

TRV

B. Circular Cone-Beam Scans and Virtual PI-Lines

For circular cone-beam CT, the physical source trajectory is
within a plane (i.e., the so-called midplane). Without loss of
generality, the circular trajectory is assumed to be within the
plane at z = 0 and thus can be expressed as

7.(A\) = (Rcos A\, Rsin \,0)T. (10)
A PI-line intersecting two points on the trajectory can be defined
meaningfully within the trajectory plane, i.e., the midplane. For
an off-midplane (i.e., z # 0), however, no actual trajectory and,
consequently, no actual PI-lines exist. Therefore, the BPF algo-
rithm for helical cone-beam CT cannot be applied directly to re-
constructing images in off-midplanes from circular cone-beam
data.

In an attempt to derive an approximate BPF algorithm for cir-
cular cone-beam CT, we introduce the concept of virtual trajec-
tory and virtual PI-line segments [29]. As illustrated in Fig. 2, a
virtual circular trajectory within an off-midplane at z # 0 uses
the z-axis as its central axis and has a radius R identical to that
of the actual circular trajectory in the plane at z = 0. Thus, the
collection of the actual and a stack of virtual circular trajectories
within planes at different z encloses a 3-D cylindrical volume,
which is referred to as the virtual cylinder. We define a straight
line segment connecting any two points on the actual circular
trajectory at z = 0 as an actual PI-line segment. Similarly, we
define a straight line segment connecting any two points on a
virtual circular trajectory at z # 0 as a virtual PI-line segment.

For a helical cone-beam scan, a point within the helix
cylinder can be specified completely by three PI-line coordi-
nates (2, A1, A2) through (6), where z indicates the location
of the point on a PI-line segment specified by (A1, A2). For the
circular cone-beam scan, however, because the actual or virtual
trajectory is within a plane, we need four PI-line parameters

N
\
\

~ o

1 -Actual PI-line segment
y A2 \ Actual trajectory

/1

R ———————

AR
N
\

Fig. 2. Tllustration of the actual and virtual circular trajectories, the actual and
virtual PI-line segments.

(Zx, A1, A2, 20) to identify a point within the virtual cylinder.
In addition to z,, A1, and Ao, the parameter 2 is needed to
indicate the plane that contains the actual or virtual trajectories.
These PI-line coordinates are related to the fixed coordinates
through

7= 7:'cl + Tr€re (11)
where 2 05 .
Fcl = TC( 2) —;TC( 1) + ZOéU
(X)) — 7o (A
A Te(A2) = 7e(M1) (12)

Crc = 1> 7 =/
|7e(A2) = e(A)]

C. BPF Algorithm for Circular Cone-Beam CT

For simplicity of discussion below, we will refer to an actual
or a virtual PI-line segment as a PI-line segment. Let 2,7 and
Z 2 denote the two end points of a PI-line segment. Also, we use
Zs1 and x40 to denote the two end points of the intersection of a
PI-line segment with the support of the object function; and we
refer to this intersection as the support segment on the Pl-line.
Because the object function is enclosed completely within the
virtual cylinder, we have [Tr1, Tx2] D [Ts1,Ts2].

We present below a modified BPF algorithm for circular
cone-beam CT to reconstruct exact images on actual PI-line
segments and approximate images on virtual PI-line segments.
Let fre(@x, A1, A2,20) denote the image on a virtual Pl-line
segment when zo # 0 or the image on an actual PI-line seg-
ment when zp = 0. This modified BPF algorithm for circular
cone-beam CT can be expressed as

fTK‘C(‘Tﬂ'? )\17 >‘27 ZO)

1 1
57 \[(en — 22)(n — 21
B
dz!,
| [ Ve )
T A

XGme ('Tf;r7)\1:)‘2720)+27rp(‘0] (13)

where 24 and zp are any points satisfying [2r1,Zx2] D
[£a,2B] D [®s1,Ts2], the integral is to be considered as
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a Cauchy principal value, the backprojection image on the
PI-line segment can be expressed as [19], [27]

A2

dA
Yre (17;.,/\1./)\272/0) = / |

d
map(uﬂh Ml (14

A1

and the constant term P, indicates the line integral of the object
function along the PI-line. Notice that P,y cannot be obtained
from the data function P(u, v, A) when the PI-line is in an off-
midplane (z # 0). Therefore, we use

