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ABSTRACT 

Image labeling and parcellation are critical tasks for the assessment of volumetric and morphometric features in medical 
imaging data. The process of image labeling is inherently error prone as images are corrupted by noise and artifact. Even 
expert interpretations are subject to subjectivity and the precision of the individual raters. Hence, all labels must be 
considered imperfect with some degree of inherent variability. One may seek multiple independent assessments to both 
reduce this variability as well as quantify the degree of uncertainty. Existing techniques exploit maximum a posteriori 
statistics to combine data from multiple raters.  A current limitation with these approaches is that they require each rater 
to generate a complete dataset, which is often impossible given both human foibles and the typical turnover rate of raters 
in a research or clinical environment. Herein, we propose a robust set of extensions that allow for missing data, account 
for repeated label sets, and utilize training/catch trial data. With these extensions, numerous raters can label small, 
overlapping portions of a large dataset, and rater heterogeneity can be robustly controlled while simultaneously 
estimating a single, reliable label set and characterizing uncertainty.  The proposed approach enables parallel processing 
of labeling tasks and reduces the otherwise detrimental impact of rater unavailability.  
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1. INTRODUCTION 
Numerous clinically relevant conditions (e.g., degeneration, inflammation, vascular pathology, traumatic injury, cancer, 
etc.) correlate with volumetric/morphometric features as observed on magnetic resonance imaging (MRI).   
Quantification and characterization of these correlations requires the labeling or delineation of structures of interest. The 
established gold standard for identifying class memberships is manual voxel-by-voxel labeling by a neuroanatomist, 
which can be exceptionally time and resource intensive. Furthermore, different human experts often have differing 
interpretations of ambiguous voxels (on the order of 5-10% of a typical brain structure).  Therefore, pursuit of manual 
approaches is typically limited to either (1) validating automated or semi-automated methods or (2) the study of 
structures for which no automated method exists.  

An often understood objective in manual labeling is for each rater produce the most accurate and reproducible labels 
possible. Yet, this is not the only possible technique for achieving reliable results. Kearns and Valiant first posed the 
question whether a collection of “weak learners” (raters that are just better than chance) could be boosted (“combined”) 
to form a “strong learner” (a rater with arbitrarily high accuracy) [1]. The first affirmative response to this challenge was 
proven a year later [2]. With the presentation of AdaBoost, boosting became widely practical [3].   

Statistical methods have been previously proposed to simultaneously estimate rater reliability and true labels from 
complete datasets created by several different raters or automated methods [4-7].  While there are typically many fewer 
raters available in brain imaging research, and raters generally are considered superior to “weak learners.” Warfield et al. 
presented a probabilistic algorithm to estimate the “ground truth” segmentation from a group of expert segmentations 
and simultaneously assess of the quality of each expert [4]. Rohlfing et al. also employed this approach to multiple labels 
[6]. These maximum likelihood/maximum a posteriori methods (e.g., Simultaneous Truth and Performance Level 
Estimation, STAPLE [5]) increase the accuracy of a single labeling by combining information from multiple, potentially 
less accurate raters (as long as the raters are independent and collectively unbiased).  However, the existing methods 
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require that all raters delineate all voxels, which limits applicability in real research studies where different sets of raters 
may delineate arbitrary subsets of a population of scans due to the rater availability or the scale of the study.  

Herein, we present and demonstrate Simultaneous Truth and Performance Level Estimation with Robust extensions 
(STAPLER) to enable use of data with:  

1. Missing labels: partial labels sets in which raters do not delineate all voxels;  

2. Repeated labels: labels sets in which raters may generate repeated labels for some (or all) voxels; and  

3. Training trials: label sets in which some raters may have known reliabilities (or some voxels have known true 
labels). These may also be derived from catch trials. We consider this information ancillary as it does not 
specifically relate to the labels on structures of interest, but rather to the variability of individual raters.  

STAPLER simultaneously incorporates all labels from all raters to estimate a maximum a posteriori estimate of both 
rater reliability and true labels.  The impacts of missing and training data are studied with simulations based on two 
models of rater behavior.  First, the performance is studied using traditional “random raters,” which are parameterized by 
confusion matrices (i.e., probabilities of indicating each label given a true label).  Second, we develop a new, more 
realistic set of simulations in which raters make more mistakes along the boundaries between regions. The performance 
of STAPLER is characterized with these simulated rater models in simulations of cerebellar parcellation.  

