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ABSTRACT

We propose a source trajectory for cone-beam geometry that
satisfies the conditions for exact 3D reconstruction in the
largest sphere that remains non-truncated in the field of view
of a given source detector combination. The source trajec-
tory is a natural variation of the traditional circular source
trajectory and is achieved by modulating the elevation of the
source from the equatorial plane. We use a shift variant fil-
tering approach in developing a filtered back-projection al-
gorithm for robust, and computationally efficient volumet-
ric reconstruction. The method is theoretically exact, and
we show some results based upon simulation studies using
a mathematical phantom.

1. INTRODUCTION

Exact reconstruction in cone-beam geometry has been an
exciting topic of research in the last few decades. The the-
oretical contributions have been mainly two fold. One in
laying down the sufficient and necessary conditions on the
source trajectory [1, 2]; and the other in actually provid-
ing the solution for solving this complex inverse problem
[1,3,4,5,6,7].

With the advent of multi-row detectors in CT scanners,
these theories have been extensively exploited to yield exact
multi slice reconstruction using helical trajectories [7, 8, 9,
10]. With C-arms however (such a trajectory being unnatu-
ral) there have been other suggestions like a circle and a line
[11], two orthogonal circles [6], etc. While a helix is a natu-
ral extension of a circle (since it requires only an additional
translation), this is not so with these suggested trajectories.
This is primarily why there has not been a natural develop-
ment towards practical algorithms for exact reconstruction
in C-arms. Though circular trajectories do not satisfy the
conditions for exact reconstruction, armed with the com-
putational simplicity of filtered back-projection algorithms
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(like Feldkamp et al, [12]), they continue to dominate the
world of C-arms.

Fig. 1. The wobble trajectory

In this paper, we suggest a source trajectory for exact re-
construction that is a natural extension of the circle. Keep-
ing in mind the ability of C-arms (especially the ceiling
mounted ones) to perform rotation about a combination of
at least two perpendicular axes we chose to restrict the tra-
jectory onto the surface of a sphere. We suggest that while
the source rotates about a fixed axis in a circular fashion, it
should also simultaneously wobble up and down (see Fig.
1) about another perpendicular moving axis. In order to in-
vert the projections, we adapt the theory of Defrise et al [5]
to this specific geometry. While this approach maintains the
attractive feature of the filtered back-projection architecture
it allows us to exactly reconstruct any region bounded by
the largest sphere centered at the iso-center that would fit
inside the cone of a given source detector system.

2. BACKGROUND

The condition for exact reconstruction in cone-beam tomog-
raphy (Tuy’s principle, [1]) requires that every plane pass-
ing through the object support intersect the source trajectory
at least once. It also requires that the projections remain
non-truncated within the field of view (FOV) of the imag-
ing system. For a source trajectory that is composed of a
single continuous segment, Chen proposed the following.
The region that can be exactly reconstructed includes that
part of the object support that lies within the convex hull of
the source trajectory [2]. This follows naturally from Tuy’s
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principle. We refer to such source trajectories as being com-
plete.

There have been many methods proposed that can pro-
vide exact reconstruction from complete trajectories. These
can be broadly classified into two kinds: (i) re-binning al-
gorithms, (ii) filtered back-projection type algorithms. The
re-binning class of algorithms involve filling up an interme-
diate function related to the 3D Radon transform of the ob-
ject, as suggested by Grangeat [3] and Smith [4], followed
by inversion of this function to obtain the reconstruction.
The filtered back-projection (FBP-type) algorithms have a
simpler architecture (similar to that of approximate methods
like Feldkamp et al, [12]) that makes them preferable over
the first kind. Kudo et al, [6] and Defrise et al [5] proposed
a shift-variant filtering approach by unifying Grangeat’s and
Smith’s theory. The most recent advance in reconstruction
theory being a truly shift invariant FBP approach as shown
by Katsevich [7] for application in helical CT.

There have also been many suggestions for complete
trajectories that employ one of the methods mentioned above
for specific applications in SPECT, helical CT etc. Zeng et
al [11] employed Smith’s method for a circle and orthog-
onal line geometry that was suitable for SPECT imaging.
Various methods have also been proposed in helical CT that
solve the long object problem and deal with axial trunca-
tion [7, 8, 9, 13]. Unfortunately, the application of exact
reconstruction theory in C-arm reconstructions has been rel-
atively unpopular. It is our goal in this paper to both present
a trajectory capable of exact reconstruction and demonstrate
a practically efficient method.