P(’U,h’l)l,)\l) + P(’U,Q,’Ug,/\g)
2

to approximate the line integral of the object function along
the PI-line, where P(u1,v1, A1) and P(uz,ve, A2) indicate the
cone-beam projection of the point ((z1 + 2z2)/2), A1, A2, 20),
i.e., the central point on the PI-line segment, from view angle A;
and A, respectively. In (13) and (14), for given (27, A1, A2, 20),
7 is obtained by use of (11), whereas (u,v) are determined

through

Peo = 15)

S - &, (M) Sz
R—7-é ’

R—7-&,(\) 6 (N)
Comparison of (7) and (13) indicates that the BPF algorithm for
circular cone-beam CT and helical cone-beam CT are formally
identical. However, the constant terms and backprojection im-
ages in the two algorithms are different.

Furthermore, using the approach similar to those in [19], [27],
we can re-express the backprojection image in (14) as

u= and v =

(16)

’ 7 S2
e wﬂ—:)‘:)‘az :/d)\—
Gre ( 1, A2, 20) . [R—F’-é“,()\)]z
9 [R P(u,v,\) Az
i LA ]+ 5 L
where
u? + 02 + S2. (18)

In practical situations, the discrete samples on the detector are
generally denser than those over a scanning trajectory. There-
fore, (17) generally yields numerically more accurate backpro-
jection image than does (14).

D. Weighted BPF Algorithm for Exploitation of Data
Redundancy

As described before, the BPF algorithm reconstructs the
image on a PI-line segment specified by A; and Ay by use of
data acquired over an angular range [A1, A2]. Let [Amin, Amax]
denote the total scanning angular range. Obviously, a PI-line
segment satisfies [A1, Aa] C [Amin, Amax] 1S reconstructible.
Therefore, as shown in Fig. 3, data acquired over the angular
ranges [Amin, A1) and (A, Apax| constitute redundant infor-
mation for image reconstruction on an actual PI-line segment
specified by A1 and Ao in the midplane. On the other hand, for
a virtual PI-line specified by A; and A5 in the off-midplane, the
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kmax

Fig. 3. Illustration of the data redundancy. Actual scanning angular range is
[Amins Amax]. Pl-line segment to be reconstructed is specified by (A1, A2),
where [A1; A2] € [Amin, Amax]|. Obviously, data acquired over the angular
ranges [Amin, A1) and (A2, Apax] contain redundant information with respect
to the image reconstruction on the PI-line segment specified by A; and As.
Z . represents an arbitrary point on the PI-segment, and ¢ denotes the angle
between the PI-line segment and the « axis.

angular ranges [Amin, A1) and (A2, Amax] on the corresponding
virtual trajectory do not generally contain truly redundant data
information because no rays in the cone beam are within that
off-midplane. However, data in the angular ranges [Amin, A1)
and (A2, Amax] On a virtual trajectory can be treated as approx-
imate redundant information. We present below a weighted
BPF algorithm that exploits the truly redundant information
for actual PI-line segments in the midplane and the approxi-
mate redundant information for virtual PI-line segments in the
off-midplanes.

Following the strategy for exploiting data redundancy in fan-
beam CT [24], we have derived a weighted BPF algorithm for
exploiting data redundancy in circular cone-beam CT, which has
a form identical to that of (13) except that the backprojection
image should be replaced by

Amax

S2

@) (2 A1, A2, 20) = / d\
gne (27, A1, A2, 20) i R—7 6O

o [R w(u, NP (u, v, A) |

— |= AP A _ 1
< e 9P| + SRR
where the weighting function w(u, ) satisfies

wu,\) —w (—u, A+ 7 — 2arctan %) =1 (20

Inspection of (20) shows that w(u, A) is discontinuous in u
and A and thus prevents an accurate and stable numerical im-
plementation of (19). In an attempt to avoid such a discontinuity
in numerical implementation, without loss of generality, we as-
sume that, as shown in Fig. 3, a PI-line segment has an angle
6 relative to the x axis and that w(u, \) = Ho(u, Nwo(u, A),
where wo(u, A) is a function satisfying [30], [31]

wo(u, A) + wo (—u, A+ 7 — 2arctan E) =1 (21
S
and function Ho(u, A) is given by
_f1 (A—arctang) € (6,0 + )
Hofu, A) = { -1 (A—arctan %) & (6,0 + )" @2)

