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A preliminary application of principal components and cluster analysis
to internal tongue deformation patterns
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Preventive Medicine, University of Maryland Medical School, Baltimore, MD 21201, USA; dDepartment of Electrical and Computer

Engineering, Johns Hopkins University, Baltimore, MD 21201, USA

(Received 29 July 2009; final version received 31 March 2010)

Complex patterns of muscle contractions create gross tongue motion during speech. It is of scientific and medical
importance to better understand speech motor strategies and variations due to language or disorders. Dense patterns of
tongue motion can be imaged using tagged magnetic resonance imaging, but characterisation of motion strategies is difficult
using visualisation alone. This paper explores the use of principal component analysis for dimensionality reduction and
cluster analysis for tongue motion categorisation. Velocity fields were acquired and analysed from midsagittal tongue slices
during motion from /i/ to /u/ for eight datasets containing multiple languages and a glossectomy patient. The analyses were
carried out on the tongue-only and tongue-plus-floor of the mouth regions. The results showed that both the analyses were
sensitive to region size and that cluster analysis was harder to interpret. Both the analyses grouped the Japanese speaker with
the glossectomy patient, which although explicable with biologically plausible reasons, highlights the limitations of
extensive data reduction.

Keywords: tongue; principal components analysis; cluster analysis; magnetic resonance imaging; tags

1. Introduction and background

Speech creation and intelligibility are highly dependent on

tongue deformation because the change in the shape of the

vocal tract is primarily caused by the movement of

the tongue. Tongue deformations may appear to be nearly

unlimited in number when one considers the variety and

quantity of speech sounds that appear across the world’s

languages. In addition, studies on motor equivalence and

inverse models of the vocal tract indicate that many vocal

tract shapes can produce similar speech spectra. The

classic example of this is the English sound /r/, which uses

several different tongue surface shapes, yet produces

identical percepts and highly similar waveforms. Despite

this variety of shapes, the majority of individual sounds

within a language appear to be produced with fairly

specific tongue and vocal tract shapes. Thus, the question

arises as to whether multiple speakers (or one speaker at

different times) produce the same tongue surface shape by

using essentially the same motor control strategy or

whether speakers can use entirely different motor

equivalent muscle activity patterns. The former case

would allow for minor muscular variation meant to

accommodate individual differences, such as oral cavity

size and shape. The latter case would increase the

complexity of speech motor control, but would provide

more opportunities for production strategies when dealing

with coarticulation, learning a new language or compen-

sating for changes in oral morphology due to surgical,

medical or dental procedures.

The ideal way to determine the extent of between-

subject motor differences would be to directly measure all

the tongue muscles while speaking, using electromyo-

graphy (EMG). However, the muscle fibres of the tongue

are interdigitated, which makes EMG of most tongue

muscles an extremely challenging, if not impossible, task.

Therefore, motor control strategies must be studied in

a more oblique manner. One approach is to compare the

patterns of tissue-point motion in the internal tongue

among different speakers; these patterns can be extracted

from velocity fields in tagged magnetic resonance imaging

(MRI) images. Tissue-point motion is the behaviour that is

intermediate between muscle activity and tongue surface

shape. Determining commonalities in tissue-point motion

patterns among subjects is the first step towards

determining the common features in muscle compression

patterns and, ultimately, in control strategies used to create

the same speech sound.

The present study compares eight subjects saying the

concatenated vowels /i/– /u/. The speakers had several

different native languages and one had undergone surgery

to remove a part of the tongue due to cancer (partial

glossectomy). Despite these demographics, which should
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increase the variety of patterns seen, all the subjects

produced a normal–sounding /i/– /u/, including the

patient.

Imaging was carried out using tagged MRI and

processed using the harmonic phase (HARP) method

(Osman et al. 1999). Data analysis was carried out using

principal components analysis (PCA) and clustering. MRI

has been used for many years to capture the shape of both

the oral cavity and vocal tract (Lufkin et al. 1987;

McKenna et al. 1990; Engwall 2003) and in imaging the

motion of the tongue (Narayanan et al. 1997; Masaki et al.

