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ABSTRACT

Our recently published 3D-3D deformable image registra-

tion algorithm, Mjolnir (Ellingsen et al., 2006) was de-

veloped for inter-subject registration of MR brain images.

Mjolnir is a hybrid registration method, where both anatom-

ical features and image intensities are used to hierarchi-

cally align the images. In addition to the hierarchical scheme,

the algorithm was implemented in a multi-resolution frame-

work, which both reduces local minima and speeds up the

registration process. In this paper an extension to this work

is proposed, where Mjolnir has been adapted to register CT

images of the pelvis. The main concepts of Mjolnir will be

briefly described and the changes made to previous work

explained. The algorithm was tested on CT images of the

pelvis of 13 different subjects. Results indicate good regis-

tration accuracy however, further validation is needed.

1. INTRODUCTION

Deformable inter-subject image registration is the process

of spatially aligning images of different subjects into a com-

mon reference frame so that they can be compared either

visually or statistically. During the last few years the need

for development of different deformable registration meth-

ods has emerged from different clinical applications, such

as longitudinal studies and surgical planning [1–7]. The

motivation for the extension to our work from MR brain

images to CT pelvis images was the need in our research

group to create an anatomical atlas for atlas assisted to-

mography. The proposed registration method was used to

register a set of CT images. The resulting displacement

fields were then used to align 3D tetrahedral meshes of the

subjects to build a statistical anatomical atlas for compen-

sation of missing views in a limited angle cone-beam tra-

jectory [8].

In this paper the basic principles of our previous work

on 3D-3D deformable registration of MR brain images [7],

upon which this paper builds, will be reviewed. Modifica-

tions made to adapt the algorithm to deal with CT pelvis

images will be explained and results of the proposed regis-

tration method shown.
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Fig. 1. Pre-processing of the CT data to remove irrelevant

elemtents from the image and segment the bone.

2. METHOD

2.1. Pre-processing

CT images not only contain objects of interest but also

some background elements, like the scanner table. Since

our algorithm is based on feature selection and alignment,

it was preferred not to have the program spend time align-

ing features that were irrelevant to our research purpose.

Therefore, all such background features were eliminated

from the images (see Fig. 1a). Furthermore, since the ul-

timate objective of our work was to use the results to gen-

erate a pelvic bone atlas, the strong edge feature between

the background and the soft tissue of the patient was re-

moved. This also led to better registration results of the

bone because of the challenge of allowing large displace-

ments in the soft tissue while maintaining more rigidity in

the bone structure due to much smaller variability in bone

tissue size compared to soft tissue size (see Fig. 2). Fi-
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Fig. 2. High variability in soft tissue compared to bone

tissue between different subjects.

Fig. 3. Demonstration of primary driving voxel selec-

tion on the second class image from the fuzzy segmenta-

tion. Small bone volume is contained in spherical neigh-

borhoods around edge points on high curvature regions like

the iliac crests.

nally, because of the high deformability and thus extreme

shape difference of the intestines between different sub-

jects, the intestines were eliminated from the images as

well. The complete cleaning process was performed by

filling the background and all unwanted elements of the im-

age with approximate soft tissue values, which produced a

nice segmentation of the bone from its surroundings (see

Fig. 1a). After the cleaning process the images were seg-

mented into three membership classes, approximately cor-

responding to background (class 1), marrow (class 2), and

bone (class3) (see Fig. 1b). The Fuzzy And Noise Tolerant

Adaptive Segmentation Method (FANTASM) [9, 10] was

utilized in the segmentation process. The three classified

images are the base of the feature extraction of our reg-

istration algorithm (section 2.2). A demonstration of the

complete pre-processing procedure is shown on Fig. 1.

2.2. Attribute Vectors and Driving Voxels

Two of the most important elements of Mjolnir are attribute

vectors and driving voxels. Information about the image

intensity and derived local features are concatenated into

an attribute vector, which is computed at every voxel of

both the template and subject images. The vector consists

of three parts. The first part is a 1×1 vector that represents

the edge type of the voxel, the second part is a 1× 1 vector

of the voxel’s CT image intensity, and the third part is a

9 × 1 vector of geometric moment invariants (GMIs). The

GMIs are formulated from the zero-order and second-order

3D regular moments in the following way:

I1 = M0,0,0

I2 = M2,0,0 + M0,2,0 + M0,0,2

I3 = M2,0,0 × M0,2,0 + M2,0,0 × M0,0,2

+ M0,2,0 × M0,0,2 − M2
1,0,1 − M2

1,1,0 − M2
0,1,1 ,

where

Mp,q,r =

∫∫∫

(x1)2+(x2)2+(x3)2<R2

G

xp
1x

q
2x

r
3fm(x1, x2, x3) dx1 dx2 dx3

is the (p+q+r)-th 3D regular moment and fm is one of the

membership class images (as in Fig. 1b). The three GMIs,

I1, I2, and I3, are computed on a spherical neighborhood of

radius RG around each voxel for each of the three member-

ship classes based on the fuzzy segmentation of the image.

This combination of derived image features and the orig-

inal image intensities gives a rich enough attribute vector

to locally represent the underlying anatomy of each voxel

and make it possible to automatically find correspondence

between the two images.

When an attribute vector has been computed for every

voxel in both the template and subject images, distinctive

driving voxels can be automatically identified. These are

the landmark points that drive the registration process. The

driving voxels are hierarchically selected such that strong,

reliable features are aligned first. On MR brain images such

points are located on the highly convoluted brain cortex [7].

