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Abstract
Tissue contrast and resolution of magnetic resonance neuroimaging data have strong impacts on the
utility of the data in clinical and neuroscience tasks such as registration and segmentation. Lengthy
acquisition times typically prevent routine acquisition of multiple MR tissue contrast images at high
resolution, and the opportunity for detailed analysis using these data would seem to be irrevocably
lost. This paper describes an example based approach using patch matching from a multiple resolution
multiple contrast atlas in order to change an image's resolution as well as its MR tissue contrast from
one pulse-sequence to that of another. The use of this approach to generate different tissue contrasts
(T2/PD/FLAIR) from a single T1-weighted image is demonstrated on both phantom and real images.
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1. INTRODUCTION
A principal goal of the collaboration between the neuroscience and medical imaging
communities is the accurate segmentation of brain structures, with a view towards offering
insight about the normal and abnormal features of a brain. Several methods1, 2 have been
proposed to find cortical and sub-cortical structures. These methods are intrinsically dependent
on the tissue contrast and resolution of the acquired data. In this paper, we propose a method
to alter both the tissue contrast and resolution of a magnetic resonance (MR) image, thereby
permitting image analysis techniques that would otherwise be inappropriate or ineffective.

MR tissue contrast and image resolution provided by the application of specific pulse sequences
in MR imaging fundamentally determine or limit the performance of tissue classification
algorithms3. If several images with different tissue contrasts (e.g., T1-weighted, T2-weighted,
and PD-weighted) at high resolution can be obtained then optimal tissue classification solutions
can be applied4, 5. But in many scenarios—e.g., routine clinical imaging of patients—it is not
feasible for cost and time reasons to obtain such a rich data set, thus losing the opportunity for
detailed image analysis. In neuroimaging, it is important to be able to automatically delineate
the cortical gray matter and to observe white matter lesions. Yet there are inevitable tradeoffs
made in choosing pulse sequences that will provide good contrast between the gray matter
(GM) and the surrounding white matter (WM) and cerebro-spinal fluid (CSF) as well as
delineating lesions. In particular, the tissue contrast between GM and WM is typically larger
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in a magnetization prepared rapid gradient echo (MPRAGE) image than in a spoiled gradient
(SPGR) acquisition. On the other hand, the tissue contrast between CSF and GM is larger in
an SPGR image. As well, white matter lesions can best be seen as hyperintensities on fluid-
attenuated inversion recovery (FLAIR) images or6 T2-weighted images rather than either of
the (MPRAGE or SPGR) T1-weighted images mentioned above. All of these observations can
be seen in Fig. 1, where equivalent brain sections are shown with different MR tissue contrasts.

Delineation of small brain structures and accurate localization of object boundaries is also
dependent on the image resolution. In particular, poor resolution yields blurring of boundaries
and loss of image contrast in small structures. The technique we develop in this paper is capable
of both changing the tissue contrast and improving the resolution of an MR image. The resulting
image (or images) can then be used to carry out a more detailed analysis than would otherwise
be possible.

Image hallucination7, 8 is often used to generate a high-resolution image from its multiple low-
resolution acquisitions. There are two major categories in image hallucination, Bayesian9-11

and example-based12-14. Bayesian approaches are often formulated as a constrained
optimization problem where the imaging process is known and the high resolution image is
often the maximum likelihood estimator of a cost function given one or more low resolution
images. Example based hallucination techniques are learning algorithms that rely on training
data from a training set or atlas15 consisting of one or more high resolution images. These
methods are primarily patch based, where a patch in the low-resolution image is matched to
another patch in the training data. The similarity criteria are often chosen as image gradients,
neighborhood information or textures16, 17.

In this paper, we extend the idea of atlas based hallucination by using patch matching to
synthesize alternative contrast and high resolution MR images. We demonstrate the
performance of the method using two applications. First, we synthesize different (T2/PD/
FLAIR) tissue contrasts from a single T1-weighted (T1w) image, keeping the resolution the
same, thus enhancing the capability of image analysis techniques that require different tissue
contrasts. The utility of synthesizing alternate contrast is shown by generating a T1w MPRAGE
image from its T1w SPGR acquisition. Then we convert a low resolution (LR) SPGR image
to a high resolution (HR) MPRAGE image which has superior GM-WM contrast. We show
that the overall delineation of the inner surface improves by such conversion.

