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Abstract
A tomosynthesis-based prostate brachytherapy seed localization method is described. Gaussian-
blurred images are computed from a limited number of X-ray images, and a 3-D volume is
reconstructed by backprojection. Candidate seed locations are extracted from the reconstructed
volume and false positive seeds are removed by optimizing a local cost function. In case where the
estimated pose error is large, a self-calibration process corrects the estimation error of the intrinsic
camera parameters and the translation of the pose in order to improve the reconstruction.
Simulation and phantom experiment results imply that the implanted seed locations can be
estimated from four or five images depending on the number of seeds. The algorithm was also
validated using patient data, successfully localizing the implanted seeds.

1 Introduction
Prostate cancer is one of the leading cancers in men in North America and brachytherapy is
a definitive treatment for low risk prostate cancer, which involves permanent implantation of
radioactive seeds into the prostate. Its success mainly depends on the ability to treat the
target gland with a sufficient amount of therapeutic dose while sparing adjacent healthy
organs from excessive radiation. Even if a preoperative implantation plan is made based on
idealistic seed patterns and an ultrasound volume study, errors are usually introduced during
the actual implantation procedure due to various reasons e.g. patient motion, deviation of the
needle, and edema. In order to overcome these limitations, intraoperative planning under the
guidance of ultrasound and fluoroscopy was proposed.

There are various approaches to localize brachytherapy seeds from a limited number of X-
ray images. There are correspondence-based methods which solve seed matching problems
between identified seeds in different images [1, 2, 3, 4, 5, 6, 7]. These methods require
accurate identification of the seeds in all images because incorrect localization of the seeds
will cause undetected seeds in 3-D reconstruction. However, it is hard to perfectly identify
the seeds in all images, since typically up to 7% of the seeds can be hidden in the X-ray
images [6]. The unidentified seeds are usually recovered manually and sometimes requires
extra X-ray images, which is time consuming. It is sometimes impossible to recover them
when seeds are completely hidden in some unsuspected constellation.
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Tutar et al. [8] proposed a selective backprojection method which is a modified
tomosynthesis technique. However their seed detection and false positive (FP) seed removal
process is very sensitive to the C-arm pose estimation errors since their detection process is
based on the detected seed size. A tomosynthesis algorithm based on a distance map was
previously developed [9] to compensate for the pose estimation errors. However, sometimes
the reconstruction is severely deteriorated when any of the estimated C-arm poses has
relatively large errors.

In order to make the reconstruction robust to the C-arm pose and calibration errors, a self-
calibration process using candidate seeds detected from an initial reconstruction based on
the Gaussian-blurred images is introduced.

2 Methods
2.1 Image Acquisition, Calibration and Gaussian Blurring

X-ray projection images are acquired from a C-arm within a limited angle, e.g. ≤20° due to
the limited space in the operating room near the patient. Each image is calibrated and its
geometric distortion is corrected by the parameters previously computed from calibration
phantom images. For each image, the pose of the C-arm is computed using a fluoroscope
tracking (FTRAC) fiducial originally developed by Jain et al. with an estimation accuracy of
0.56 mm in translation and 0.33° in orientation [10].

Since the background is highly nonuniform in actual patient images and the size of the seeds
are very small, the nonuniform background can be extracted by dilation and is subtracted
from the original distortion-corrected image. The seed cloud region in each image is selected
by semi-automated morphological operators and binary seed-only images are computed
from the background-subtracted images by adaptive thresholding. Euclidean distance
between each pixel and its nearest seed region is computed by distance transform and an
unnormalized Gaussian-blurred image is computed by the following equation.

(1)

where I(·) is the Gaussian-blurred image, x ∈ R2 is the pixel location in the image, d is the
distance map of the image, and σ2 is the variance which controls the blur width. Since we do
not need to identify all seeds in the 2-D images, overlapping seeds are simultaneously
considered to be at zero distance. The pixel value inside the seed regions is 1 and the pixel
value tapers down as the distance between the pixel and the nearest seed region increases. σ2

is determined depending on the size of the seeds and the pose estimation errors. The
fundamental idea of this approach is that a pixel closer to the seed region in the seed-only
image has higher probability that it belongs to the true seed region, while a pixel farther
from the seed regions has lower probability of belonging to the true seed region.

