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Abstract
C-arms are increasingly being used to assist in a large number of surgical procedures. Fairly
accurate and fast pose estimates are needed for non-encoded c-arms that are commonly available
in most operating rooms in order to attain quantitative feedback from the x-ray images. We
propose the use of an image-based fiducial composed of a set of coplanar ellipses to track the c-
arm. We adopt an existing method for planar homography and propose a variation consisting of
three modifications: including a weighting scheme for the linear system used, orthonormalizing
the vectors pertaining to the rotation component of the transformation, and fine tuning the
estimates using a constrained optimization step. We show that these variations make the approach
more robust to noise that typically arises in fluoroscopy imaging and guarantee the orthonormality
of the estimated rotation. The performance of the modified algorithm is demonstrated using
realistic x-ray simulations. We also run sensitivity analysis for segmentation and calibration errors
that are likely to occur in a practical setting. Preliminary results show mean tracking accuracy
within 0.5° and 0.9 mm for segmentation error variance up to 2 pixels squared. The algorithm also
proves to be robust to calibration errors up to 1 cm.
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1. Introduction
C-arm fluoroscopy has been widely used for qualitative assessment of a variety of computer-
assisted surgical procedures [1]. Attaining quantitative feedback from the x-ray images will
become more feasible and widely available through developing fast, cheap and reliable
techniques for calibration and pose estimation for the c-arm. In this paper we present a
clinically friendly solution for pose determination of the commonly-available nonencoded c-
arms that exist in most operating rooms (OR)s. There exist two major approaches for pose
recovery: reliance on auxiliary devices and employing image-based tracking fiducials.
External trackers, such as optical and EM trackers have proven to be both expensive and
cumbersome in the OR. Optical trackers require a line of sight, whereas EM trackers are
sensitive to the presence of metal objects in the work area. Therefore, fiducial-based pose
estimation has gained wider clinical acceptance [2].

For a fiducial to be clinically appealing, it needs to be compact in size, easy to include in the
surgical working space and noninterfering with the trajectory of the c-arm motion, which
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often requires a wide field of view. This motivated the idea of a flat fiducial that can be
cheaply manufactured and easily placed under the patient and tracked without special
mounting or fixation issues. If the x-ray absorption that is created by this fiducial is
relatively low, then it will be visible to the clinician, but will not interfere with visualization
of the anatomy or surgical tools that are within the field of view. We thus needed to choose
suitable features that can satisfy a number of requirements. First, they need to be easily
embedded in a simple non-invasive flat fiducial; second, they should accurately recover the
pose intraoperatively; third, they must neither interfere with the physical constraints of the
space nor negatively impact the quality of the images needed for guidance. Our choice was a
set of coplanar ellipses as shown in Fig. 1(b). The study of conics for pose estimation and
object recognition has been an active research topic for several groups due to a number of
reasons. First, conics are more compact than points or segments. Second, segmentation of
conics is more immune to noise due to the large number of points on the curves. Third, they
are easier to establish correspondence. Fourth, they provide closed-form solutions. Ellipses
in particular are especially attractive since a 3D ellipse projects to an ellipse in the image. It
has been shown in [3, 4] that c-arm pose estimation for computer-assisted surgery can be
achieved by a single ellipse and a point correspondence.

In the current work, we eliminate the need for points and utilize only planar ellipses with
known correspondence. With planar targets, the problem of pose determination amounts to
solving a planar homography. Solving camera pose and planar homography in general using
conics has been previously presented by several authors including De Ma [5], Forsyth et al.
[6], Sugimoto [7] and Kannala et al. [8]. While De Ma [5] proposes that two ellipses can
uniquely determine the pose, it is not clear how this estimate can deteriorate in the presence
of noise similar to our target application. On the other hand, Sugimoto's method [7] utilizes a
minimum of seven conics. Kannala et al. however, present an attractive approach that needs
three or more corresponding conics for computing planar homographies. We adopt this
method and apply three main modifications to be able to solve the problem of pose
estimation for c-arms from the noisy fluoroscopic images that are typically taken during
surgical procedures. First, we propose a weighting technique that accounts for segmentation
errors, being a dominant source of noise. Second, we enforce the constraints needed to
ensure that the homography computed can represent a meaningful pose in terms of the
rotational component. Finally, a constrained optimization step is added to the algorithmic
flow to fine tune all the pose parameters after the third rotation vector is obtained.

2. Materials and Methods
2.1. Perspective projection of a conic

Let xw = [xw, yw, zw]T be a point in the world frame (which is the fiducial frame) and x = [x,
y, z]T be the same point in the camera frame, as shown in Fig. 1(a). They are related by the
equation

(1)

where R = [r1, r2, r3] is the rotation matrix and t is the translation vector between the two
frames. With no loss of generality, consider points in the xwyw-plane; for all such points, the
world frame coordinates can be given by vectors of the form xw = [xw,yw,0]T. In this case,
(1) reduces to
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(2)

where G = [r1, r2, t] and uw = [xw,yw, 1]T.