2. METHODS
Consider two registered MR images fM1 and fM2 of the same subject having different tissue
contrasts (i.e., generated by different pulse sequences). In our experiments, the tissue contrasts
can be any two of the following: T1w, T2w, PDw, or FLAIR. The images are related by the
imaging process , which depends on underlying T1 and T2 relaxation times and other
imaging parameters such as the pulse repetition time and the flip angle. In mathematical terms,

(1)

where η is a random noise and Θ comprises the imaging parameters. Ideally, if  is known
then fM2 can be directly estimated4. But for many studies Θ is not always known precisely and

 is difficult to model accurately, and it is therefore impractical to try to reconstruct fM2 from
fM1 directly. Instead, our approach is to synthesize fM2 from fM1 using an atlas.
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2.1 Atlas Construction

Define an atlas as N sets of triplets, , where  are two
tissue contrasts of the same subject having same resolution, and  is a high-resolution image
with tissue contrast M2. By assumption,  and  are registered to , ∀n. Also assume
that fM1 and  are made of 3D patches , centered at i ∈
Ωf, jn ∈ Ωgn, Jn ∈ ΩGn, respectively. Ωf, Ωgn and ΩGn are the image domains of  and

. Therefore,  and  is a low-resolution M1 patch of its high-resolution
M2 patch . Defining  as a down-sampling operator, if jn ∈ Ωgn and Jn ∈ Ωgn are
corresponding locations in  and , respectively, then jn = (Jn).

2.2 Contrast Synthesis

Assume that all the images f and  are normalized in such a way that their WM peaks are the
same. Using this definition of an atlas, a synthetic M2 image, having same resolution as fM1,
can be generated by,

(2)

where ℱ is a non-local means operator18 and,

(3)

λ is a smoothing weight. ℛ makes sure that the patches  are chosen such that the
boundaries between two neighboring patches in the synthesized f̂M2 remain smooth14. We use
the following smoothness function,

(4)

where Ni and Njn are neighborhoods of the ith and jnth voxel, respectively, with i ∈ Ωf, jn ∈
Ωgn, Ni ⊂ Ωf, Njn ⊂ Ωgn.

Instead of just taking any patch that maximizes Eqn. 3, an average of the “best matching
patches” are used. The “best matching patches” Jn are defined to be those for which the errors
from Eqn. 3 are the lowest p% obtained from all the patches. We choose p = 3 in our
experiments.

Define Ωi,n as the set of all best matching patches for the patch fM1(i) obtained from Eqn. 3 for

nth pair of images . Clearly, Ωi,n ⊂ Ωgn. Using this definition, the non-local means
filtered patch is obtained by,

(5)

where,
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(6)

where β is a smoothing parameter on the NLM operator. In our experiments, β is chosen
empirically, although it is possible to estimate it in a optimal way19.

Assuming M1 as T1w and M2 as T2w, the algorithm can be described for one atlas as :

• To synthesize ith patch f̂M1(i) in f̂M1, find the “best matching patches”
 from  by searching the image domains Ωg

n to solve
Eqn. 3 (1 in Fig. 2).

• Construct the ith patch in f̂M1 as a non-local weighted average of  as shown
in Eqn. 5 (2 in Fig. 2).

2.3 Resolution Enhancement
We merge the learning based image hallucination idea12, 17 to our tissue contrast synthesis
approach to synthesize different contrast as well as improve resolution. To synthesize a high-
resolution M2 image F̂M2 from a low-resolution M1 image fM1

, Eqn. 2 is re-written as,

(7)

with

(8)

where n is obtained from Eqn. 3. −1 takes the low-resolution patch from Ωgn to the high-
resolution domain ΩGn. This approach is similar to the example based super-resolution
algorithms12, 14, except that we are using patches from a different tissue contrast image .

3. RESULTS
3.1 Contrast Synthesis Validation on Brainweb

We use the Brainweb phantom20 to validate the contrast synthesis method. M1 is chosen as
T1w (Fig. 3(d)), and its original T2w and PDw acquisitions shown in Fig. 3(e)-(f). For all our
experiments, we choose N = 1. The atlas is another set of phantoms, consisting of one of each
of T1w, T2w, and PDw acquisitions, as shown in Fig. 3(a)–(c). Because the image intensities
are taken from a codebook, the mean square error between the original and the reconstructed
image is not a meaningful measure of performance. Instead, we use normalized mutual
information (NMI), a visual information fidelity metric21 (VIF), and a universal image quality
index22 (UQI) to quantify similarity between the original and the synthetic images. The NMI

between two images A and B is defined as  where H(A) is the entropy
of the image A and H(A, B) is the joint entropy between A and B, with H(A, A) = H(A). We
want low NMI values between the original and the synthetic images. Ideally, the synthetic
image should give an accurate representation of the original image, which implies a small joint
entropy between them.