2.2 Volume Reconstruction and Candidate Seeds Detection
Projection matrices are first computed for both reconstruction and cost computation for FP
seeds removal based on the intrinsic camera parameters computed by the calibration
phantom and the extrinsic camera pose of the C-arm computed by the FTRAC, and then a 3-
D volume is reconstructed using backprojection, which is equivalent to a generalized form
of tomosynthesis for arbitrary orientations. Since the reconstructed voxels take values
between 0 to 1 due to the nature of the Gaussian-blurred images, candidate seed regions can
be extracted by thresholding. The threshold varies within a small range, e.g. 0.9–1.0, thus
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making the automatic thresholding possible. The extracted seed regions are labeled using
connected component labeling. Each labeled seed region is considered as a candidate seed
and its centroid is computed by averaging the 3-D coordinates of the voxels in that region.

2.3 Camera Self-calibration Using Detected Candidate Seeds
Gaussian blurring makes the algorithm more robust to the C-arm pose estimation errors than
other tomosynthesis-based approaches. However, it is often necessary to correct the
estimated pose especially when the estimation errors are large. Large errors in pose
estimation easily deteriorate the reconstruction and lower the candidate seed detectability.

In general, the focal length and the origin of the image are computed using the calibration
phantom prior to the operation, and the pose of the C-arm at each pose is estimated by the
tracking system (in our case, the FTRAC system). However, the focal length and the origin
of the image vary as the pose of the C-arm changes, which causes errors in the pose
estimation. Through various simulations, the orientation estimation of the FTRAC was
robust, but the translation estimation was a little sensitive to these variations [10, Sec. III].
Thus if a residual error of the pose estimation is relatively large, re-calibration and pose
correction (especially for translational error correction) are required to improve the
reconstruction. The incorrectly estimated intrinsic camera parameters and the pose of the C-
arm can be automatically adjusted based on the Gaussian-blurred images and the candidate
seeds detected from images whose corresponding C-arm poses are relatively well estimated.

Let SRF and StF be a rotation matrix and a translation vector, respectively, from a global
reference coordinates (F) to the source coordinates (S) estimated from a tracking system,
and f and (ox, oy) be a focal length and an origin of each image, respectively, estimated by
the calibration phantom. Then a 3 × 4 projection matrix, I FF, from a global reference
coordinates (F) to an image coordinates (I) can be computed by

(2)

where Δf is a focal length estimation error and (Δox, Δoy) is an origin of image estimation
error, Sx and Sy are pixel sampling intervals along the x and y axes, respectively, and Δt =
(Δtx, Δty, Δtz)T is a translation estimation error.

From Eqs. (1) and (2), the unknown parameters can be estimated by solving a following
optimization problem.

(3)

where Nc is the number of candidate seeds used, xj is the homogeneous coordinates of the jth
candidate seed, Ii(·) is the ith Gaussian-blurred image computed by Eq. (1), e = (Δt, Δf, Δox,
Δoy) is a nuisance parameter and ê is its estimate. Since the intrinsic camera parameters and
the pose of the C-arm are initially estimated by the calibration phantom and the FTRAC
fiducial, we first start from zero initial condition and solve the constrained optimization
within limited search range. The upper and lower bounds can be determined considering the
intrinsic calibration and the pose estimation error range. We solve this constrained
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optimization problem using sequential quadratic programming (SQP) with the Hessian
approximation by the BFGS method [11].

2.4 False Positive Seed Removal
Since only a limited number of projection images are used for a reconstruction, a
tomosynthesis-based approach is prone to introduce undesired FP seeds. Thus is necessary
an FP seed elimination process from the candidate seeds. This problem is solved as an
optimal geometric coverage problem as was done in [9], and the FP seeds removal process
can be summarized as follows.

