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ABSTRACT  

Purpose: In the early development of new imaging modalities – such as tomosynthesis and cone-beam CT (CBCT) – an 
accurate predictive model for imaging performance is particularly valuable in identifying the physical factors that govern 
image quality and guiding system optimization. In this work, a task-based cascaded systems model for detectability 
index is proposed that describes not only the signal and noise propagation in the 2D (projection) and 3D (reconstruction) 
imaging chain but also the influence of background anatomical noise. The extent to which generalized detectability index 
provides a valid metric for imaging performance was assessed through direct comparison to human observer 
experiments. 

Methods: Detectability index (d’) was generalized to include anatomical background noise in the same manner as the 
generalized noise-equivalent quanta (NEQ) proposed by Barrett et al. (Proc. SPIE Med. Imaging, Vol. 1090, 1989). 
Anatomical background noise was measured from a custom phantom designed to present power-law spectral density 
comparable to various anatomical sites (e.g., breast and lung). Theoretical calculations of d’ as a function of the source-
detector orbital extent (θtot) was obtained from a 3D cascaded systems analysis model for tomosynthesis and cone-beam 
CT (CBCT). Four model observers were considered in the calculation of d’: prewhitening (PW), non-prewhitening 
(NPW), prewhitening with eye filter and internal noise (PWE), and non-prewhitening with eye filter and internal noise 
(NPWE). Human observer performance was measured from 9AFC tests for a variety of idealized imaging tasks 
presented within a clutter phantom. Theoretical results (d’) were converted to area under the ROC curve (Az) and 
compared directly to human observer performance as a function of imaging task and orbital extent. 

Results: Theoretical results demonstrated reasonable correspondence with human observer response for all tasks across 
the continuum in θtot ranging from low-angle tomosynthesis (θtot ~10o) to CBCT (θtot ~180o). Both theoretical and 
experimental Az were found to increase with acquisition angle, consistent with increased rejection of out-of-plane clutter 
for larger tomosynthesis angle. Of the four theoretical model observers considered, the prewhitening models tended to 
overestimate real observer performance, while the non-prewhitening models demonstrated reasonable agreement.  

Conclusions: Generalized detectability index was shown to provide a meaningful metric for imaging performance, 
helping to bridge the gap between real observer performance and prevalent Fourier-based metrics based in first principles 
of spatial-frequency-dependent NEQ  and imaging task.  

Keywords: cone-beam CT, anatomical noise, anatomical clutter, cascaded systems analysis, noise-power spectrum, 
noise-equivalent quanta, detectability index 
 

1. INTRODUCTION  
 

Recent years have witnessed a dramatic advancement in the scope of advanced 3D imaging applications based on flat-
panel detectors, such as tomosynthesis and cone-beam CT (CBCT). Each of these approaches aims to improve the 
conspicuity of subtle lesions through depth localization and the rejection of out-of-plane anatomical clutter, with a broad 
spectrum of potential applications ranging from breast and chest imaging to image-guided interventions. The 
knowledgeable development of such modalities stands to benefit from a general quantitative framework for performance 
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modeling, assessment, and system optimization. Two common approaches to image quality assessment include physical 
characterization of system performance [e.g., prevalent Fourier-based metrics of spatial-frequency-dependent signal and 
noise] and human observer-based characterization [e.g., sensitivity and specificity as assessed in a receiver operating 
characteristic (ROC) test]. A variety of advantages and limitations can be appreciated for each approach – for example, 
the former is simple and practical, yet subject to numerous assumptions of linearity and shift-invariance, while the latter 
directly assesses real observer response, but is time consuming, expensive, and dependent on the generation of real (or 
highly realistic) images. A general quantitative approach that begins with simple Fourier metrics and bridges the gap to 
real observer performance would be valuable in the design and optimization of such imaging systems. 

Previous work has extended cascaded systems analysis of the noise-equivalent quanta (NEQ) for projection 
radiography1-4 to advanced 2D and 3D imaging modalities5-8. Recognizing the importance of imaging task in defining 
meaningful image quality metrics, a task-driven approach is adopted in which NEQ is combined with the imaging task 
and model observers to form the detectability index (d’). The goal of the current study is to investigate the extent to 
which detectability index is a valid metric for system performance and optimization through comparison to real human 
observers. The work below represents preliminary studies spanning initial analysis and experimentation involving a 
small number of simple imaging tasks, with a more complete evaluation, including a greater variety of imaging 
conditions and imaging tasks, to be pursued in future work. 