3. METHODS

3.1. The Wobble Source Trajectory

In this section we describe the wobble trajectory. We use the
notion of a virtual planar detector that is located at a fixed
distance D (focal length) from the source. The width of the
detector is given by the angle it subtends at the source, also
known as the cone angle 5. The source detector normal de-
fines the origin of reference that always lies on the virtual
detector. The orientation of the detector is thus entirely de-
pendent on the source position, which is in turn given by
(see Fig. 2),

a(A\) = DcosAcostx + DsinAcos Ty + Dsintz

where, 7(\) = gsin@)\) and A €[0,27] (1)

Here, the trajectory is entirely parameterized by the scalar
A while the elevation of the source from the central plane
(z = 0) is 7. The modulation of 7 causes the source to
wobble above and below the equatorial plane. Given a fixed
cone angle (3, and fixed focal length D, it is easy to show

Fig. 2. The source detector geometry

that the largest sphere that remains non-truncated at the iso-
center has aradius rp = D sin(%). It can be shown that the
convex hull of this source trajectory entirely includes this
sphere.

3.2. Shift Variant Filtered Back-Projection

We use the method described by Defrise et al [5] for the
purpose of inversion. For a more detailed explanation of the
intermediate functions please refer to [5]. Let the projected
image from a source point a(\) be given by g(z, y, A). Then
using the notations as depicted in Fig. 2, the reconstruction
formula is given by,

2m
— 1 F
f(X) *A d)\|x—a()\)|g (Z,y,A) (2)

where, x € R3, |x| < rp and the filtered projection
gF (@9, \)

i 0 S1(s,u, N)
— $2+ 2+D2 / d <_#
( Y ) 0 : s Vs? + D? s=x cos u+ysin p
(€)

where s and p are the sinogram coordinates in the image
plane, and S1 (s, i, A) is an intermediate function given by

-1
Si(s, 1, A) = 4—7_‘_2M(57Na A)

al (A) - (s, 1, \)| S(5,11,)
“)

where é(s, 1, A) is the unit normal of the plane that passes
through the source position a(A) and intersects the image
plane on the line (s,u). S(s, i, A) is related to the projected
image as follows,

24+ D?2/0
S(Sa,uﬂ)‘) = % <$R(gl)(sa,u'7>‘)> (5)

where, R(g1)(s, u) =

Dg(z,y,\)

// dacdy—2 = =
Vvt +y?+ D

d(s —xcospu —ysiny) (6)
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The algorithm is implemented by tracing these steps back-
wards. Eq. (6) is merely the sinogram of the scaled pro-
jection. This sinogram is then differentiated and scaled in
(5). The intermediate function evaluated in (4) consists of
a couple of trajectory dependent terms that we will evaluate
in the next section. The intermediate function is then scaled
and differentiated once more before being back-projected
onto the 2D image plane, giving the shift-variying filtered
projection in (3). The filtered projections are then simply
3D back-projected appropriately to yield the reconstruction
in (2).

3.3. Evaluation of Trajectory Dependent Terms

Let (13, 1;,12) define the orthogonal co-ordinate system of
a detector pose for a given source position a(\). From (1)

it can be shown that

lif = —sinAX + cos \y @)
12‘ = —cosAsinTXx —sinAsin7y 4+ cos7z  (8)
12‘ = CoSAcosTX + sin AcosTy + sin 7z )

and using Eq. (27) in [5], we get

0 = (Dcospl) + Dsinpl) +s12)/\/s2 + D2 (10)
Using Egs. (1,7-10), it can be shown that

- Ds
AN = o
N D? (cos T cos pu + 7' sin 1)
‘A0 = 12
2(0) il 12

The intermediate function is hence evaluated as

S1(s, 4, A) M(s,p,A) O

o Nl ¥ o /R i s VAl A 13
Vs?+ D2 m o gsrEmd) 13
M(s,p1,\) = M(s, 11, \) |cosT cos 4 7' sin | (14)