The goal in this process is to find the Nt true seeds from Nc candidate seeds such that all the
2-D seed regions are covered in all projection images. An FP seed is projected close to some
true seeds if the image contributes to create that FP seed or far away from the seed regions if
the image contributes nothing for that FP seed creation, but true seeds are not always
projected close to the other true seeds. Therefore, a cost function of a given seed can be
defined as a function of the sum of the closest distances between the projections of this seed
and the projections of all the other true seeds, and the distance between the projection of this
seed and the nearest seed region in all images. Based on this idea, a local cost function is
defined as:

(4)

where S is a set of candidate seeds, G is a set of candidate seeds only by which a seed region
in an image is covered (these seeds are classified as true otherwise corresponding seed
regions cannot be covered), Pi is a projection matrix for the ith image, and  is the distance
from the projection of xn to the nearest seed region in the ith image. This problem is solved
using greedy search iteratively. During each iteration, a seed that has the largest cost value
computed by Eq. (4) is removed from S and G is updated at each iteration if there are
additional seeds that cover some seed regions alone after removing one FP seed. Iteration
continues until Nt seeds are left.

3 Numerical Results
Simulation studies based on synthetic projection images to evaluate the Gaussian blurred
image-based method has been performed and the results were reported in [12]. The
simulation results indicate that the implanted seeds can be localized with a detection
accuracy of > 98.3% and > 99.6% using three and four images, respectively, up to 112 seeds
when there is no pose estimation error. In this section, the proposed method based on the
Gaussian blurred images and the camera self-calibration is further evaluated using phantom
and clinical patient data.

3.1 Phantom Experiments
Phantom experiments were performed on a precisely fabricated seed phantom assuring
ground truth for reconstruction [5, Sec. III-C]. The FTRAC was precisely attached to the
phantom in a known position so that the C-arm pose can be estimated. Five data sets were
generated with the numbers of seeds of 42, 57, 72, 87, and 102 keeping seed density
constant at about 1.56 seeds/cc for all five data sets. For each data set, six images were
acquired within a 20° cone around the AP axis using a Philips Integris V3000 fluoroscope
and were dewarped and calibrated. Five and six images selected among the six available
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images in each data set based on the residual pose estimation errors provided by the FTRAC
software were used for 3-D reconstructions. The voxel size of the 3-D reconstructions was
0.5×0.5×0.5 mm3, and the σ = 3 pixels = 1.5 mm. The volume was first reconstructed
without camera self-calibration process. Since the radio-opaque size of the seeds are
approximately 3 times larger than the seeds used for patients, the reconstruction does not be
affected so much by the pose estimation errors and the reconstruction from Gaussian blurred
images without camera self-calibration works quite well. For larger number of seeds (87,
102), the reconstruction was refined by the camera self-calibration process based on
candidate seeds detected using three images with smallest pose errors. The estimated seed
positions were compared to the ground truth, and the results are shown in Table 1. The
results imply that the implanted seed locations can be estimated with a detection accuracy of
> 97.7% from five projection images.

3.2 Clinical Experiments
The proposed method was applied to three clinical patient data sets. Each data set has three
different batches with different number of implanted seeds. X-ray images were taken within
a 10° cone around the AP axis using OEC 9800 fluoroscope, and were first dewarped and
calibrated. The FTRAC from which the pose of the C-arm at each image was estimated was
precisely attached to the needle insertion template in a known position. Various number
of 103Pd seeds with a length of 4.92 mm and a radius of 1.0 mm (radio-opaque size of about
1.45 and 0.8 mm) were implanted into the prostates. Since it is harder to detect smaller
objects in the reconstruction under the pose estimation errors, seeds are undetected due to
their small radio-opaque size when images with relatively large pose estimation error are
used for the reconstruction. Therefore, the camera self-calibration process becomes critical
and can improve the seed detectability when pose errors are large. Based on the residual
pose estimation errors computed by the FTRAC software, five images with smallest errors
were selected. Three images were first used for the first reconstruction, from which
candidate seeds were extracted. Self-calibration was performed for the rest two images and
the recalibrated images were added for the second reconstruction. The reconstruction voxel
size was 0.5×0.5×0.5 mm3, and the σ was 5 pixels = 2.5 mm and 3 pixels = 1.5 mm for the
first and the second reconstructions, respectively. Since the exact locations of the seeds were
unknown, the correspondences between the projection of the estimated seeds and the actual
seeds in the images were visually assessed. The estimated seed locations were also
compared with those computed by an existing correspondence-based method, MARSHAL
[5] and the differences were computed (Note that the advantage of our method over
correspondence-based methods is described in detail in Sec. 1). The results are shown in
Table 2, and an example patient image and magnified images onto which the centroids of
the estimated seeds are projected are shown in Fig. 1. Since the patient images were
acquired from a very small angle separation compared to the simulation and the phantom
images, the algorithm sometimes suffers difficulties in localizing seeds especially in the
dense seed area (e.g. patient 3).