1999; Stone et al. 2002; Shadle 2006). Detailed motion of

the pattern of muscle contraction within the body of the

tongue was made possible through the advent of tagged

MRI (Zerhouni et al. 1988; Axel and Dougherty 1989),

which is now being used in several studies of tongue

motion (Niitsu et al. 1994; Napadow et al. 1999a, 1999b;

Dick et al. 2000; Parthasarathy et al. 2007). The tagged

MRI method called CSPAMM (Fischer et al. 1994) and its

enhancement MICSR (NessAiver and Prince 2003) are

ideally suited for the HARP method (Osman et al. 1999)

and provide the data that have been used in the statistical

analyses described in this paper. The mechanics of passive

deformation due to contact with the hard palate, teeth and

floor of mouth have not been considered in the present

paper, and the patterns of motion alone have been studied,

irrespective of active vs. passive origin. Future studies,

which consider both boundary and muscle contributions,

will provide more complete interpretations of tongue

motion.

HARP is capable of generating a wide array of motion-

related quantities (Osman and Prince 2000), including

sequences of velocity fields that provide highly detailed

(pixel-by-pixel) patterns of incremental motion as the

tongue moves from one time frame to the next during

speech. The velocity fields were extracted from the tagged

MRI data at the time frame with the largest overall

observed tissue velocities in the tongue (hereafter, the

target frame). The target frame was always the first or

second frame of the transition between the two sounds.

The extracted velocity fields were compared among the

eight datasets using PCA and cluster analysis to examine

the differences and similarities among their internal

motion patterns.

Because of the large quantity of data, even with eight

subjects, methods for simplifying and grouping the data

were important. PCA is an excellent standard method for

extracting and representing patterns in high-dimensional

data for which no expectations or a priori models are

available. PCA reduces the dimensionality of a dataset by

determining the main orthogonal directions of data

variability and is typically applied to a dataset after

removing the common component, that is, the mean. A set

of principal components (PCs) are then produced

representing the most dominant variations (from the

mean) that are present within the observed data. PCA (or its

close relative factor analysis) has been used to characterise

speech-related motion of the midsagittal tongue surface

(Harshman et al. 1977; Jackson 1988; Maeda 1990; Hoole

1999) and the coronal tongue surface (Stone et al. 1997;

Slud et al. 2002). The speech of tongue-cancer patients,

pre- and post-glossectomy surgery, was also characterised

using PCA, and the results were able to distinguish tongue

surface motions resulting from different reconstruction

procedures (Bressmann et al. 2004, 2007).

One question asked by the present study is whether

the deformation within the midsagittal tongue proper is

sufficient to represent its key motions, or whether a

tongue-plus-floor of mouth (hereafter, tongue-plus-floor)

region of interest (ROI) is needed. To answer this question

several PCAs were performed. PCA1 compared an ROI

that included the tongue-plus-floor muscles for the eight

datasets (see Figure 1(a)). PCA2 was performed on a

smaller ROI, the tongue-only (see Figure 1(b)). Hold-one-

out analyses were also performed for each of the

individual subjects to determine if the patient was

represented more poorly by PCs derived from a group

that excluded him than the other subjects. We must also

note that the patient has left-right asymmetries in his

tongue motion due to loss of tissue on one side. Midsagittal

motion may be a poorer representation of his 3D tongue

motion than the other subjects.

Cluster analysis is a common technique for statistical

data analysis used in many fields, including image analysis

and bioinformatics. Clustering is the assignment of a group

of subjects into subgroups (clusters) so that subjects within

a subgroup are more similar (patterns) to one another than

those in different subgroups. Hierarchical clustering

algorithms are among the best-known clustering methods

(Duda et al. 2001). The algorithms can be divided

according to two distinct approaches: agglomerative

(bottom-up, clumping) and divisive (top-down, splitting).