 

2. GENERALIZED DETECTABILITY INDEX 
    

2.1 Cascaded Systems Analysis (CSA) Model for Tomosynthesis and CBCT 
Previous work has demonstrated the utility and accuracy of cascaded systems analysis of the performance of 2D x-ray 
projection imaging systems based on flat-panel detectors.3,4 Such has more recently been extended to 3D FPD-based 
CBCT and tomosynthesis systems,5-8 providing a general framework for modeling the 3D modulation transfer function 
(MTF), noise-power spectrum (NPS), NEQ, and detective quantum efficiency (DQE). The basic approach provides 
quantitative modeling of the signal and noise propagation in the 2D and 3D imaging chain as illustrated in Fig. 1. The 
model consists of the physical processes of 2D projection image formation followed by the mathematical processes of 
3D filtered backprojection reconstruction. The former has been extensively investigated and developed over the last 15 
years.1-4,9 The reconstruction cascade includes7,8: log-normalization of projection data (Stage 8); application of the ramp 
filter (Stage 9); optional application of apodization filters(Stage 10); interpolation of the 2D projection data (Stage 11); 
backprojection of 2D projections, modeled as superposition of the 2D NPS along vanes in the 3D Fourier domain (Stage 
12); and sampling of the 3D reconstruction (Stag 13). Such a model has demonstrated agreement with measurements of 
the 3D NPS and NEQ for FPD-CBCT over a broad range of experimental conditions and reconstruction techniques7,8, 
providing a model for imaging performance of tomosynthesis and CBCT as a contimuum represented by varying extent 
of acquisition angle (θtot). 

 
Figure. 1. Cascaded systems analysis for 3D tomosynthesis and CBCT. Stages 0-7 model signal and noise transfer 
through various physical processes in the detector, while Stages 8 to 13 represent mathematical processes of 3D 
reconstruction by filtered backprojection as detailed  in previous work: 0.) incident x-ray quanta; 1.) interaction of x-rays 
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in detector; 2.) generation of secondary quanta; 3.) spread of secondary quanta; 4.) coupling of quanta to detector 
apertures; 5.) integration by detector aperture; 6.) sampling of detector pixels; 7.) readout with additive noise; 8.) log 
normalization; 9.) ramp filter; 10.) apodization filter; 11.) interpolation; 12.) 3D backprojection; and 13.) 3D sampling.   

 

2.2 Anatomical Background: The “Generalized” NEQ and Detectability Index 
Such modeling has been shown useful in characterizing the physical performance of systems under the influence of 
quantum and electronics noise. However, there is considerable evidence that image “noise” (generally interpreted as any 
random or semi-random component in an image that impedes conspicuity) is often dominated by image fluctuations 
associated not with the Poisson-distributed incident quanta, but rather those associated with the superposition of 
anatomical “clutter” in the 2D image – often referred to as “anatomical noise” or “background noise”.10-13 Similarly in 
tomosynthesis, depending on the acquisition angle, θtot, out-of-plane structures are superimposed to varying degrees 
within a slice of interest, with greater orbital extent reducing the contribution of in-plane anatomical noise. In this way, 
anatomical noise is expected to be a dominant source of image degradation at low tomosynthesis angles and to be 
progressively reduced for a larger arc. Potential tradeoffs between quantum noise and anatomical noise are immediately 
appreciated: 

●For fixed dose per projection: 

 - a smaller number of projections over a shorter arc will increase quantum noise and anatomical noise 

 - a larger number of projections over a shorter arc will reduce quantum noise, reduce view aliasing noise, and 
increase anatomical noise 

 - a smaller number of projections over a wider arc will increase quantum noise, increase view aliasing noise, 
and reduce anatomical noise 

 - a larger number of projections over a wider arc will reduce quantum noise and increase anatomical noise 

●For fixed total dose: 

 - a smaller number of projections over a shorter arc will reduce quantum noise and increase anatomical noise 

