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ABSTRACT 

Diffusion tensor imaging (DTI) is widely used to characterize tissue micro-architecture and brain connectivity. Yet DTI 
suffers serious limitations in regions of crossing fibers because traditional tensor techniques cannot represent multiple, 
independent intra-voxel orientations. Compressed sensing has been proposed to resolve crossing fibers using a tensor 
mixture model (e.g., Crossing Fiber Angular Resolution of Intra-voxel structure, CFARI). Although similar in spirit to 
deconvolution approaches, CFARI uses sparsity to stabilize estimation with limited data rather than spatial consistency 
or limited model order. Here, we extend the CFARI approach to resolve crossing fibers through a strictly positive, 
parsimonious mixture model. Together with an optimized preconditioned conjugate gradient solver, estimation error and 
computational burden are greatly reduced over the initial presentation. Reliable estimates of intra-voxel orientations are 
demonstrated in simulation and in vivo using data representative of typical, low b-value (30 directions, 700 s/mm2) 
clinical DTI protocols. These sequences are achievable in 5 minutes at 3 T, and the whole brain CFARI analysis is 
tractable for routine analysis. With these improvements, CFARI provides a robust framework for identifying intra-voxel 
structure with conventional DTI protocols and shows great promise in helping to resolve the crossing fiber problem in 
current clinical imaging studies. 
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1. INTRODUCTION 
Diffusion tensor imaging (DTI) provides non-invasive contrasts which are sensitive to in vivo cellular organization as 
modeled by local diffusivity, anisotropy, and tissue orientation [1-3]. The tensor model represents one independent, 
dominant direction, so that in voxels with complex fiber structure, the estimated orientation may be ambiguous or 
misleading [4]. Substantial efforts have been made to address this “crossing fiber” problem. One fruitful approach has 
been to acquire more detailed information through additional sensitized scans (e.g., diffusion spectrum [5], high angular 
resolution [6], q-ball [7], and high b-value [8] imaging techniques). Yet, scan time and hardware constraints limit 
widespread adoption of these methods in clinical research. Here, we seek to characterize regions of crossing fibers tissue 
using data acquired in conventional (i.e., low b-value, low angular resolution) DTI protocols.  

Recently, there have been several indications that it is possible to resolve crossing-fibers from conventional DTI 
acquisitions provided that sufficient a priori information is available. Independent component analysis can exploit 
spatial information to fit a prolate tensor mixture [9], while cylindrically constrained two-tensor models have been 
numerically amenable to fitting using regularization techniques [10, 11]. Direct deconvolution with a discrete tensor 
basis set has also been used [12]. As these approaches are highly sensitive to noise, authors typically suggest limiting 
application to areas of known fiber crossing (e.g., planar tensor estimates) to avoid erroneous detections. Although 
initially developed as an alternative to Nyquist sampling, compressed sensing [13] offers a simple and elegant solution to 
the problem of regularized fitting of tensor models which does not require explicit model selection. Compressed sensing 
is on variant of many popular regularized regression methods (often referred to as LASSO techniques) [14, 15]. The 
recently presented Crossing Fiber Angular Resolution of Intra-voxel structure (CFARI) method uses this technique to 
reproducibly extract multiple fiber orientations per voxel [16].  
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In this manuscript, we extend the CFARI approach to fit a strictly positive mixture of tensor basis functions and reduce 
the computational burden through an optimized a preconditioned gradient solver. Accuracy at low SNR is improved, and 
consistent resolution of three fibers is demonstrated in simulation and in vivo. With CFARI, one can conduct whole brain 
analyses on a single CPU in less than 3 hours. Both the original and improved CFARI methods are implemented in the 
JIST (Java Image Science Toolkit) framework and are available in open source (http://www.nitrc.org/projects/jist/) [17]. 
With these improvements, CFARI provides a robust framework for identifying intra-voxel structure with traditional DTI 
and shows great promise in resolving the crossing fiber problem. 