Agglomerative algorithms begin with each subject as a

separate cluster and merge him/her into successively

larger clusters. Divisive algorithms begin with the whole

Figure 1. Nine landmark points were used to align the ROIs for
all subjects; jaw muscles were included (left) or omitted (right).
The image depicts Subject 5 at the onset of the /i/–/u/ transition.
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group and proceed to divide it into successively smaller

clusters. The clustering method requires specification of

both a similarity metric and linkage. The similarity metric

is defined for pairs of subjects, with the goal to group

similar subjects together. Euclidean distance, Manhattan

distance, Mahalanobis distance and Pearson correlation

are the bases for some of the most common similarity

metrics. Although the similarity metric reflects the

distance between two subjects, additional specifications

of the distance between clusters are required to define the

distance between two clusters. The specification of the

distance between clusters is determined by the linkage

method. Average, complete and single linkages are the

most commonly used ones. There are many applications of

hierarchical clustering; for example, Alizadeh et al. (2000)

discovered new subgroups of lymphomas. Similarly,

Bittner et al. (2000) found structure among otherwise

morphologically indistinguishable melanoma tumours.

In this study, the subjects were clustered based on co-

registered velocity vectors at a single instant of time for

each ROI and their component motions. The agglom-

erative hierarchical clustering algorithm was used for

classifying the subjects. The clustering trees were

generated to explore the features that could be useful for

categorisation. With a larger dataset, such analysis may

reveal different velocity field patterns among American

English (AE) speakers, non-native speakers or patients.

The second question asked by this study is whether the

patient will be distinguished from the normal subjects.

2. Methods

2.1 Data used in the analyses: subjects and speech
material

Eight datasets were available for this analysis, each

consisting of the velocity field extracted from the target

frame. The demographics for the datasets are presented

in Table 1. This was a non-homogeneous dataset that

contained: (1) three datasets spoken by the same subject

(datasets 1–3); the latter two were recorded after 2 months

and 1 year, respectively; (2) three different native

languages and (3) one speaker who underwent glossect-

omy surgery about 1 year prior to the study (Subject 8).

The surgery removed one-third of his tongue on the left

side and replaced it with a radial forearm free flap, while

preserving the tongue tip. The differences among the

subjects in slice thickness and tag separation, matched

within a subject to create square voxels, changed the

resolution of the data, but did not noticeably affect the

goals of this preliminary study. All the subjects were male.

To record the data, the subjects repeated /i/–/u/ to the

first two beats of a four-beat metronome set at 0, 333, 800

and 1400ms in a 2 s repeat time. The last two beats were

used for a controlled inhalation and exhalation. The timing

was coordinated to the trigger of the MRI machine, so that

the first beat occurred at the onset of the MRI acquisition

and tags were applied 16ms before the beat. The triggering

method is based on that of Masaki et al. (1999) and

Shimada et al. (2002). A full explanation of the recording

and analysis procedures can be found in the work carried

out by Parthasarathy et al. (2007) and Stone et al. (2009).

2.2 Data collection

To acquire each tagged cine series, the subjects performed

three repetitions of each speech task per slice in each of the

four acquisitions. The four acquisitions included two

orthogonal, independent tag directions and two comp-

lementary tagging phases for each direction; these were

combined to generate a single MICSR image. Each image

was acquired in a k-space with a matrix size of 64 £ 22 in

three repetitions. This relatively small matrix acquisition

size was optimised to work with the HARP analysis

technique, allowing us to reduce the number of repetitions

of the speech task, minimising the potential errors

associated with multiple speech task repetitions.

The first of the three repetitions was a preparation

cycle necessary for steady-state imaging, and 11 k-space

lines were acquired in each of the other two repetitions.

For seven sagittal slices, this resulted in 84 repetitions,

including four pauses. The non-tagged cine-MRI images

were used to register the datasets across the subjects prior

to the PCA and cluster analysis. These HARP and MICSR

procedures are explained in detail in the work carried out

by Osman et al. (1999, 2000), NessAiver and Prince

(2003) and Parthasarathy et al. (2007).