 - a larger number of projections over a shorter arc will reduce quantum noise, reduce view aliasing noise, and 
increase anatomical noise 

 - a smaller number of projections over a wider arc will reduce quantum noise, increase view aliasing noise, and 
reduce anatomical noise 

 - a larger number of projections over a wider arc will increase quantum noise and reduce anatomical noise 

Clearly, a model that quantitatively describes such tradeoffs would be beneficial in understanding the factors that limits 
imaging performance under various system configurations. Such tradeoffs can be quantitatively appreciated through 
incorporation of anatomical noise (the so-called anatomical power spectrum, SB) in the denominator of the NEQ. Barrett 
et al.14 termed this a form of “generalized NEQ,” written for the 3D case as: 

2

B Q E

MTF
GNEQ

S S S
=

+ +
          (1) 

where SB can take whatever form is appropriate to the anatomical “clutter” and is often empirically characterized 
according to a power-law form: 

( )BS f
f β

κ
=            (2) 

where κ describe the magnitude and β the frequency content of the anatomical clutter. Modeling such image fluctuations 
in this manner implies treatment of anatomical clutter as a stochastic noise source, which clearly implies numerous 
assumptions and limitations. Power-law modeling of anatomical noise has shown reasonable agreement with human 
observer performance measured with real patient background in breast imaging,15  providing a convenient basis for 
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incorporation of a “lumpy” background in the generalized NEQ. Such approach has been applied extensively in 
mammography12,16-20, chest imaging21-23, and more recently in tomosynthesis and CBCT24,25. 

 

Just as NEQ may be combined with an idealized task function as described in ICRU 54 to yield the detectability index:26 
2

22' x y z
Q E

MTF
d H df df df

S S
= Δ

+∫∫∫          (3) 

 the generalized NEQ can be similarly extended to yield a generalized detectability index: 
2

22
2

' x y z
B Q E

MTF
d H df df df

MTF S S S
= Δ

+ +∫∫∫         (4) 

This idealized form for detectability in the presence of anatomical background is equivalent to the prewhitening (PW) 
observer model. It has been shown in previous work21,27-29 to give a useful metric for imaging performance and system 
optimization. 

Eq. (4) describes a fully 3D detectability index in which the observer can make full use of the volumetric data. Such may 
or may not be a reasonable model for a real observer “scrolling” slices; rather, it assumes the observer can instantly 
appreciate the fully 3D statistics of the volume image. The model can be reduced to describe the detectability within a 
single slice of 3D image, denoted '

sliced . Since extraction of a single slice from the 3D spatial domain corresponds to a 
convolution over the orthogonal direction in the Fourier domain (i.e., convolution with a sinc function corresponding to 
the slice thickness), a simple form of slice detectability for a prewhitening observer can be obtained by integrating the 
numerator and denominator of the 3D detectability index as: 

2

' 2

2

[ ]y

slice x z

B Q E y

TaskT W df
d df df

T S S S df

⋅
=

+ +
∫∫ ∫ ∫

        (5) 

 

2.3 Model Observers 
The simple PW model of Eq. (4) can be extended to slightly more sophisticated models that have been shown to better 
approximate real observers under various conditions. For example, the non-prewhitening (NPW) observer model is: 

22

' 2

2 2

[ ]

( ) [ ]
Task x y z

B Q E Task x y z

T W df df df
d

T S S S T W df df df

⋅
=

+ + ⋅ ⋅

⎡ ⎤⎣ ⎦∫ ∫ ∫
∫ ∫ ∫

       (6)

 
Similarly, each model can be extended to include a simple description of a human eye filter and internal noise, referred 
to respectively as the prewhitening-eye (PWE) and non-prewhitening-eye (NPWE) models: 

2 2
'2

2 2

[ ]Task
x y z

B Q E i

E T W
d df df df

E T S S S N
⋅

=
+ + +∫ ∫ ∫ （ ）

       (7) 

22 2

' 2

4 2 2

[ ]

( ) [ ]
Task x y z

B Q E Task i x y z

E T W df df df
d

E T S S S T W N df df df

⋅
=

+ + ⋅ ⋅ +

⎡ ⎤⎣ ⎦∫ ∫ ∫
∫ ∫ ∫

      (8) 