C-arm imaging is modeled by the full perspective projection model where the optical center
is the origin of the camera frame, the z-axis is the optical axis and the image plane is parallel
to the xy-plane at a distance f from the origin. Let [ou, ov] be the location of the image center
in pixel coordinates and su, sv be the pixel sizes in the u and v directions respectively. Then

the image point u = [u, v, 1]T can be given by  and . Therefore

(3)

where

(4)

Let the equation of a conic in the xwyw-plane in the world frame be given by

(5)

and the equation of the corresponding projected conic in the image plane be given by

(6)

Using (3) in (6), we get

(7)

where C−T is the transposed inverse of C. Comparing (5) to (7), we have

(8)

where k is a constant and Ã = C−T AC−1.

2.2. Using one image of multiple conics
An extension of this formulation for estimating the pose using a single image of multiple
conics has been adopted from the method proposed by Kannala et al. [8] and is also written
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out below. First, consider two coplanar conics Q1 and Q2 with respective images A1 and A2
as in (5) and (6). From (8) we have

(9)

(10)

In order to use the above two equations simultaneously, all the coefficient matrices are
normalized to have unit Frobenius norm. Then, the constant ki is computed by fixing the
determinant of the matrix of unknowns to be unity [8]. Thus

(11)

Each Qi is then replaced by ki Qi and we now have

(12)

(13)

where M is a constant multiple of G and has determinant value equal to one. From (12) and
(13) we get that

(14)

which gives

(15)

Let  and . Thus, we have

(16)

Equation (16) which results from a pair of conics and their corresponding projections can be
rewritten as
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(17)

where m is a 9 × 1 vector containing the elements of M and F12 is a 9 × 9 matrix obtained
from the elements of PA and PQ.

In the case of more than two conics, F is formed by stacking matrices Fij arising from the
matrix equation relating conics i and j and their projections. All different ordered pair are
considered resulting in an F matrix of 9n(n − 1) rows and 9 columns. When F has a rank
equal to 8, m is directly obtained. It is then rescaled such that elements of the first vector of
the rotation matrix form a unit vector, and the sign is determined by ensuring that the object
lies between the c-arm source and the image plane. However, in practice, F is often of full
rank due to the errors in the conic coefficients. In this case, in order to avoid a trivial
solution for the system (17), we can write F as F = F0 + E where F0 is the exact rank-
deficient matrix that we would get had there been no errors and E is an error matrix.

Equation (17) now is an application of the total least squares problem where the right hand
side is a zero vector. The idea as in [9, 10] is to find a rank-deficient least squares estimate
of F0 by finding an error matrix E with minimum Frobenius norm that lowers the rank of F,
i.e.

(18)

By the Eckart-Young-Mirsky theorem [9,10], we have

(19)

where

(20)

is the singular value decomposition (SVD) of F with singular values s1 ≥ s2 ≥ .. ≥ s9. Now
the singular vector corresponding to the least singular value of F is used to estimate the
vector m that solves (17). Scaling and sign are determined as stated above for the case when
F has rank equal to 8.

2.3. Weighting and Orthonormalization
Although this technique with multiple conic pairs has been shown to outperform the
homography estimation results obtained using points only and a single pair of conics, the
quality of pose estimates degrades dramatically even with a small amount of segmentation
errors (which is inevitable according to the existing ellipse segmentation techniques). In this
paper we apply three modifications to the algorithm described in the previous section. With
such changes, the performance of this algorithm can be improved in the presence of noise
beyond what has been achieved by the original algorithm. First, we incorporate a weighting
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scheme that enables us to take the effect of errors in the input data into consideration while
solving the homogeneous total least squares (TLS) problem in (17); next, we find a rotation
matrix that is a best orthonormal approximation to the one retrieved by the first step, and
finally we refine all the pose parameters including the translation vector through a
constrained optimization that minimizes the norm of the right hand side of the weighted
system of equations and enforces orthonormality conditions on the rotation.

2.3.1. Weighting—With the overdetermined system of equations reached in (17), our
simulations showed - in agreement with the literature - that in order to achieve reasonable
pose estimates in the presence of realistic amounts of noise, the consequences of the error
sources need to be inherently taken into account in the unified framework of homography
estimation [10]. This is attained by giving different credence to each of the equations
stacked in F, a process termed equilibration, which relies on the assumption that the error
matrix E is not of i.i.d structure. This process essentially replaces the metric in (18) by

(21)

where WL and WR are suitably chosen non-singular weight matrices that can be used to
handle errors in the rows and columns of F respectively [11]. For our system of equations,
we use a left-hand equilibration approach in which - instead of using F directly - we pursue
finding a rank-deficient approximation of F after scaling its rows using weights related to
the variations that happen in its elements. In this case we replace F in (17) by WLF, where
WL is a diagonal matrix with ith diagonal entry . To find estimates for each of the ,
one possibility is to average all the variances of the entries of the ith row of E after
simulating the segmentation errors that might have occurred for a given observed image. In
practice, one can use the equations of the observed ellipses, together with an assumed error
model of the noise that has caused the system to be full rank and simulate such error
numerous times, thus generating many such error matrices E. Applying the SVD to the
matrix WLF yields its null vector m, which is the singular vector corresponding to its least
singular value. Again, m is then rescaled and its sign is determined as denoted above.