2. METHODS 
CFARI models each voxel as a discontinuous collection of tissue compartments, which follow the traditional tensor 
model (Figure 1). Each voxel is parameterized as a finite mixture of discrete and independent compartments, and the 
diffusivity within each compartment is defined by the Stejskal-Tanner tensor formulation [18]. The observed signal, , 
along the th diffusion weighting direction ( ) is determined by the exponential mixture model, 

. (1) 

 is a noise-free reference signal in the absence of diffusion weighting,  is the number of possible compartments 
(tensors) within each voxel,  is the (unknown) mixture component for each compartment,  is the diffusion 
sensitization parameter,  is the tensor associated with the th compartment, and  is a noise term that follows a Rician 
distribution. It is assumed that the reconstruction basis  — i.e., the set of possible diffusion tensors that may 
comprise a voxel — is fixed and known. Given this framework, the vector, , of  observed attenuations, where each 
attenuation is defined as , can be rewritten in matrix form as,  

, (2) 

where the matrix  comprises a set of exponential terms derived from Eq. (1) and  is a scaled noise term. In this model, 
The signal-to-noise (SNR) was defined as the ratio of the noise standard deviation on the complex coefficients and the 
(noise-free) unweighted signal intensity. At an SNR of greater than 5:1, Rician noise is well approximated by a Gaussian 
distribution, so a least squares estimator is appropriate [19]. With Eq.(2), we may immediately write the compressed 
sensing criteria,    

, (3) 

where  is a strictly positive sparsity regularization parameter. Note that the positivity restriction on  is newly 
explored in this manuscript. Low 's lead  to least squares fitting of the observed signal with the specified basis, while 
high 's force greater emphasis on a sparse model. There are efficient numerical methods to address optimization 
problems of the form of Eq. (3); in this work, we use the interior point method of Kim et al. [20] which includes the 
ability to enforce positivity constraints.   

3. DATA 
3.1 Simulations  

The CFARI formulation is not dependent on the specific form of the diffusion weighted data to be analyzed. Here, we 
presume that we are interested in using either existing or conventional clinical research DTI data. Hence, the sensing 
basis — i.e., the choices of -values and diffusion encoding directions — is considered to be determined by external 
requirements (such as reliability of clinical contrasts). There are two remaining design choices that must be addressed: 
the reconstruction basis and the sparsity regularization parameter.  

In accordance with previous findings [16], the reconstruction basis 's are chosen to be cylindrically symmetric, of 
equal diffusivities, and regularly distributed on a sphere (fractional anisotropy of 0.71, principle eigenvalue of  
mm2/s, 241 symmetric orientations) while the regularization parameter  was selected to be 1.0 through empirical 
simulations to produce a tradeoff between minimal error and robustness against model mismatch. Monte Carlo 
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simulations were performed using two repetitions of 30 diffusion weighting directions (the “Jones30”, [21]), -value of 
700 s/mm2, five averaged unweighted reference acquisitions, and Rician distributed noise.  

For all simulations, error was assessed as the mean angular difference between each estimated orientation and the closest 
orientation in the truth model, weighted by the estimated fraction: 

. (4) 

The first simulation explored the effect of SNR on multiple tensor crossings. A single voxel was modeled with 1, 2, or 3 
compartments. Each compartment had its directions chosen independently and uniformly at random from the 
reconstruction basis set. One thousand Monte Carlo iterations were employed to evaluate the error in CFARI estimation 
direction for each of 19 linearly spaced values of SNR from 5:1 to 50:1 (in steps of 2.5:1).  

The second experiment compared unconstrained CFARI with the constrained CFARI. Again, a single voxel was 
modeled with 1, 2, or 3 compartments. Each compartment had its directions chosen independently and uniformly at 
random from the reconstruction basis set. One thousand Monte Carlo iterations were employed to evaluate the error in 
CFARI estimation direction for each of 19 linearly spaced values of SNR from 5:1 to 50:1 (in steps of 2.5:1).  