The weighting function M (s, u, A) is used to handle data
redundancy. Consider the plane é(s, 1, A), that intersects
the source trajectory at a(\). If this plane also intersects the
source trajectory at various other points, it is necessary to
distribute the contributions arising from these simultaneous
measurements. It is also necessary for this weight to vanish
if the intersection of the plane with the trajectory is tangen-
tial at a(\). Such a weighting scheme may be arrived at by
using the following expression as suggested in [5]:
m
c(A)

o (15)

‘ c(Aa)

al(>‘) ’ é(sv s >‘)

n(6,\)
Dot

M(s,p, A) =

a'(Ao) - 0(s, 1, A)

where n(é , A) is the number of solutions for the intersection
of the plane 6(s, 11, A) with the source trajectory, and A, are

the solutions. m is chosen to be a fixed positive integer. For
closed trajectories, (no boundaries) ¢(A) may be set to the
value 1 everywhere. M (s, i, A) needs to be evaluated over
the domain \ € [0, 27], u € [0, 7], and s € [—e, +¢] where
e is half the length of the main diagonal of the detector. Due
to the lack of a closed form expression for the solutions of
intersection, a computationally intensive procedure is used
for the calculation of the weights. Since this needs to be
done only once, it is not of great concern. One can take
advantage of the symmetry of the wobble trajectory to show
the following

M(s, p, A) M(s, p, 7™+ N) (16)
M(s,p,\) = M(=s,7—p7/24+X) (17
M(s,pi,\) = M(s,m—pu,m/2—N) (18)

Thus the weights have to be evaluated only over A €
[0,7/4]. The computation of the weights over this range
was implemented numerically in the following manner. Given
any plane (by specifying s, u, and A), solve numerically for
all )\, that satisfy Eq. (11). Corresponding to every source
position a(\, ), this plane intersects the detector on a line
given by (Sq, fia ). Comparing the right side of Eq. (11) for
different s, its easy to see that s, = s. Observe using Eqgs.
(7-10) that,

ssin T, + D sin p,, oS Ty,
VD? + 52

Use this equation to evaluate sin p, conclusively. In a simi-

lar fashion, cos p, can be determined by using 6 -x or 6 - y.

Finally the overall weighting function M (s, i, A) is evalu-
ated using Eqgs. (12,14, and 15)

0.5 —

19)

4. RESULTS

For the purpose of simulation we used a mathematical phan-
tom comprising of 7 discs (thickness 10 mm, radius 65 mm)
that were stacked axially with their centers 20 mm’s apart.
The projections were simulated using a software called Take
[14] on a square virtual detector (512x512) from a focal
length of D = 750 mm and cone angle § = 15°. We ran
two sets of experiment, one obtaining projections on a full
circle, and the other obtaining projections on the wobble
trajectory as described in (1). Fur the purpose of recon-
struction, we used Feldkamp’s algorithm [12] to obtain a
reconstruction from the projections obtained on a full cir-
cle, and used the method described in Sect.3 (using m = 4)
to obtain a reconstruction from the projections obtained on
the wobble trajectory. The back-projection steps were effi-
ciently implemented by using projection matrices [15].

In Fig. 4 we show a central sagittal slice through the
original phantom, the Feldkamp reconstruction and our re-
constructed volume. The results clearly show that our re-
construction does not suffer from the axial blurring artefact

934



(a) (b) (©

Fig. 3. Central sagittal slices of (a) reference phantom; (b)
Feldkamp reconstruction from a full circle scan; and (c) Ex-
act reconstruction from wobble trajectory.

that is typical of reconstructions from planar source trajec-
tories. While Feldkamp’s algorithm is exact in the central
plane, and reasonable for small cone angles, it clearly dete-
riorates further away from the central plane. Our method,
on the other hand shows considerable improvement in the
reconstruction of these discs.

5. CONCLUSION

We have presented some preliminary results for a non-planar
source trajectory that allows us to exactly reconstruct the
entire 3D region enclosed within the field of view of any
cone-beam geometry. It can be shown that our trajectory
satisfies the completeness conditions required for exact re-
construction of such a region. A shift-variant filtered back-
projection method has been used for the purpose of recon-
struction. We have provided a detailed explanation of how
the redundancy weights may be numerically evaluated. The
weights need to be evaluated only once, and play a critical
role in the exactness of the reconstruction.
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