Roy et al. Page 4

Proc Soc Photo Opt Instrum Eng. Author manuscript; available in PMC 2010 April 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The NMI between original T2 and synthetic T2 is 0.7464, while it is 0.7597 between the original
PD and the synthetic one. VIF and UQI take two 2D images and return a number between 0
and 1. 1 is achieved only when the images are same or one is a scalar multiple of another. We
plot UQI and VIF metrics in Fig. 3(i)-(j) for each slice of the 3D volumes between original and
the synthetic T2 and PD. It is observed that the similarity is high on average.

3.2 Contrast Synthesis on Real Data
We use our algorithm to synthesize T2 and FLAIR images of a normal subject from its T1w
SPGR acquisition for which we also have the actual T2 and FLAIR available for comparison.
Fig. 4(a)-(c) show the T1, T2 and FLAIR images of another subject, which is used as the atlas.
Fig. 4(g)-(h) show the synthetic T2 and FLAIR of the test subject in Fig. 4(d)-(f). Fig. 4(f)
shows that the atlas FLAIR has a better contrast in GM-WM boundary compared to the test
FLAIR. This is reflected in the synthetic FLAIR also. This highlights the benefit of our method,
where a new contrast is created from the atlas, instead of the contrast reconstruction from the
test image.

The NMI between the original and the reconstructed T2 and FLAIR are 0.3697 and 0.3102,
respectively. NMI, being a distribution dependent statistic, is sensitive to the actual distribution
of the intensities rather than the contrast. The NMI numbers for the phantom validation are
larger than those of the real data, because the Brainweb phantoms have widely different
histograms while keeping the same contrast, while the real data have similar histograms. The
plot of UQI and VIF for each slice is also shown in Fig. 4(i)-(j).

The next experiment on real data consists of synthesizing an MPRAGE image from its SPGR
acquisition of the same resolution, because MPRAGE images are of importance for their
superior GM-WM contrast. The required atlas consists of a pair of SPGR and MPRAGE
acquisitions of another subject. Fig. 5(a)-(b) shows the true SPGR and true MPRAGE
acquisitions, with Fig. 5(c) being the same resolution synthetic MPRAGE image. The NMI
between the original MPRAGE and the synthetic MPRAGE is 0.3254, while it is 0.3341
between the original MPRAGE and the original SPGR.

3.3 Contrast Synthesis with Resolution Enhancement
We show that using both contrast synthesis and resolution enhancementment leads to improved
delineation of cortical surfaces. We use M1 as SPGR and M2 as MPRAGE. MPRAGE images,
having superior GM-WM contrast, are a better candidate for the delineation of the inner cortical
surface compared to SPGR images. So in the absence of an MPRAGE image, we could
synthesize one, thus enabling better delineation. Our data set contains a 1.875×1.875×3 mm
low-resolution (LR) SPGR image fM1, its high resolution (HR) 0.9375×0.9375 1.5 mm true
MPRAGE acquisition FM2 and true HR SPGR acquistion FM1, shown in Fig. 6(a)-(c),
respectively. Using Eqn. 7, a HR MPRAGE image F̂M2 is generated, shown in Fig. 6(d). The
cortical inner surfaces are found using CRUISE23. For comparison, “the best available truth”
or a “reference” standard of the inner surface is obtained from FM2, with which we compare
the surface obtained from F̂M2 and FM1. Fig. 7(a) and (b) show how the lack of GM-WM
contrast gives rise to a poor cortical inner surface reconstruction for FM1 when compared to
the reference “true” reconstruction from FM2 and the reconstruction from our method, F̂M2.
Table 1 shows that the mean differences for four subjects between their inner surfaces as
generated from F̂M2 and FM1 as compared to FM2. The smaller differences show our super-
resolution approach gives a marginal improvement in the delineation of the inner surface.
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4. DISCUSSION AND CONCLUSION
The similarity criteria in Eqn 3 is chosen to be the L2 norm, the underlying assumption being
the intensities of f and  differ by a Gaussian noise, or they follow a similar distribution. If
the intensity distributions are different, then L2 norm fails to produce correct matches from
Eqn. 3. Also, we used one atlas for our experiments, but we believe using more than one atlas
helps in finding more accurate Jn. Involving more complex similarity criteria like gradient or
texture into Eqn. 3 will also produce more accurate Jn. Some of the parameters, like λ in Eqn.
3 or β in Eqn. 6 are required to be estimated by cross-validation. Also, the smoothness of the
image depends on the amount p% of “best matching patches” used, which also needs to be
estimated by cross validation.