2.3 Pre-processing of data: registration of subject data
using cine-MRI images

To spatially align the velocity fields from the eight

different datasets, the target frames were identified in the

cine-MRI images and the tongue surfaces were aligned

using nine landmark points, as shown in Figure 1. This was

possible because the time frames are the same in the cine

and the tagged datasets of each subject, as the subject

spoke to a metronome. In the present study, we normalised

Table 1. Subject demographics.

Subject Language Health Tesla ST/tag sep (mm)

1 Tamil Normal 1.5 7
2 Tamil Normal 1.5 7
3 Tamil Normal 1.5 7
4 English Normal 1.5 7
5 English Normal 1.5 7
6 English Normal 1.5 7
7 Japanese Normal 3.0 5
8 English Patient 3.0 6

Computer Methods in Biomechanics and Biomedical Engineering 495
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only the target frame for each subject. The tissue points in

Figure 1, on the right, were determined first. These points

are (1) the base of the valleculae; (2) the upper tip of the

epiglottis (projected onto the tongue surface); (3) the point

midway between points (2) and (4); (4) the point on the

tongue surface that lies between the elbow of the velum (or

the midway point of the velum if no elbow is visible) and

the upper tip of the marrow (white) visible within the

mandible (black); (5) the mid palate; (6) the point midway

between (5) and (7); (7) the tongue tip; (8) the origin of

genioglossus and (9) the inner aspect of the mandible.

On the left, the floor muscles were included by moving

the two lowest points below the soft tissue of the chin.

The anterior one is positioned to include as much of the

floor musculature as possible, but not the jaw bone itself.

We denote the ith landmark on the jth subject as Pij. The

tongue region of each subject is defined as the area inside

the polygon formed by connecting these landmarks.

The tongue regions in all the subjects were registered

to dataset 1 using rigid transformation plus a global scaling

computed from manually picked landmark points. Without

loss of generality, we picked the first dataset as the

reference coordinate to which all the other datasets were

registered. The transformation ½sj;Rj; tj� of the jth dataset

was determined by minimising

Ej ¼
X9

i¼1

kPi1 2 ðsjRjPij þ tjÞk
2
; ð1Þ

where sj is a scalar, Rj a rotation matrix and tj a translation

vector. The registered landmark points, illustrated in

Figure 2, show the variability inherent in different

subjects’ resting tongue and head positions. The common

region of the registered tongues was then determined (the

white area in Figure 2), and we denote it as C.

Next, we transformed the velocity field inside the

common region of each dataset to the reference coordinates.

This was accomplished in three steps. For each point (pixel)

pk [ C and the jth subject, we: (1) computed its location

pkj in the jth dataset by applying inverse transform, i.e.

pkj ¼ s21
j RT

j ðpk 2 tjÞ; (2) computed the velocity vðpkjÞ ¼

½uðpkjÞ; vðpkjÞ�
T at point pkj using HARP and linear

interpolation, with uðpkjÞ being the velocity component in

the vertical (y) direction and vðpkjÞ being the velocity

component in the horizontal (x) direction and (3)

transformed the velocity back to the reference coordinate

and scaled it using v
ðjÞ
k ¼ ½u

ðjÞ
k ; v

ðjÞ
k �

T ¼ sjRjvðpkjÞ. These

steps were executed for every pixel pk [ C and every

dataset.

2.4 Principal component analysis

After the tongue shapes and velocity fields were aligned,

we performed PCA on all the subjects and quantified the

component motions of the midsagittal velocity patterns.

Let us consider that there are N subjects and M points in

the common region. The velocity field of the jth subject

can be represented as a 2M £ 1 vector. The number of

points in the common region is always much larger than

the number of subjects in these datasets, because there are

always a large number of pixels in the tongue. In this

experiment, the number of subjects, N, was 8 or 7, and the

numbers of points in the common region varied from 290

(tongue) to about 420 (tongue-plus-floor).