2.3.2. Enforcing orthonormality constraints for the rotation—The estimated
parameters that we get from the solution to the TLS system is essentially a general planar
homography and due to the presence of noise in the observations, orthonormality of the
rotation matrix of the pose in our case is not ensured. So, another SVD operation is
performed on the first two columns of the rotation and a best approximate is found by
multiplying the matrices of the left and right singular vectors by a matrix containing the first
two columns of a 3 × 3 identity matrix. The third column of the rotation is then calculated as
the cross product of those two columns.

2.3.3. Final Optimization—For a final tuning of the pose - including also the translational
element of the pose - retrieved in the previous steps, we solve a constrained optimization
problem that essentially maintains orthonormality gained in the previous step and
simultaneously finds an optimal pose for our problem.

(22)
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where B1 is the matrix corresponding to the orthogonality condition of the first two columns
of the rotation matrix and B2 and B3 are the matrices corresponding to enforcing each of the
first and second columns to have unit norm. Eventually, the final pose estimate (consisting
of both rotation and translation) still satisfies a near-zero right hand side for (17).

3. Experiments and Results
3.1. Sensitivity analysis

Simulation studies were conducted to examine the effect of several factors on the accuracy
of the estimated pose.

3.1.1. Sensitivity to segmentation errors—Simulated planar sets of 3 ellipses were
used (see Fig. 1(b)). In order to simulate ellipse segmentation errors, we uniformly sampled
50 points on each projected ellipse, added Gaussian noise to the sample points, then fitted a
new ellipse to the points using the method in [12]. The variance of the Gaussian was
increased from 0.5 to 2 pixels squared in increments of 0.5. The focal length was set to 1 m
and the pixel size used for our experiments was 0.44 mm for each of the u and v directions.
For each error level, 700 experiments with 7 different poses were simulated; the mean and
standard deviation of rotation and translation errors in the pose are shown in Fig. 2(a). In
order to demonstrate the effect of weighting described in Section (2.3.1), we present results
analogous to the ones in Fig. 2(a) that were obtained by running our code on the same
datasets before modifying the algorithm to incorporate the weighting step. The results
presented in Fig. 2(b) were attained by directly using the unweighted system (17). It is to be
noted that in these experiments the rotation orthonormalization and the final optimization
step were both performed as before.

3.1.2. Sensitivity to the size of ellipses—In order to test the effect of the size of
ellipses used for the fiducial, the exact same simulations were done using a smaller pattern,
i.e. with ellipses whose semi-major and semi-minor axes are half of those in the pattern used
to generate the results in Fig. 2(a). The relative positioning and orientation were the same.
The results for these simulations (based on a total of 2800 experiments) are shown in Fig.
2(c) and again show degradation in accuracy as the level of segmentation error increases.
These results show that for a given configuration, the larger we can make the pattern, the
better for pose accuracy.

3.1.3. Sensitivity to calibration errors—To assess the effect of miscalibration of the c-
arm, we generated a realistic simulation for possible errors in the position of the focal spot.
The magnitude of the error was increased from 0 to 15 mm in increments of 1 mm. During
simulation, the fact that the uncertainty in the focal length is much larger than that in the
image plane was taken into consideration and the direction of the in-plane drift of the
principal point was uniformly sampled over all angles. For this experiment, segmentation
noise has not been taken into account and therefore the system (17) has a unique solution
without need for the weighting matrix WL. Experiments were done as previously described
using the same set of three ellipses and the results are shown in Fig. 2(d). The algorithm
proves to be robust to calibration errors upto 1 cm.

4. Conclusion
We proposed the use of a set of coplanar ellipses for c-arm pose estimation to assist in
image-guided procedures. It has been shown in the literature on 3D reconstruction from 2D
fluoroscopic images that reasonably accurate pose estimates for the c-arm (within a few
degrees for the rotation and several mm for the translation) are sufficient for most clinical
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purposes. We showed using preliminary simulation studies that even with only three
coplanar ellipses, we can attain a tracking accuracy within 0.5° and 0.9 mm for segmentation
error variance up to 2 pixels squared and we are currently pursuing to apply this approach
for precisely machined mechanical phantoms. Practical issues related to the specific
fabrication parameters are still ongoing research issues. The presence of ellipses in the field
of view must be considered and understood relative to the surgical procedure as well. In
summary, this is a first step towards a simple clinically amiable tracker that may spare the
need for proper positioning, mounting and yet provides a wide field of view for image
capture in the OR. It provides proof of concept and encourages further investigation of this
approach.
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Fig. 1.
(a) Different coordinate systems involved in the projection of a conic. (b) X-ray image
including ellipse projections.
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Fig. 2.
Pose estimation errors. (a) Sensitivity to segmentation errors (Large Pattern-Weighted
results). (b) Sensitivity to segmentation errors (Large Pattern-Unweighted results). (c)
Sensitivity to segmentation errors (Small Pattern-Weighted results). (d) Sensitivity to
calibration errors (Large Pattern-Weighted results).
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