2. METHODS 
STAPLE exploits expectation maximization to calculate rater reliabilities, Θ , i.e., the probability that a rater, , reports 
that a voxel, , has a particular label, , given a true label, . Rater reliabilities and observed data, , with  repetitions 
can be used to calculate the conditional probability that a voxel belongs to a class, , at iteration . In [5], the 
conditional expectation of the complete data log likelihood is reported as (for all raters reporting at all voxels, Eq. 20):  , ∏∑ ∏  (1)

When this formulation is extended to include contributions from observed data, product terms adjust to exclude 
unobserved data points:  

, ∏ :∑ ∏ :  (2)

Second, in [5], the update equation for parameter estimates was derived as (for all rater reporting at all voxels and with 
no “known” data, Eq. 24):  

Θ ∑ : ∑  (3)

where  is the indicator function. To extend in this framework to the STAPLER case, we perform three modifications. 
First, parameters for raters with known reliabilities are not updated. Second, if a true label set is given, then an additional 
rater is introduced and modeled as if that rater reported the true labels. This rater is modeled as a rater with known 
reliability equal to one. Third, the update equation for the remaining raters is generalized to include contributions from 
all available data. In summary,  Θ fixed no update0 : Θ

otherwise Θ ∑ :  ∑ :
 (4)

where  is the indicator function.  
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There are several possible routes ones could take to model the unconditional label probabilities (i.e., the label priors). If 
the relative sizes of the structures of interest are known, a fixed probability distribution could be used. Alternatively, one 
could employ a random field model to identify probable points of confusion (as in [5]). The simpler models have the 
potential for introducing unwanted bias while field based models may suffer from slow convergence. Herein, we use an 
adaptive mean label frequency to update the unconditional label probabilities:  

∑ W∑ W  (5)

STAPLER was implemented in Matlab (Mathworks, Natick, MA).  A custom toolbox provided efficient access to large 
sparse matrices. All studies were run on a 64 bit 2.5 GHz notebook with 4 GB of RAM. As in [5], simultaneous 
parameter and truth level estimation was performed with iterative expectation maximization.  

Experiments with random raters were performed with a known, true ground truth model. The accuracy of each label set 
(either from an individual or reconstructed with label fusion, ) was assessed relative to the truth model ( ) with the 
Jaccard similarity index [8, 9] for each labeled region: , | || | ∑∑  (6)

The Jaccard index ranges from 0 (indicating no overlap between label sets) to 1 (indicating no disagreement between 
label sets).  

3. DATA 

Imaging data were acquired from two healthy volunteers who provided informed written consent prior to study. A high 
resolution MPRAGE (magnetization prepared rapid acquired gradient echo) sequence was acquired axially with full 
head coverage (149x81x39 voxels, 0.82x0.82x1.5 mm resolution). An experienced human rater labeled the cerebellum 
from each dataset with 12 divisions of the cerebellar hemispheres (Figure 3A/1B) [10, 11]. Simulated label sets were 
derived from simulated raters using a Monte Carlo framework.  

Two distinct models of raters (described below) were evaluated as follows:  

1. Random raters were simulated: Rater characteristics were generated through pseudo-randomization of the 
given performance model.  

2. Simulated label sets from the raters were generated according to the profiles: These datasets corresponded to 
synthetic labelings of the two MRI datasets given the performance characteristic of each rater.  

3. Traditional STAPLE was evaluated by combining labels from 3 random raters. Each of the three synthetic 
raters was modeled as having labeled one complete dataset.  

4. STAPLER was evaluated by labels from 3*M raters where 3 raters were randomly chosen to delineate each 
slice. Each rater delineated approximately 1/Mth (i.e., each rater labels between 50% and 4% of slices with the 
total amount of data held constant).  

5. The advantages of incorporating training data were studied by repeating the STAPLER analysis with all raters 
also fully labeling a second, independent test data set with known true labels.  

Note that in the case of M=1 and the absence of training data, STAPLER is equivalent to STAPLE. The procedure was 
repeated either 10 or 25 times (as indicated below) and the mean and standard deviation of overlap indices were reported 
for each analysis method.  

3.1 Traditional Random Raters (errors distributed evenly within the volume) 

In the first model (Figure 1), each rater was assigned a confusion matrix such that the i,jth element indicates the 
probability that the rater would assign the jth label when the ith label is correct. Label errors are equally likely to occur 
throughout the image domain and exhibit no spatial dependence. The background region is considered a labeled region. 
This is the same model of rater performance as employed by the statistical framework.  
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To generate each pseudo-random rater, a matrix with each entry corresponding to a uniform random number between 0 
and 1 was created. The confusion matrix was generated by adding a scaled identity matrix to the randomly generated 
matrix and normalizing column sums to one such that the mean probability of true labels was 0.93 (e.g., the mean 
diagonal element was 0.93). Ten Monte Carlo iterations were used for each simulation. 