One can readily demonstrate that wq(u, A)Ho(u, \) satisfies
(20). In Appendix, following the similar strategy in [22], we
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show that the weighted backprojection image in (19) can be
rewritten as

97(702) (J}; /\17 /\27 ZO)

Amax

Amin
LA,

du

Amax

Amin

(23)

It can be seen in (23) that, as long as wo(u, A) is smooth, it is
possible to compute accurately the derivative in the first term
in (23). The result in (23) includes two boundary terms deter-
mined by the actual scanning angular range specified by Apin
and A ax and by the angular range determined by A; and A,
of a Pl-line segment. For a full scan Ay, = 0, Apax = 27,
the first boundary term vanishes, and only the second boundary
term remains. Noo et al. obtained a similar result for full-scan
fan-beam case in [22, eq. (35)]. A smooth weighting function
wo(u, \) can readily be constructed in the case of a full-scan, a
short-scan [30], [31] or any scan with angular range between a
short-scan and a full-scan [30]. However, when the scanning an-
gular range is less than a short-scan, the construction of a smooth
weighting function is not obvious.

E. ROI-Image Reconstruction in Circular Cone-Beam CT

A unique property of the proposed BPF algorithms is that they
can, from circular cone-beam data containing transverse trunca-
tions, reconstruct ROI images with an accuracy comparable to
that obtained from nontruncated circular cone-beam data.

For a PI-line segment specified by A; and As, as shown
in (13), one needs knowledge of the backprojection only in
[z 4,z p] for exact image reconstruction. Such knowledge can
be obtained from data on the cone-beam projections of [z 4, z 5]
for A € [—A1, Ao] [see (17)] or for A € [Amin, Amax] (se€ (23)).
Because [xs1,zs2] C [ 4,2 p], one in effect needs data only on
the cone-beam projections of the support segment. Therefore,
as long as the support segment is always illuminated fully at
A € [A1, A2] or at A € [Amin, Amax], sufficient data can be col-
lected for computation of the backprojection image, even if the
illumination at these views may not completely cover the entire
object function (i.e., the projections are truncated). Therefore,
an image on the PI-line segment free of data-truncation artifacts
can be reconstructed.

Now, consider a set of PI-line segments that completely
fill in an ROI. Without loss of generality, we assume that the
maximum angular range required by these PI-line segments
is [Amins Amax|. If the support segments on these PI-line seg-
ments are fully illuminated for A € [Amin, Amax], based upon
the observation above, even if the FOV of the illumination is
smaller than the actual size of the entire object support, (i.e.,
the projections are truncated), one can reconstruct images on

these PI-line segments and consequently the image within the
ROI that are free of the impact of data truncation.

III. NUMERICAL STUDIES

We have performed quantitative studies to validate and eval-
uate the proposed algorithms in Sections II-C and II-D by using
both computer-simulation data and real-experimental data.

A. Quantitative Studies With Computer-Simulation Data

In the computer-simulation studies, we have considered a cir-
cular cone-beam configuration in which the trajectory has a ra-
dius of 290 mm and a source-detector distance of 450 mm. A
modified, low-contrast 3-D Shepp-Logan phantom was used,
which has an ellipsoidal support with radii of 49, 98, and 90 mm
along x, y, and z axis, respectively. As compared to the standard
3-D Shepp-Logan phantom, this phantom has a shorter support
along z axis and a longer support along y axis for demonstrating
the transverse truncation effect. The detector plane consists of
256 x 256 elements each of which has an area of 1.3 x 1.3 mm?2.
We have generated nontruncated circular cone-beam data at 300
projection views uniformly distributed over 27; and the trans-
versely truncated data were obtained by setting the values in 35
bins on each side of the detector panel to zero. We have also gen-
erated noisy data by adding Gaussian noise to the noiseless data.
In an attempt to show the low-contrast structures, the standard
deviation of the Gaussian noise was selected to be about 0.063%
of the maximum value of noiseless data. The proposed BPF al-
gorithms for circular cone-beam CT were applied to these full
and truncated data to reconstruct full and ROI images. To fur-
ther compare the BPF algorithms with the FDK algorithm when
there is no truncation, we generated another circular cone-beam
dataset with a Defrise disk phantom. The radius of the circular
trajectory is 576 mm. The source-detected distance is 736 mm.
The cone-angle is 20° with an FOV size of 200 mm.