Third, the effects of angular separation were explored in a simulated voxel with two compartments. Two tensors were 
generated at angles of 10º to 90º apart in 10º intervals. For each angle, the first tensor was randomly selected from the 
basis set. The second tensor was then chosen randomly from all the directions that were within 2º of the specified angle. 
An SNR of 25:1 was used. 

Finally, a two-dimensional, three-crossing fiber model was simulated. Three tensors were selected to cross at 60º in 
plane. A 32 x 32 field of voxels was simulated with each fiber crossing at the center. The group membership was 
determined by having the compartment fraction fall off in a Gaussian manner from the center of each fiber. In regions of 
overlap, the centers of the fibers’ compartment fractions were weighted equally. In regions without overlap of the central 
fibers, compartment fraction was assigned to the primary fiber and the “background.” Note that a fourth, background 
component was added to the simulation (but not the basis set) with an isotropic component ( = = =3x10-3 mm2/s). 
This forth compartment was not included in the reconstruction basis.  Simulations were performed at SNR’s of 10:1, 
25:1, and 40:1.  

3.2 In Vivo Experiment  

A healthy volunteer with no history of neurological conditions was recruited. Local institutional review board approval 
and written informed consent were obtained prior to examination.  All data were acquired using a 3T MR scanner 
(Achieva, Philips Medical Systems, Best, The Netherlands) with body coil excitation and an eight channel phased array 
SENSitivity Encoding (SENSE [22]) head-coil for reception. A DTI dataset was acquired with a multi-slice, single-shot, 
echo-planar imaging (EPI), spin echo sequence (TR/TE = 6281/67ms, SENSE factor = 2.5). Sixty-five transverse slices 
were acquired parallel to the line connecting the anterior commissure-posterior commissure (AC-PC) with no slice gap 
and 2.2 mm nominal isotropic resolution (FOV = 212 x 212, data matrix = 96 x 96, reconstructed to 256 x 256). Fat 
suppression as performed with Spectral Presaturation with Inversion Recovery (SPIR) and the phase encoding direction 
was anterior-posterior.  Diffusion weighting was applied along 30 directions (Jones30; other parameters: gradient 
overplus = no, gradient mode = enhanced) with a b-value of 700 s/mm2.  The amplitude, leading edge spacing, and 
duration of the magnetic field gradients were G = 49 mT/m, Δ = 32.3ms, and δ = 12ms, respectively).  The diffusion 
time, tdif, was 28.3ms (tdif = Δ-δ/3).  Five minimally weighted images (5 b0’s) (b ≈ 33s/mm2) were acquired and 
averaged on the scanner as part of each DTI dataset. The total scan time to acquire the DTI dataset was 4 min 11s.  No 
cardiac or respiratory gating was employed. 

In vivo data were analyzed with CATNAP (http://iacl.ece.jhu.edu/~bennett/catnap/) [23]. Each diffusion weighted 
volume was registered to the unweighted reference volume. Diffusion weighting directions were corrected for relative 
rotations. Subsequently, CFARI was used to fit a multi-tensor model to each voxel in the acquired data. The basis set 
tensors were cylindrically symmetric, of equal diffusivities, and regularly distributed on a sphere (241 symmetric 
orientations distributed via potential energy minimization). Each basis tensor had a fractional anisotropy of 0.71 and 
principle eigenvalue of  mm2/s. The regularization parameter  was one. The results were visually inspected for 
anatomical consistency. The boundary between the corpus callosum and the internal capsule was highlighted as a 
particularly relevant area of crossing fibers.  
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4. RESULTS 
4.1 SNR Simulations  

For all simulation models (e.g., 1, 2, or 3 tensors), increasing SNR resulted in decreasing estimation error across a wide 
range of SNR (Figure 2A). For one tensor, estimation error was less than 1º by 35:1 SNR (which is at the high end of 
clinical imaging). The error for a two tensor and three tensor model was higher (approximately 5º and 10º, respectively). 
At the lower end of SNR for clinical research DTI studies (15:1) all models had less than 15º error.  