Through PCA, the data from any subject can be

represented using a linear model

w ¼ wþFb; ð2Þ

where �w is the average velocity field for all the subjects

�w ¼
1

N

XN

j¼1

wj: ð3Þ

The columns of matrix F represent the modes of variation

of the velocity fields and are called PCs. They are

computed from the 2M £ 2M covariance matrix S, given

by

S ¼
1

N

XN

j¼1

ðwj 2 �wÞðwj 2 �wÞT: ð4Þ

The PCs are the eigenvectors fi of S with corresponding

eigenvalues li sorted, so that li ^ liþ1. The PC

corresponding to the largest eigenvalue, i.e. f1 represents

the direction of maximum variability in the velocity fields

across the subjects.

Figure 2. The landmarks and the common region (white) for the
eight tongues after alignment. The landmarks of the reference
tongue are shown in white, and the other tongues are shown
in black.
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A dataset wj can be fitted to the PCs by finding the

coefficient vector b that minimises the residue

E ¼ k �wþFbj 2 wjk; ð5Þ

with k·k being the Euclidean norm. The residue represents

the motion pattern of the data that cannot be represented

by the subjects used in the PCA, while bj represents the

amount of motion patterns that are represented by the

corresponding PCs.

2.5 Hold-one-out analysis

To determine how well each subject was represented and

to consider whether the method might distinguish normal

from patient subjects, we performed a ‘hold-one-out’

experiment. Eight PCAs were performed, each using seven

different subjects. The PCs of each analysis were then fit to

the ‘held-out’ dataset to determine how well it was

represented by the PCs of the other seven datasets.

2.6 Cluster analysis

Let the velocity field of the jth subject be represented as a

vector wj ¼ ½u
ðjÞ
1 ; . . . ; uðjÞM ; vðjÞ1 ; . . . ; vðjÞM �T and let the

Pearson correlation between the jth and ith subject

velocity vectors be denoted as rji ¼ cov ðwj;wiÞ=
stdðwjÞstdðwiÞ, where cov stands for covariance. The

similarity metric between the two subjects is defined as

dðwj;wiÞ ¼ 1 2 rj;i: ð6Þ

Consider two clusters D and D * that contain n and n *

subjects, respectively. Then, the average linkage (distance)

between the two clusters can be measured as

davgðD;D*Þ ¼
1

n�n*

X

Vj[D

X

Vi[D *

dðwj;wiÞ: ð7Þ

It is understood that the larger the calculated distance

value, the greater is the difference between the subjects

(clusters).

The agglomerative hierarchical clustering algorithm

with Pearson correlation and average linkage as a distance

metric was used for the analysis. The cluster analysis

begins with each subject as its own cluster, and at each

stage, chooses the ‘best’ merge of the two subjects or two

clusters of subjects if their distance is minimised until, in

the end, all the subjects are merged into a single cluster.

The end result of hierarchical clustering is a tree structure

or dendrogram (seen in Figures 5 and 6). At the bottom of

the tree, each subject constitutes its own cluster and, at the

top of the tree, all subjects have been merged into a single

cluster. Merges between two subjects or between two

clusters of subjects are represented by horizontal lines

connecting them in the dendrogram (Duda et al. 2001).

3. Results

3.1 Velocity fields

Figure 3 depicts the midsagittal velocity fields for each

subject during the maximum /i/–/u/ motion. Although the

directions of the tissue-point motion were primarily

backward and converging, there were considerable subject

differences. The first three datasets, represented by the

same subject at different dates, showed considerable

differences in deformation pattern. The patient (Subject 8)

had the least tissue-point convergence. His entire

midsagittal tongue moved straight backward. The second

row of Figure 2 adds the floor muscles and shows that the

small converging motion seen in the lower tongue in the

first row is enlarged in the lower region of the tongue.