1) Image Reconstruction From Nontruncated Data: We
display in Fig. 4 images within two-dimensional (2-D) slices
in 3-D images reconstructed by use of the FDK algorithm
(upper row), the BPF algorithm in (17) (middle row), and the
weighted BPF algorithm in (19) (lower row), respectively,
from nontruncated, noiseless cone-beam data generated with
the Shepp-Logan phantom. The images from the weighted
BPF algorithm were obtained using the complete 27 range
of data with a weight of 1/2. No smoothing filter was applied
in all the reconstruction. The first to fourth columns repre-
sent images within planes at x = 0, y = 25 mm, z = 0,
z = 6.4 mm, respectively. The display window is [1.0, 1.04].
We also show in Fig. 5 image profiles obtained by use of the
weighted BPF algorithm in (19) (solid curve) and the FDK
algorithm (dashed-dotted curve) on lines specified by (a) z = 0,
y = 25 mm and (b) z = 17 mm, z = 0, respectively. For
a comparison, we have also plotted the true profiles (dotted
curves) in Fig. 5.

We show in Fig. 6 images within 2-D slices in 3-D images
reconstructed by use of the FDK algorithm (upper row), the
BPF algorithm in (17) (middle row), and the weighted BPF
algorithm in (19) (lower row), respectively, from nontrun-
cated, noisy cone-beam data generated with the Shepp-Logan
phantom. Again, the first to fourth columns represent images



874

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 25, NO. 7, JULY 2006

Fig. 4. Two-dimensional slices in 3-D images reconstructed by use of the FDK algorithm (upper row), the BPF algorithm in (17) (middle row) and the weighted
BPF algorithm in (19) (lower row), respectively, from noiseless data containing no truncation. First to fourth columns represent the 2-D slices in planes of = 0,

y = 25 mm, z = 0, z = 6.4 mm, respectively. Display window is [1.0, 1.04].

1107
|
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i
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Fig. 5. Profiles in images displayed in Fig. 4 along (a) x = 0,y = 25 mm and (b) 2 = 17 mm, z = 0. Solid and dashed-dotted curves represent the results
obtained by use of the weighted BPF algorithm in (19) and the FDK algorithm, respectively. True profiles (dotted curve) in the original phantom are also plotted.

within planes at z = 0, y = 25 mm, z = 0, z = 6.4 mm,
respectively. The display window is [1.0, 1.04]. These results
suggest that the weighted BPF algorithm can exploit redundant
information within the data for suppression of image noise.
Fig. 7 compares the reconstruction results from nontruncated
data generated with the disk phantom. Sagittal slices ( = 0) in
the 3-D images reconstructed by use of the FDK algorithm, the
BPF algorithm in (17), and the weighted BPF algorithm in (19)
are displayed in Fig. 7(a)—(c), respectively. The display window
is [0, 2]. The profiles along central columns in image Fig. 7(a)
and Fig. 7(c) are plotted in Fig. 7(d) with dashed-dotted and
solid curves, respectively. The corresponding true profile in the
original disk phantom is also plotted with a dotted curve. It can

be observed that the BPF algorithms perform differently from
the FDK algorithm in terms of shape distortion and intensity
drop in the off-midplane.

2) ROI-Image Reconstruction From Truncated Data: We
have applied the proposed BPF algorithms to reconstructing
ROI images from the computer simulated data containing
truncations. In Fig. 8, we display ROI images reconstructed
by using the FDK algorithm (upper row), the BPF algorithm
in (17) (middle row), and the weighted BPF algorithm in (19)
(lower row), respectively, from truncated, noiseless cone-beam
data. The first to fourth columns represent images within planes
atx = 0,y = 25 mm, z = 0, 2z = 6.4 mm, respectively.
The display window is [1.0, 1.04]. We also show in Fig. 9
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Fig. 6. Two-dimensional slices in 3-D images reconstructed by use of the FDK algorithm (upper row), the BPF algorithm in (17) (middle row) and the weighted
BPF algorithm in (19) (lower row), respectively, from noisy data containing no truncation. First to fourth columns represent the 2-D slices in planes of x = 0,

y = 25 mm, z = 0, z = 6.4 mm, respectively. Display window is [1.0, 1.04].

image profiles obtained by use of the weighted BPF algorithm
in (19) (solid curve) and the FDK algorithm (dashed-dotted
curve) on lines specified by z = 0, y = 25 mm [Fig. 9(a)] and
x = 17 mm, z = 0 [Fig. 9(b)], respectively. For a comparison,
we have also plotted the true profiles (dotted curve) in Fig. 9.
From these results, one can observe that data truncation can
result in severe artifacts in images obtained with the FDK
algorithm. However, ROI images reconstructed by use of the
proposed BPF algorithms are free of truncation artifacts and
are in fact identical to the images within the same ROI’s
reconstructed by use of nontruncated data.