3.2 New, Boundary Random Raters (errors distributed along label boundaries) 

In the second model (Figure 2), rater errors occurred at the boundaries of labels rather than uniformly throughout the 
image domain. Three parameters describe rater performance: , , and . The scalar  is the rater’s global true positive 
fraction. The boundary probability vector  encodes the probability, given an error occurred, that it was at the ith 
boundary. Finally the vector  describes the error bias at every boundary which denotes the probability of shifting a 
boundary toward either bounding label. For an unbiased rater, 0.5,  . Twenty-five Monte Carlo iterations were 
used for each simulation.  

To generate a pseudo-random rater, the boundary probability vector was initialized to a vector with uniform random 
coefficients and normalized to sum to 1. To generate a simulated random dataset with a given boundary rater, the voxel-
wise mask of truth labels was first converted into a set of boundary surfaces. Then, the following procedure was repeated 
for (1  |B| iterations (where N is the set of all image voxels). 

1. A boundary surface (a pair of two labels) was chosen according to the  distribution. If the boundary did not 
exist in the current dataset, a new boundary surface was chosen until it did exist.  

2. A boundary point within the chosen surface was selected uniformly at random for all boundary points between 
the two label sets.  

3. A random direction was chosen Bernoulli( ) to determine if the boundary surface would move toward label 
pair with the lower index or the label pair with the high index.  

4. The set of boundary voxels was updated to reflect the change in boundary position. With the change in labels, 
the set of boundary label boundary pairs was also updated since the changes in voxel classification can lead to 
changes in the topology of the surface collections.  

In this study, the rater performance was set to 0.8 and the bias term was set to 0.5. The boundary random rater 
framework was implemented in the Java Image Science Toolkit (JIST, http://www.nitrc.org/projects/jist/ [12, 13]). 

4. RESULTS 
4.1 Traditional Random Raters 

For a single rater, the Jaccard index was 0.67±0.02 (mean ± standard error over simulated datasets, one label set is 
shown in Figure 3C). The traditional STAPLE approach with three raters visually improved the consistency of the 
results (one label set is shown in Figure 3D); the average Jaccard index with STAPLE also increased to 0.98±0.012 (first 
column of Figure 3E). For all STAPLER simulations, use of multiple raters improved the label reliability over that 
which was achievable with single rater (Figure 3E).  

STAPLER consistently resulted in Jaccard indexes above 0.9, even when each individual rater labeled 10 percent of the 
dataset. While the Jaccard index was equivalent to that of the STAPLE approach when raters labeled as little as one third 
of the dataset, the achievable consistency with less overlap resulted in appreciably degraded performance. The decrease 
in reliability arises because not all raters have observed all labels with equal frequency. For smaller regions, some raters 
may have observed very few (or no data points). During estimation, the rater reliabilities for these “under seen” labels 
are very noisy and led to unstable estimates, which result in estimation of substantial off-diagonal components of the 
confusion matrix. Note that all simulations were designed such that each voxel was labeled exactly three times; only the 
identity of the simulated rater who contributed these labels varied.  

Use of training trials greatly improved the accuracy of label estimation when many raters each label a small portion of 
the data set (Figure 3E). No appreciable differences were seen when the number of raters were varied. The use of 
training data effectively places a data-adaptive prior on the confusion matrix. Since each rater provides a complete 
dataset, each label category is observed by each rater for a substantial quantity of voxels. Hence, the training data 
provide evidence against artifactual, large off-diagonal confusion matrix coefficients and improves estimation stability. 
Furthermore, without missing categories, there are no undetermined confusion matrix entries.  
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4.2 New, Boundary Random Raters  

For a single rater, the Jaccard index was 0.83±0.01 (one label set shown in Figure 4B). Using three raters in a traditional 
STAPLE approach increased the average Jaccard index to 0.91±0.01 (one label set shown in Figure 4E). The STAPLER 
approach lead to consistently high Jaccard indexes with as low as 25 percent of the total dataset labeled by each rater. 
However, with individual raters generating very limited data sets (<10%), STAPLER was prone to “label inversion” and 
resulted increased error over a single rater. In this case, off-diagonal elements of the estimated confusion matrix become 
large and lead to label switching (Figure 4C,E-G). This behavior was not routinely observed in the first experiment, but 
was one factor that led toward increased variability of Jaccard index (see outlier data points in Figure 3E). As in the first 
experiment, all simulations were designed such that each voxel was labeled exactly three times; only the identity of the 
simulated rater who contributed these labels varied. 