In summary, we proposed an atlas based image synthesis technique to generate different MR
tissue contrasts from a single image acquisition. It is essentially a patch-matching algorithm
where a template patch from a test image is matched onto a multi-modal multi-resolution atlas
and patches from the atlas are used to generate a synthetic alternate tissue contrast high
resolution image. The contribution of this method is that new MR contrasts can be synthesized
from the atlas, and unlike histogram matching, this method uses local contextual information
to synthesize images. We have validated our method on Brainweb phantoms, and showed that
T2, PD, and FLAIR images can be generated from a single T1w acquisition. We also
demonstrated that a synthetic high-resolution MPRAGE image can be generated from its low-
resolution SPGR acquisition, which leads to improved cortical segmentation. So far our
experiments have been carried out on normal subjects. Future work includes reconstruction of
alternate tissue contrasts like T2 and FLAIR on patients with lesions.
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Figure 1.
(a) a T1w spoiled gradient recalled (SPGR) image, (b) T1w magnetization prepared rapid
gradient echo (MPRAGE), (c) T2w, (d) PDw, (e) T1w fluid attenuated inversion recovery
(FLAIR) acquisition of the same subject.
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Figure 2.
Contrast synthesis algorithm flowchart : From the subject T1w image fT1 we take the ith patch
fT1(i) and identify the “best matching patches” from the atlases g(n) as

. The corresponding patches from the T2w images

 are combined using a non-local means approach18 to generate the synthetic
T2 patch f̂T2(i). The merging of all such patches generate the synthetic T2w image f̂T2.
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Figure 3.
Brainweb Validation : (a) T1 Atlas, (b) T2 Atlas, (c) PD Atlas, (d) Test T1, (e) true test T2, (f)
true test PD, (g) synthetic T2 from test T1, (g) synthetic PD from test T1, (i) Universal Image
Quality Index21 between original and synthetic T2/PD, (j) Visual Information Fidelity22

between original and synthetic T2/PD. Normalized Mutual Information (NMI) between (e) and
(g) is 0.7464 while NMI between (f ) and (h) is 0.7597.
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Figure 4.
Contrast Synthesis on Real Data : (a) T1 Atlas, (b) T2 Atlas, (c) FLAIR Atlas, (d) Test T1, (e)
true test T2, (f) true test FLAIR, (g) synthetic T2, (g) synthetic FLAIR, (i) Universal Image
Quality Index21 between original and synthetic T2/FLAIR, (j) Visual Information Fidelity22

between original and synthetic T2/FLAIR for each slice of the volume. Normalized Mutual
Information (NMI) between (e) and (g) is 0.7464 while NMI between (f) and (h) is 0.7597.
The atlas FLAIR has a better contrast in GM-WM boundary compared to the subject FLAIR.
As a consequence, the synthetic FLAIR has better GM-WM contrast than the subject. This
highlights the benefits of our method. As the synthetic image intensities are taken from the
atlas, a new contrast is “created”.
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Figure 5.
Contrast Change, from SPGR to MPRAGE: (a) a T1w spoiled gradient recalled (SPGR)
acquistion, (b) its true magentization prepared rapid gradient echo (MPRAGE) acquistion of
same resolution, (c) a synthetic MPRAGE of same resolution as the SPGR. Normalized mutual
information between them is 0.3254, while it is 0.3341 between the SPGR and the true
MPRAGE.
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Figure 6.
Contrast Synthesis with Resolution improvement: (a) test LR SPGR image fM1, (b) its HR
SPGR acquisition FM1, (c) HR MPRAGE acquisition FM2, (d) our synthetic HR MPRAGE
F̂M2, The bottom row shows corresponding zoomed regions for each image in the top row.
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Figure 7.
(a) Inner surface computed from high-resolution SPGR FM1 (blue) overlaid on FM1, (b) Inner
surface computed from high-resolution MPRAGE FM2 (red), synthetic high-resolution
MPRAGE F̂M2 (green) overlaid on FM2.
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