The eye filter and internal noise adopted in this work are consistent previous work by Burgess30: 
2( ) exp( )nE f f cf= −           (9) 
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where n = 1.3 and c = 3 gives an eye filter, E(f), that peaks at 4 cycles/deg for a viewing distance of 50 cm. Internal noise 
is assumed to be uncorrelated and is set to a fraction (0.02) of the DC component of the noise-power spectrum at a 
viewing distance of 100 cm: 

2

0.02 (0, 0)
100i

D
N NPS= ⎛ ⎞

⎜ ⎟
⎝ ⎠

         (10) 

where the viewing distance, D, is set to 50 cm.  

 

2.4 Relating d’ to Human Observer Performance 
Equations (4) – (8) above yield the detectability index for a given task and observer model, with the fundamental signal 
and noise properties described by a cascaded systems model for the imaging chain. These forms are almost purely 
theoretical, with the main “semi-empirical” components of the model being: the incident x-ray spectrum; the Poisson 
excess (Swank noise) of the x-ray converter; and the eye filter parameters (taken from Ref. 30). Relation of d’ derived 
theoretically from cascaded systems analysis calculations can be converted to area-under the ROC curve (Az) by the 
relation: 

1 '
A (1 ( ))

2 2Z

d
erf= +           (11) 

under assumption that distribution of cases under two hypotheses are Gaussian and homoscedastic31. 

 

3. IMAGING TASK 
3.1 Task Phantoms 
To investigate task functions presenting stimuli in a power-law background (anatomical noise), a custom phantom was 
developed specifically to present power-law noise. The phantom design principles and associated background power 
spectra are detailed in Ref. 32. To summarize, the phantom consists of a random assortment of acrylic spheres of 
diameter ranging 3.18 – 15.88 mm, with proportions of each sphere selected to give a power-law background NPS with β 
~ 3. For the small-sphere detection task, an assortment of six 3.18 mm diameter Teflon spheres was placed within the 
central coronal (x-z) slice of the clutter phantom as shown in Fig. 3(b). For the large sphere detection task, six 10.3 mm 
polypropylene spheres were used as stimuli. For the encapsulated-sphere discrimination task, each stimulus consists of a 
10 mm acrylic sphere coated with an 3.18mm outer shell of paraffin wax. Example images of each task phantom are 
illustrated in Fig. 3(b). 

Images of each task phantom were acquired over a range in θtot as described above, and 3D images were reconstructed 
using the Feldkamp algorithm for 3D filtered backprojection. A central coronal slice was extracted from the volume 
image through the central plane of each sphere, giving the slice images used in human observer tests described below. 
The six stimuli give six independent trials for each task. 

 
3.2 Imaging Tasks 
A bridge between simple Fourier metrics of imaging performance (e.g., MTF, NPS, and NEQ) and task-dependent 
performance metrics can be obtained through a quantitative description of the spatial frequencies of interest in 
performing a given task – i.e., through a spatial-frequency-dependent “task function” or template. A simple form for 
such task functions is given by the Fourier transform of the difference in two hypotheses – H1(x, y, z) and H2(x, y, z) – 
where H1 and H2 represent the spatial domain representations of, for example, the “signal-present” and “noise-only” 
hypotheses. For example, detection of a given stimulus [H1(x,y,z)] against a uniform background [H2(x,y,z) = constant] 
is represented by the task function: 

1[ ]TaskW FT Hμ= Δ ⋅           (12) 

where FT[H1] is the Fourier transform of  the stimulus, and Δμ are the difference in attenuation coefficients of the 
stimulus and background, respectively.   
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For detection of a given stimulus against the power-law background described previously, images presenting H1 contains 
a stimulus (e.g., a sphere of a different contrast) at the center of the ROI, whereas images presenting H2 have an acrylic 
sphere of the same size placed at the center. Thus, the two hypotheses can be written as: 

1 1 1[ ] [ ]FT H FT H clutterμ= +                     (13a) 

2 2 1[ ] [ ]FT H FT H clutterμ= +                     (13b) 

Therefore, the task function is given by: 

1[ ]TaskW FT Hμ= ⋅Δ                       (13c) 

Finally, discrimination of two structures – the first identified as the stimulus and the second the normal case – is given 
by: 

1 21 2[ ] [ ]TaskW FT H FT Hμ μ= −⋅ ⋅          (14) 

where H1 and H2 represent the two structures to be discriminated.  