We also show in Fig. 10 ROI images reconstructed by using
the FDK algorithm (upper row), the BPF algorithm in (17)
(middle row), and the weighted BPF algorithm in (19) (lower
row), respectively, from truncated, noisy cone-beam data. The
first to fourth columns represent images within planes at z = 0,
y = 25 mm, z = 0, z = 6.4 mm, respectively. The display
window is [1.0, 1.04]. Again, it can be observed that data
truncation can result in severe artifacts in images obtained with
the FDK algorithm. However, ROI images reconstructed by use
of the proposed BPF algorithms are free of truncation artifacts.
The results also suggest that the weighted BPF algorithm can
exploit redundant information within data for suppression of
image noise.

B. Quantitative Studies With Experimental Data

We have performed evaluation studies of the proposed algo-
rithms by using real data acquired with a simulator CT (Acuity,
Varian Medical Systems) from a head phantom.

1) Experimental Acquisition of Circular Cone-Beam Data:
The simulator cone-beam CT system for radiation therapy con-
sists of a kilovolt X-ray source, a patient couch, and an amor-
phous silicon flat-panel detector (Varian PaxScan 4030CB). It
was operated for our measurements at a source to isocenter dis-
tance of 996.3 mm and a source to detector distance of 1490.8
mm. The gantry rotates in an angular range of £185° and with
isocenter accuracy less than 1 mm diameter when there is no ac-
cessory load. The rotation speed is up to 360°/min. The detector
has 2048 x 1536 pixels, each with a size of 0.194 x 0.194 mm?2.
In our measurement, the detector was operated in a 2 X 2 re-
binned mode and the data were stored as 16-bit values. The fan-
and cone-angle are 15.2° and 11.4°, respectively, where the fan-
angle is the angle in the midplane and cone-angle is the angle
in the plane vertical to the midplane. Circular cone-beam data
were collected from the head phantom at 683 projection views
distributed over 27. In the original dataset, the head phantom
was almost covered by the total FOV and truncated only in a
very small peripheral region. In an effort to stimulate a situa-
tion of data truncation, we manually set 227 columns of pixels
in each side of the detector to zero.

2) Image Reconstruction From Real-Experimental Data: We
have used both the original experimental data and the manu-
ally generated truncated data to reconstruct images. In Fig. 11,
we show images reconstructed from the original data by use
of the FDK algorithm (upper row), the BPF algorithm in (17)
(middle row), and the weighted BPF algorithm in (19) (lower
row), respectively. The first to fourth columns show the im-
ages within planes specified by x = 0,y = 0, z = 0, and
z = —33.8 mm. The display window is [0.017, 0.030] mm—!.
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Fig. 7. Sagittal slices (2 = 0) in 3-D images reconstructed by use of (a) the FDK algorithm, (b) the BPF algorithm in (17), and (c) the weighted BPF algorithm in
(19), respectively, from noiseless data containing no truncation generated with a disk phantom. Display window is [0, 2]. Profiles along central columns in image
(a) and (c) are plotted in (d) with dashed-dotted and solid curves, respectively. Corresponding true profile in the original phantom is also plotted with a dotted curve.

The displayed FOV size is 251.0 x 251.0 x 125.5 mm?. We
also show in Fig. 12 profiles on lines specified by (a) z = 0,
z = 0and (b) z = —33.8 mm, z = 0 in images displayed in
Fig. 11 obtained by using the FDK algorithm (dotted curve) and
the weighted BPF algorithm (solid curve). As can be seen from
these results, in the situation of no truncation (almost), three al-
gorithms generate similar images except that their noise proper-
ties are different. The images obtained with the FDK algorithm
appear noisier than those obtained with our proposed two algo-
rithms, but the resolution was not exactly matched either. Fur-
thermore, the weighted BPF algorithm generates images with
lower noise level and less artifacts than does the BPF algorithm
because of the exploitation of the redundant information.