Use of data from training trials alleviates this problem by ensuring that sufficient data on each label from each rater is 
available (Figure 4D,H-J). The Jaccard index showed no appreciable differences when raters labeled between 4 percent 
and 100 percent of the dataset. However, the use of training data stabilized the reliability matrix estimation process. The 
artifactual, large off-diagonal confusion matrix coefficients were not observed when training data were used.  

5. CONCLUSIONS 
STAPLER extends the applicability of the STAPLE technique to common research situations with missing, partial, and 
repeated data and facilitates use of training data to improve accuracy. These ancillary data are commonly available and 
may either have exact known labels or be labeled by a rater with known reliability.  A typical scenario would involve a 
period of rater training followed by their carrying out a complete labeling on the training set.  Only then would they 
carry out independent labeling of test data.  STAPLE was successful both when simulated error matched modeled errors 
(i.e., the traditional model) and with more realistic, boundary errors, which is promising for future application to work 
involving efforts of large numbers of human raters.  

The traditional approach to manually label images has been pixel-by-pixel annotation by a rater or team of raters. Yet, 
expert raters are a very limited resource given their extensive anatomical and imaging understanding; an experienced 
neurologist requires nearly a decade of training. Individuals with a biological background can achieve reasonable 
reliability for specific structures in much less time (typically within approximately 3 months training for our cerebellar 
protocols). However, well qualified individuals tend to quickly move on in search of more varied work. Historically, use 
of trained (but non-career track) labelers has been plagued by difficulties in achieving long-term consistency and 
reliability.  

With the newly presented technique, numerous raters can label small, overlapping portions of a large dataset, which can 
be recombined into a single, reliable label estimate, and the time commitment from any individual rater can be 
minimized. This enables parallel processing of manual labeling and reduces detrimental impacts should a rater become 
unavailable during a study. Hence, less well trained raters or raters who may participate on a part-time basis could 
contribute. As with STAPLE, both the labels and degrees of confidence on those labels are simultaneously estimated, so 
that subsequent processing could make informed decisions regarding data quality. Such an approach could enable 
collaborative image labeling system and be a viable alternative to expert raters in neuroscience research.  

Evaluation of STAPLER with partially labeled datasets from human raters is an active area of research and will be 
reported in subsequent publications. The improvement in Jaccard index in the boundary rater model was less than that in 
the traditional random rater model (from 0.83 to 0.91 versus 0.67 to 0.98). In the traditional rater example, both the 
estimation and underlying error models were the same. In the boundary rater model, the model used during estimation 
was only a loose approximation of the underlying mechanism. This result provides an indication that simple rater 
confusion models may still be effective in practice (with human rater) when difficult to characterize interdependencies 
might exist between rater confusion characteristics, the data, and temporal characteristics. Additionally, it hints that more 
comprehensive models might enable more efficient label fusion from human raters. As with the original STAPLE 
algorithms, STAPLER can readily be improved by introducing spatially adaptive unconditional label probabilities, such 
as with a Markov Random Field (MRF). STAPER extensions are independent of the manifold of the underlying data. 
These methods are equally applicable to fusion of volumetric labels [14-16], labeled surfaces[17, 18], or other point-wise 
structures.  
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Figure 3. Simulations with traditional random raters. Coronal sections of the three-dimensional volume show the high 

resolution MRI image (A), manually drawn truth model (B), an example delineation from one random traditional rater 
(C), and the results of a STAPLE recombination of three label sets (D). STAPLER enables fusion of label sets when 
raters provide only partial datasets, but performance suffers with decreasing overlap (E). With training data (F), 
STAPLER improved the performance even with each rater labeling only a small portion of the dataset. Box plots in E 
and F show mean, quartiles, range up to 1.5σ, and outliers. The highlighted plot in E indicates the simulation for which 
STAPLER was equivalent to STAPLE--i.e., all raters provide a complete set of labels. 

 
Figure 4. Simulations with boundary random raters. Axial sections of the three-dimensional volume show the manually 

drawn truth model (A) and sample labeling from a single simulated rater (B) alongside STAPLER fused results from 3, 
36, and 72 raters producing a total of 3 complete labeled datasets without training data (E-G) and with training data (H-
J). Note that boundary errors are generated in three-dimensions, so errors may appear distant from the boundaries in 
cross-sections. Boundary errors (e.g., arrow in F) increased with decreasing rater overlap. Label inversions (e.g., arrow 
in G) resulted in very high error with minimal overlap. As with the traditional model (Figure 1), STAPLER enables 
fusion of label sets when raters provide only partial datasets, but performance suffers with decreasing overlap (C). With 
the addition of training data (D), STAPLER results in sustained performance improvement even with each rater 
labeling only a small portion of the dataset.  
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