3.2 PCA of tongue-plus-floor vs. tongue-only ROIs

Two PCAs examined the tongue-plus-floor (PCA1) vs. the

tongue-only (PCA2) ROIs for all the eight subjects after

subtracting the mean, and calculated the per cent variance

accounted for by the PCs. In PCA1, the common region

computed after registration contained about 420 pixels,

and in PCA2, it contained about 290 pixels. Table 2 shows

the eigenvalues and variance explained by all the PCs in

Figure 3. Velocity fields of all the subjects’ regions of interest for tongue-only (top) and tongue-plus-floor (bottom) ROI. The velocity
vectors are displayed with red arrows. The internal tongue colours reflect the magnitude of the local velocities; the colour map is on the right.
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both the conditions. The first four PCs accounted for 93

and 95% of the variance, respectively. The biggest

difference between the two analyses occurred in PCs 1 and

2. Although PC1 plus PC2 had similar explanatory power

for both the ROIs (72 vs. 74%), PC2 demonstrated more

variance in the tongue-plus-floor data (24%) than the

tongue-only data (15%) and PC1 showed less variance (47

vs. 58%). The associated hold-one-out analyses presented

in Table 3 show similar relationship, despite varied subject

demographics. A similar amount of variance was

explained by PC1 and PC2 for the tongue-plus-floor and

the tongue-only ROIs (1 vs. 4%); PC1 explained

more variance (3 vs. 13%) and PC2 less variance

(21 vs. 210%).

Figure 4 depicts the mean velocity for the tongue-plus-

floor ROI (Panel 5) and the effects of adding or subtracting

PCs 1 and 2 in the other images. The middle row shows the

addition of ^1SD of PC1 (Panels 4 and 6) and the middle

column depicts the addition of ^1SD of PC2 (Panels 2

and 8). The mean velocity indicates that the predominant

motion direction from /i/ to /u/ was back in the tongue-

body, up/back in the lower tongue/floor and down/back in

the anterior tongue, both of which converge with the body.

The addition of PC1, which accounted for 47% of the

variance, angled the motion downward, while subtraction

of PC1 angled it upward. PC2, which accounted for 24%

of the variance, represented the degree of anterior-tongue

lowering, up/back motion of the lower tongue and overall

magnitude of the vectors.

3.3 PC representations of tongue velocity patterns

We performed PC fits by adding PC1 and PC2 loadings to

the mean velocity field for each subject (Table 4). The

velocity fields of four subjects (3–5 and 7) were fitted well

by the mean plus PCs 1 and 2 (82–100%). Subjects 1–6

were represented primarily by the mean plus PC1, that is,

back or down/back motion of the tongue. PC2 increased

(or decreased) the convergence in the anterior tongue.

Table 2. PCA1 and 2. Tongue-plus-floor (T þ F) vs. tongue
only (T) data for eight subjects.

Eigenvalues
Explained

(%)
Cumulative

(%)

T þ F T T þ F T T þ F T

PC1 195 145 47 58 47 58
PC2 99 38 24 15 72 74
PC3 59 36 14 15 86 88
PC4 30 16 7 6 93 95
PC5 12 5 3 2 96 97
PC6 10 4 2 2 99 99
PC7 6 3 1 1 100 100

Table 3. Hold-one-out analyses for PCA1 and 2. Per cent
variance explained by the first two PCs for the tongue-plus-floor
(T þ F) and the tongue (T) data.

PC1 (%) PC2 (%) PC1 þ 2 (%)

No. S2
T þ F 48 25 73
T 58 16 74

No. S3
T þ F 46 26 71
T 55 20 75

No. S4
T þ F 40 29 69
T 52 19 71

No. S5
T þ F 47 26 72
T 58 16 74

No. S6
T þ F 54 28 82
T 67 18 85

No. S7
T þ F 60 20 80
T 63 19 83

No. S8
T þ F 50 26 76
T 63 16 79

Min diff. 3 21 1
Max diff. 13 210 4

Figure 4. Synthetic reconstructions of the effects of PC1 and
PC2 added to the mean velocity field of the eight subjects. Images
consist of the mean velocity field (Panel 5), models composed by
adding ^1SD of PC1 (Panels 4 and 6) or PC2 (Panels 2 and 8)
and all combinations (four corner panels) for the tongue-plus-
floor data. The internal tongue colours reflect the same colour
map as in Figure 3. Errors can be seen near the mental symphysis
in the form of arrows of exceptional length (top row) or odd
direction (bottom row). Jaw motion is an inherent part of these
tongue motions.
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Subjects 6–8 had smaller negative loadings on PC1 than