In Fig. 13, we show images reconstructed from the gener-
ated truncated data by use of the FDK algorithm (upper row),
the BPF algorithm in (17) (middle row), and the weighted BPF
algorithm in (19) (lower row), respectively. The first to fourth
columns show the images within planes specified by = = 0,
y = 0,2z = 0,and z = —33.8 mm. The display window
is [0.017, 0.030] mm~!. The displayed FOV size is 147.4 x
147.4 x 73.7 mm>. We also show in Fig. 14 profiles on lines
specified by z = 0, z = 0 [Fig. 14(a)] and z = —33.8 mm,
x = 0 [Fig. 14(b)] in images displayed in Fig. 11 obtained by

using the FDK algorithm (dotted curve) and the weighted BPF
algorithm (solid curve).

Images displayed in Fig. 11 were obtained from data with
almost no truncation, they can thus be considered as true images.
Comparing results in Figs. 13 and 14 with those in Figs. 11 and
12, one can observe that data truncation results in severe artifacts
in images obtained with the FDK algorithm. In contrast, ROI
images reconstructed by use of the proposed BPF algorithms
are free of truncation artifacts.

IV. DISCUSSION

In this work, we have presented new algorithms for image
reconstruction from projection data acquired in circular
cone-beam CT. These algorithms make use of the PI-line
concept developed for exact image reconstruction in helical
cone-beam CT. Image reconstruction on Pl-lines allows for
exact ROI image reconstruction from truncated data in the
setting of a helical scan [19], [20]. In this article, we use the
virtual PI-line concept that allows for approximate image
reconstruction for the imaging volume away from the midplane
of the circular-scan orbit. The most important feature of the
new algorithms is that they allow for ROI reconstruction from
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Fig. 8. Two-dimensional slices in 3-D images reconstructed by use of the FDK algorithm (upper row), the BPF algorithm in (17) (middle row) and the weighted
BPF algorithm in (19) (lower row), respectively, from noiseless data generated from the truncated cone-beam scan. First to fourth columns represent the 2-D slices

in planes of x = 0, ¥y = 25 mm, z = 0, z = 6.4 mm, respectively. Display window is [1.0, 1.04].

1.10 i 1.10
ifi:
i i

1.05 i 1 1.05f i 1
I S o B
( H

Loo—gj . 1.00F i .
: : :

0.95F il 4 0.95f A
| |

0.90 L . . . 0.90 . . .

-100 -50 0 50 100 —-100 -50 0 50 100
z (mm) y (mm)
(@) (b)

Fig. 9. Profiles in images displayed in Fig. 8 along (a) * = 0, y = 25 mm and (b) # = 17 mm, z = 0. Solid and dashed-dotted curves represent the results
obtained by use of our algorithm in (19) and the FDK algorithm, respectively. Ttrue profiles (dotted curve) in the original phantom are also plotted.

truncated data, free of the artifacts due to this truncation in the
projection data.

Both the FDK and BPF algorithms can approximately recon-
struct images from circular cone-beam data. The approxima-
tions invoked in the two algorithms are different, yielding dif-
ferent images within off-midplanes. In the absence of data trun-
cation, the differences between images obtained with the two
algorithms appear to be dependent on several factors such as
cone angle, trajectory radius, and object structures. It will be
interesting to analyze in future studies how the impact of ap-
proximations made in the two algorithms precisely differ from
each other.

In the work reported here, we have used the virtual circular
trajectories within planes parallel to the midplane to construct
the virtual PI-lines. One can certainly choose other types of vir-
tual trajectories and the corresponding virtual chords. Because
the BPF algorithm for reconstructing chords of a general trajec-
tory has been developed [32], one can readily apply it to recon-
struct images on virtual chords. It is an interesting topic to in-
vestigate image reconstruction for different types of virtual tra-
jectories and virtual chords. In particular, it is worthy to identify
the virtual trajectory and conditions under which the identified
trajectory performs more optimally than other possible virtual
trajectories.
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Fig. 10. Two-dimensional slices in 3-D images reconstructed by use of the FDK algorithm (upper row), the BPF algorithm in (17) (middle row), and the weighted
BPF algorithm in (19) (lower row), respectively, from noisy data generated from the truncated cone-beam scan. First to fourth columns represent the 2-D slices in
planes of + = 0, y = 25 mm, z = 0, z = 6.4 mm, respectively. Display window is [1.0, 1.04].