These three simple task functions represent different regions of the spatial frequency domain and therefore imply 
different susceptibility to various noise sources. High frequency tasks, such as discrimination tasks or detection of a 
small object, are prone to degradation by high frequency quantum and electronics noise, and are therefore more 
dependent on factors of detector design and reconstruction technique. Low frequency tasks, such as detection of a large, 
low-contrast lesion, are more dependent on low-frequency noise characteristics, such as anatomical background. 
Additional task functions representing higher-order tasks and representing a varied richness of spatial frequency content 
are under investigation in ongoing work. Example task functions are shown in Fig. 2, along with real images acquired as 
a function of θtot. 

 

 
Figure 2. Hypotheses and task functions. Task 1: Detection of a small sphere in clutter. Task 2: Detection of a large 
sphere in clutter. Task 3. Discrimination of an encapsulated sphere vs. a uniform sphere.  

 

3.3 Image Acquisition 
An experimental imaging bench for tomosynthesis and cone-beam CT is illustrated in Fig. 3(a) and described in previous 
work7,32. The main components of the bench include: an x-ray tube (Rad 94 in a Sapphire housing; Varian Medical 
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Systems, Salt Lake City, UT); a flat-panel detector (RID-1640A, Perkin Elmer Optoelectronics, Santa Clara CA), and a 
motion control system in which a phantom placed at isocenter is rotated through an arc corresponding to θtot (6K series 
translation stages, Parker Daedal, Harrison PA, and Dynaserv rotation motor, Parker Hannifin, Rohnert Park, CA).  

Images were acquired over a range of θtot spanning a continuum from low-angle tomosynthesis (θtot = 10o) to fully 3D 
CBCT (180o+fan and 360o). In the experiments reported below, the angular increment (Δθ) was held fixed at 0.45o, and 
the number of projections (Nproj) was varied such that θtot ranged 10o to 360o. In all cases, the imaging technique was 120 
kVp (1.53 mm Al + 1.1 mm Cu added filtration), and 0.63 mAs per projection. The range in Nproj was 23 (at 10o) to 800 
(at 360o), corresponding to a range in dose of 0.4 – 13.8 mGy. 

  

Figure 3. (a) Experimental bench showing components and coordinate systems for CBCT and tomosynthesis. (b) 
Experimental phantom presenting power-law background designed using principles of fractal self-similarity. Six 
stimuli were inserted to the central coronal slice. 

 

4. EXPERIMENTAL VALIDATION: HUMAN OBSERVER STUDY 
Human observer tests were conducted to measure task performance as a function of θtot for each of the imaging tasks 
described above. An efficient test well suited to simple phantom studies is offered by the multiple-alternative forced-
choice (MAFC) methodology. In the studies described below, 9AFC tests were used to measure the proportion correct 
(Pcorr) which may in turn be related to d’ as: 

[ ]
' 2

11 ( )
( ', ) exp ( )

22
M

corr

x d
P d M x dxφ

π

∞ −

−∞

−
= −

⎛ ⎞
⎜ ⎟
⎝ ⎠

∫       (15) 

where M is the number of alternatives, and Φ is the cumulative Gaussian distribution. Note that for a 2AFC test, Pcorr = 
Az under the assumption of an ideal test in which observer response does not vary over the course of the test. For the 
9AFC study, Az corresponding to experimental value of Pcorr is convert to Az via a Pcorr - d’- Az lookup table given by Eq. 
(11) and (15). 
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Figure 4. (a) Observer performing a 9AFC test in a darkened reading room. (b) Nine images were shown on a 3x3 grid as 
displayed by Matlab-based OPTEx software in a randomized order. The example shows the encapsulated sphere task, 
with the stimulus highlighted in the lower-left corner. 