4 Conclusions
A novel method based on Gaussian-blurred images and camera self-calibration process for
prostate brachytherapy seed localization using C-arm was described. Gaussian-blurred
images are generated from 2-D projection images and are used for tomosynthesis-based 3-D
reconstruction. Candidate seeds are extracted and used for correcting the intrinsic camera
parameters and the translational pose errors of the images whose pose estimation errors are
relatively large. True seed locations are separated from a set of candidate seeds detected
from the final reconstruction by solving optimal coverage problem. This method requires a
slightly larger number of images compared to the correspondence-based approach, but the
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attractive feature of the proposed method is that it can recover all the seeds automatically,
including the hidden seeds, without an explicit segmentation or a seed correspondence
algorithm. In case that the images are acquired with a very small angle separation, the
algorithm may have some difficulties in detecting all the true seeds correctly. The relation
between the reconstruction and detection quality and the acquired image angle separation
should be further studied. Through various simulations, phantom, and clinical studies, our
method was evaluated, successfully localizing the implanted seeds.
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Fig. 1.
(a) Example patient image showing 77 seeds and the FTRAC. (b) Estimated seed centroids
projected onto one of the images used for reconstruction before (green dots) and after the
camera self-calibration (white dots). (c) Estimated seed centroids projected onto one of the
projection images used for reconstruction. Red arrows indicate hidden seeds.

Lee et al. Page 7

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2011 December 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Lee et al. Page 8

Ta
bl

e 
1

Ph
an

to
m

 e
xp

er
im

en
t r

es
ul

ts

N
um

 o
f s

ee
ds

Se
lf 

ca
lib

ra
tio

n
N

um
 o

f i
m

ag
es

N
um

be
r 

of
 se

ed
s

M
ea

n 
± 

ST
D

 e
rr

or
 (m

m
)

ca
nd

id
at

e
co

rr
ec

tly
 d

et
ec

te
d

42
no

5
42

42
 (1

00
%

)
1.

26
 ±

 0
.5

2

6
42

42
 (1

00
%

)
1.

05
 ±

 0
.4

2

57
no

5
58

57
 (1

00
%

)
0.

77
 ±

 0
.5

9

6
57

56
 (9

8.
3%

)
0.

84
 ±

 0
.4

7

72
no

5
72

72
 (1

00
%

)
0.

67
 ±

 0
.4

1

6
72

72
 (1

00
%

)
0.

65
 ±

 0
.3

7

87

no
5

96
84

 (9
6.

6%
)

0.
58

 ±
 0

.4
1

6
95

85
 (9

7.
7%

)
0.

64
 ±

 0
.3

8

ye
s

5
94

85
 (9

7.
7%

)
0.

66
 ±

 0
.4

1

6
92

86
 (9

8.
6%

)
0.

77
 ±

 0
.3

6

10
2

no
5

11
2

99
 (9

7.
1%

)
1.

49
 ±

 0
.4

5

6
10

7
99

 (9
7.

1%
)

0.
97

 ±
 0

.5
0

ye
s

5
10

6
10

0 
(9

8.
0%

)
1.

20
 ±

 0
.4

1

6
10

3
10

1 
(9

9.
0%

)
1.

15
 ±

 0
.3

1

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2011 December 19.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Lee et al. Page 9

Table 2

Clinical experiment results

Patient number
Number of seeds

Mean ± STD difference (mm)
implanted candidate matched

1

33 33 33 (100%) 0.68 ± 0.63

61 63 61 (100%) 0.55 ± 0.33

66 70 66 (100%) 0.83 ± 0.60

2

35 35 35 (100%) 0.41 ± 0.26

68 70 68 (100%) 0.63 ± 0.64

77 82 76 (98.7%) 1.40 ± 0.80

3

22 22 21 (95.5%) 0.61 ± 0.19

44 46 43 (97.7%) 0.72 ± 0.45

66 71 64 (97.0%) 0.92 ± 0.47
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