Fig. 11. Two-dimensional slices in 3-D images reconstructed by use of the FDK algorithm (upper row), the BPF algorithm in (13) (middle row), and the weighted
BPF algorithm in (19) (lower row), respectively, from original data obtained from the Acuity cone-beam CT system. First to fourth columns represent the 2-D
slices in planes of x = 0,y = 0, z = 0, z = —33.8 mm, respectively. Display window is [0.017, 0.030] mm—".

There are potentially great practical benefits for the pro-
posed BPF-based ROI-reconstruction algorithms for circular
cone-beam CT. The proposed algorithms can aid in scans
where, due to detector size constraints, some views are trun-

cated. For example, this could occur in chest scanning where
the shoulders might be truncated for some views. Another
obvious advantage of the proposed algorithms is the potential
application to dose reduction. Often times clinicians are only
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Fig. 12. Profiles in images displayed in Fig. 11 along (a) z = 0, 2 = 0 and (b) z = —33.8 mm, 2 = 0. Dotted and solid curves represent the results obtained
from the FDK and the proposed algorithm in (19), respectively.

Fig. 13. Two-dimensional slices in 3-D images reconstructed by use of the FDK algorithm (upper row), the BPF algorithm in (13) (middle row), and the weighted
BPF algorithm in (19) (lower row), respectively, from generated truncated data obtained from the Acuity cone-beam CT system. First to fourth columns represent
the 2-D slices in planes of # = 0,y = 0, z = 0, = = —33.8 mm, respectively. Display window is [0.017, 0.030] mm~—*
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Fig. 14. Profiles in images displayed in Fig. 13 along (a) z = 0, = 0 and (b)

—33.8 mm, 2 = 0. Dotted and solid curves represent the results obtained
from the FDK and the proposed algorithm in (19), respectively.

interested in viewing a small subvolume of the patient. The
algorithms presented here can allow the X-ray beam to be
confined to exposing a smaller region of the body that includes

the ROI. The reduced scanning angle of the ROI reconstruction
algorithms for circular cone-beam CT can also reduce the
required scanning time and radiation dose.
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APPENDIX |
DISCONTINUITY IN THE WEIGHTED BPF ALGORITHM

Substitution of w(u, A) = Ho(u, A)wo(u, A) into (19) yields

7(:0)) (a:;r, )‘17 >‘27 ZO)
Amax

2
:/d)\ S 7]

[R— - &, (N)]

Amin

x Ewo(u,A)P(u,v,A)]

Amax
52 R
+ / d)\m ZWO(U,)\)P(U,’U,)\)

Amin

0 w(u, \)P(u,v,\) Amax
S AN oY

B (24)

Amin

Noticing that (22) can be written as

Hy(u,\) = sgn (Sin (/\ — arctan — — 9)) (25)

S

one can express the derivative of the Ho(u, A) function as

% [Ho(u, \)] = =26 (sin (/\ - arctan% - 0))

X COS ()\ — arctan % — 6) (26)

w2+ S2

Using the expression of (26), one can rewrite the second term
in (24) as

Amax
52 R
Ty= -2 [ dA—" Zu(u, A
’ A/ =7 enp A

X P(u,v,\)é (sin ()\ — arctan % - 0))

X COS ()\ — arctan % - 0) 27

w24 S5
For a point (x7., A1, A2, 20), on the Pl-line segment, sin(A —
arctan(u/S) — #) = 0 has two solutions, which are A\; and A.

Considering the property of the ¢-function, one can re-express
(27) as

2

52 R
Ty = —2 —wo(u, \;)P(u,v, \;
’ ; [R— - &, (\)] A ol A )
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On the other hand, one can calculate
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Using this result in (28) yields

2
52 R
Ty = —2 —wo(u, A\j)P(u, v, \;
: HIR-7-e,(N)] A ol A )
“ sgn (cos ()\1- — arctan g — 0)) ‘ S
s SR u? + 52
u?+S52 R—7"-&,(\) A=)
~ 2wo(u, A)P(u,v, A) A2 (30)
[ =7 (M| 4,
in which we have invoked
cos (/\1 — arctan% — 9) =1
cos (/\2 - arctan% - 9) = —1. (€2))

Finally, replacing the second term of (24) with (30), one obtains
(23).
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