All tests were performed in a controlled image reading environment with subdued lighting and on a diagnostic quality 
monochrome display (Fig. 4). Reading order was randomized (using the Matlab-based OPTEx utility for human observer 
studies), and each test was preceded by a training set composed of images drawn from the same task phantom imaged as 
a function of θtot with images distinct from those in the actual test. For these simple phantom studies, physicists / 
engineers were sufficiently “expert” to perform each imaging task following the training set. A total of 6 observers were 
used, giving 5 independent trials for each task at each setting (angle, case), and a total time of ~60 min required for each 
test. Responses from each observer for each setting of a task are assumed to be independent, i.e. no inter- and intra- 
observer variability were assumed. Mean proportion correct (Pcorr) was therefore calculated from the number of correct 
responses out of a total of 30 (=5 trials x 6 observers), and converted to Az from the lookup table as mentioned 
previously. A 95% confidence interval was calculated for Az and shown in the results below. 

 

5. BRIDGING THE GAP: 
THEORETICAL AND EXPERIMENTAL OBSERVER PERFORMANCE 

 

Theoretical calculations of Az for all four observer models are plotted in Figure 5 in comparison to Az measured from real 
observer studies Pcorr. In each case, an upward trend with θtot is observed for both theoretical and experimental results, 
consistent with improved rejection of clutter observed in Figure 2. Overall, the prewhitening models (PW and PWE) are 
seen to overestimate real observer performance in each case, whereas the non-prewhitening (NPW and NPWE) observers 
show reasonable agreement with experimental results. The large sphere detection (discrimination of polyethylene and 
acrylic spheres) task appears to be most difficult, with observer performance challenged up to θtot ~120o, and with the 
NPW and NPWE models bounding the human observer measurements. The small sphere detection and encapsulated 
sphere discrimination tasks are a bit more conspicuous, each challenging observers up to θtot ~70-100o and described 
reasonably well by the NPW or NPWE models. Overall, agreement of theory and measurement is fairly good, providing 
evidence that simple Fourier metrics such as NEQ combined with imaging task can offer meaningful descriptions of real 
observer performance. 
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Figure 5. Theoretical and experimental imaging performance (Az) plotted as a function of θtot for 3 imaging tasks. 
Reasonable agreement between theory and experiment is observed, with prewhitening observer models (PW and PWE) 
appearing to overestimate human response, while non-prewhitening observer models (NPW and NPWE) demonstrating 
closer agreement. 

 

6. DISCUSSION AND CONCLUSION 
Fourier-based physical characterization of imaging systems has been commonly applied in detector design. In designing 
and evaluating medical imaging systems with increasing complexity – as in tomosynthesis and CBCT – this approach 
can be extended to provide simple, elegant performance metrics, but correlation of theoretical predictions with human 
observer response has not been previously demonstrated. On the other hand, human observer-based characterization 
realistically describes imaging performance, but can be expensive and time-consuming. This work presented generalized 
detectability index (d’) as a quantitative metric combining NEQ, anatomical background, imaging task, and model 
observers. Theoretical calculations of d’ were validated with real human observer performance, showing d’ to be a 
meaningful metric in modeling system performance.  

It is important to acknowledge a variety of assumptions and limitations associated with in this study. Cascaded systems 
analysis of imaging systems assumes linearity, stationarity, and shift invariance. While tomosynthesis and CBCT are 
recognized to be neither strictly stationary nor shift invariant, we assume the first and second order statistics are at least 
locally stationary and that system response is shift-invariant to the extent that the studies involved tasks greater than the 
pixel / voxel size – analogous to the 2D shift-invariance described in Ref. 33. In calculating observer performance 
metrics Az, the distribution of the two hypotheses are assumed to be Gaussian and homoscedestic. Finally, the evaluation 
involved a small number of simple, idealized imaging tasks, and the clutter phantom, though measured to present power-
law background, does not truly simulate the complexity of structures in human organs. 

Future work involves the investigation of a broader range of acquisition techniques, especially in the low-dose limit 
where detection transitions between anatomical noise-limited and quantum-limited regimes. Other reconstruction 
techniques will also be studied, including different reconstruction filters and sampling, which have been shown to impart 
significant effects on system NEQ. More complex and higher-order tasks will also be investigated as a fuller examination 
of the extent to which generalized detectability index demonstrates agreement with real observer performance.  
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