The positivity constraint on the CFARI estimator improved the error for experiments at less than 45:1 SNR (Figure 2B). 
The benefits of the positivity constraint were concentrated for the single compartment models. However, improvements 
of several percent were seen for both two compartment models and three compartment models at high SNR.  

The mean error in constrained CFARI estimation was less than 10º error across the range of possible separations (see Fig 
2C). Although the error was maximal (numerically) near 30º, the separation to noise ratio was greatest at the higher 
angular separations, so these separate fiber populations could be more robustly identified.  

The in-plane crossing fibers could be visually resolved when three tracts cross with a separation of 60º in a plane (Figure 
3). When a single fiber was mixed with a compartment with isotropic diffusivity (outside the indicated regions of 
interest), the primary orientation of the fiber is apparent at all three SNR’s. In the central region (enlarged), the visual 
coherence of the three separate fiber bundles increases with increasing SNR. This result is consistent with the estimated 
error from the single voxel simulations.  

4.2 In Vivo Results  

White matter fibers running lateral through the corpus callosum and superior through the internal capsule are visible as 
coherent bundles on a coronal slice (Figure 4). In the region of their crossing, the primary path of the internal capsule 
(from inferior regions to motor cortex) is apparent. Additionally, the left-right course of the corpus callosum fibers is 
simultaneously apparent. On traditional tensor analyses, this region manifests as a “black hole.” With CFARI, the pattern 
of crossing fibers is clearly identified regions and the results are consistent with anatomical expectations.  

4.3 Simulation Time  

Mean analysis time for constrained CFARI was 62 ms per brain voxel compared with 77 ms for unconstrained CFARI 
on a 1.6 GHz notebook computer.  

5. CONCLUSION 
CFARI provides a robust framework for identifying intra-voxel structure with conventional diffusion-weighted 
acquisitions and shows great promise in helping to resolve the crossing fiber problem.  Although similar in spirit to 
existing deconvolution approaches, CFARI uses sparsity to stabilize estimation with limited data (rather than spatial 
consistency or a limited model order). As the current estimation process is driven only by information from individual 
voxels, one could exploit spatial regularization either in the subsequent fiber tracking or through direct incorporation of 
smoothing.  

The single voxel experiments demonstrate that the angular resolution of the multiple compartment models is comparable 
to previously reported findings for q-ball peak detection and deconvolution based approaches (e.g., 10-20 degrees 
precision). The multiple intravoxel directions could be immediately used for probabilistic or deterministic fiber tracking 
in place of multi-orientation structures inferred by other methods. Calculation of generalized contrast measures, such as 
generalized fractional anisotropy (GFA) [7], is also straight forward.  

The multi-compartment framework hints at other possibilities for characterizing tissue characteristics. It might be 
possible to associate specific basis component coefficient with different biophysical basis (e.g., types of tissue). 
Currently, the CFARI basis components vary only by orientation. In previous work, we saw that within this framework 
CFARI is robust to model mismatch. Lowering the FA of the basis set to improve robustness increases overall error. The 
CFARI numerical estimation framework readily supports non-tensor model for individual compartments. It would be 
fascinating to use either simulated or empirical observations of biological compartments of interests as a basis set. The 
utility of such an approach is, as yet, unproven and will be an exciting  area of future research.  
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In summary, the simulations demonstrate that the positivity constraints in CFARI lead to stable and precise estimates of 
multiple intra-voxel compartmental directions. For the majority of models and SNR’s explored, the additional constraint 
improved error over the unconstrained estimates and lead to more computational efficient estimates.  
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Figure 1. Overview of the CFARI Method. A traditional DTI acquisition is used to acquire data. For analysis, a mixture 
model consisting of a tensor model oriented along a large number of directions is fit to the observed data using a 
regularized regression approach.  
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