On CT pelvis images on the other hand, such primary driv-

ing voxels are located on high curvature points on the bone,

such as the iliac crests. Therefore, one of the main modi-

fications to be made from our previous work was to adjust

the driving voxel criteria.

There are two main reasons why voxels on regions like

the iliac crests have distinctive attribute vectors. First, if we

consider the second class image from the fuzzy segmen-

tation we can see that they have high curvature and that

therefore there is a small bone volume within a spherical

neighborhood around an edge point on the iliac crests (see

Fig. 3). This property is represented by the first GMI, I1.

The I1-image for each class contains the segmented image

after filtration by an average filter with a spherical mask.

Hence, this element of the attribute vector can be used to

automatically identify distinct and reliable primary driving

voxels. Second, the number of voxels that belong to the il-

iac crests is relatively small compared to other pelvic vox-

els, so only a few voxels in their neighborhood will be good

matching candidates. After aligning the primary driving

voxels, more voxels are gradually added to the set of driv-

ing voxels until every voxel in the template image becomes

47



Fig. 4. This figure demonstrates the multi-resolution

scheme in Mjolnir and shows results from registering two

real CT images using the new algorithm. Li, Mi, and Hi

are the input images for low, middle, and high resolution

respectively. Lt, Mt, and Ht are the template images at the

corresponding resolutions. The bottom right image in each

set of three is the result for each resolution. The yellow

lines are the same on all the images and are displayed for

reference. They represent the outline of the first class from

the segmentation of the template image.

a driving voxel in the last few iterations. This hierarchi-

cal strategy minimizes the number of sub-optimal corre-

spondences at an early state in the registration process and

makes the algorithm more robust.

2.3. Correspondences and Feature Diffusion

Once driving voxels have been selected the next step is

to find landmark correspondences from which to drive the

registration process. Correspondences are found for ev-

ery driving voxel by comparing attribute vectors and mini-

mizing their similarity between matching voxels. Both the

template and subject images have driving voxels and there-

fore, the matching is performed in two directions, i.e., from

template to subject and vice versa, which makes the corre-

spondences more consistent. However, the displacement

vectors are all defined in the domain of the template, which

means that if one template driving voxel has two different

displacement vectors attached to it (i.e., one from each di-

rectional matching process), these vectors are combined to

generate one final displacement field in the domain of the

template.

Because of the hierarchical driving voxel scheme a very

important next step is to interpolate the derived displace-

ment vectors to produce a smooth displacement field for ev-

ery voxel in the image. This is done by using the displace-

ment vectors as constraints in a partial differential equation

(PDE). A fast multi-grid method [11] was used to solve the

PDE

g∇2
v − p(v − u) = 0 , (1)

Fig. 5. A total of 12 different subjects selected for valida-

tion study. The template image is shown in the red box.

where ∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 is the Laplacian

operator, v is the interpolated displacement field, and u

is the initial, sparse displacement field computed from the

correspondences at the driving voxels. The scalar functions

p and g are weighting functions that control the closeness

of the displacement field v to the correspondence field u

and the smoothness of v, respectively. The equilibrium so-

lution v provides a displacement field, which is allowed

to follow the displacement vectors closely where there are

many strong reliable feature matches (like the iliac crest),

while producing a smooth displacement field elsewhere.

The smoothing control, g, was set to be higher through-

out the registration process for bone images than for brain

images, since the bone has bulkier flat surfaces than the

brain.

2.4. Multi-resolution Scheme

In order to allow larger displacements and to speed up con-

vergence the algorithm was implemented in a multi-resolution

framework. First, the images were downsampled by a fac-

tor of four and the registration procedure run until the al-

gorithm converged. Then the resulting displacement field

was upsampled to generate an input image for the next res-

olution. This procedure was repeated for three resolutions

until the final result had the same resolution as the original

images. This is demonstrated in Fig. 4. A global alignment

was achieved after the low resolution registration and then

fine details were captured on the higher resolution results.
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Fig. 6. Average of 12 pelvis images (a) before registration (b) after registering each image to a template image using the

modified Mjolnir algorithm. (c) Template image. Two different axial slices are shown.

3. RESULTS

The average of deformed images is often used to visually

assess the accuracy of registration algorithms. A total of 12

CT images of the pelvis with variability in shape and size

were selected (see Fig. 5). The modified Mjolnir algorithm

was then used to register them all to a 13th template image

and the average of the 12 warped images computed. Fig. 6

shows two different slices of the average of the 12 images

both before and after the registration. In comparison, the

corresponding slices of the template image are shown as

well. The average image after registration is quite sharp

and even the smallest details from the template image are

visible on the average image, which is an indication of good

accuracy of our algorithm.

4. CONCLUSIONS

The 3D-3D deformable registration algorithm Mjolnir was

modified to be able to register CT images of the pelvis. A

total of 12 subject images with high variability in shape

and size were selected for a validation study of the mod-

ified algorithm. The proposed method was used to regis-

ter the images to a 13th template image and the average

of the warped images computed. The results indicate high

registration accuracy however, further validation studies on

the performance of our algorithm in registering pelvis im-

ages is needed. In future work, the algorithm could be ex-

tended to be able to capture large deformations in highly

deformable soft tissue while maintaining more rigidity in

the bone tissue of the pelvis.
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