the other subjects. Subject 8 also loaded on PC3 (24%) and

PC4 (11%) (not shown), which further reduced his

downward motion.

3.4 Clustering

Three cluster analyses were performed on velocities in

both horizontal (x) and vertical (y) directions (hereafter,

x–y), horizontal (x) direction only and vertical (y)

direction only for both the ROIs. Figure 5 shows the

results of the cluster analysis on the x-y velocity data for

the tongue-only ROI. The normal-subjects analysis (left)

showed that the three datasets by the same speaker (1)–(3)

clustered together, as did two of the three AE speakers (4)

and (5). The third AE speaker (6) was grouped with

the Japanese speaker (7). Addition of the patient to the

analysis (right) did not change the cluster alliances; the

patient was grouped with the Japanese and the one AE

speaker. A comparison of the x–y, x and y motion clusters

(Figure 6) indicated that the dominant movement pattern

was in the x (horizontal) direction.

The tongue-plus-floor data did not group in a similar

way to the tongue-only data. Instead, two clusters emerged

(Figure 7). The left cluster contained subjects that

primarily moved straight back in the upper tongue; the

right cluster contained subjects that moved obliquely down

and back (see Figure 2). For this dataset, the x–y clusters

were more similar to the y-direction clusters (vertical).

Table 4. Per cent variance explained by the first two PCs in the
tongue-plus-floor (T þ F) data.

PCs
S1
(%)

S2
(%)

S3
(%)

S4
(%)

S5
(%)

S6
(%)

S7
(%)

S8
(%)

1 63 76 85 95 79 47 48 40
2 1 0 8 0 3 8 52 21
1 þ 2 64 76 93 95 82 55 100 61

Figure 5. Dendrograms of x-y clusters for tongue-only data for the normal (left) and all (right) speakers.

Figure 6. Dendrograms of the tongue-only clusters for the (A) x-y, (B) x and (C) y directions.

Figure 7. Dendrograms of tongue-plus-jaw clusters for the (A) x and y, (B) y and (C) x directions.
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4. Discussion

4.1 Tongue-plus-floor (PCA1) vs. tongue-only (PCA2)

The floor muscles have a dual function in speech: to

elevate the tongue as well as to move the jaw and hyoid

bones. PCA2 excluded the floor muscles in its ROI.

Without these muscles the velocity field variability was

explained fairly well with a single PC. However, with

them, the second PC had a greater role, due to the upward

motion of the lower tongue. Therefore, it was concluded

that in PCA of the tongue it is important to include the

floor muscle region. This result is consistent with that

observed by Baer et al. (1988), who showed that the floor

muscle mylohyoid was active for /i/, but not for /u/.

The cluster analyses also showed the differences

between the two ROIs. Subjects 1–3 (the same subject)

clustered together in the tongue-only data, reflecting

coherence in the tissue-point motion within this subject’s

tongue-body across the sessions. However, the tongue-

plus-floor data did not group the three sessions, indicating

that the differences across the data sessions were more

prominent in the tongue root. Datasets 1 and 2 were

clustered more tightly than 3 in the x–y and x data, and 2

and 3 clustered more tightly in the y data. In other words,

the two cluster analyses appeared to have different foci. In

the tongue-only data, the x–y clusters were more similar to

the x clusters, whereas in the tongue-plus-floor data, the x–

y clusters were more similar to the y clusters. As with the

PCA, the tongue-only analysis focused on the large

tongue-body region that moved back vs. down/back. When

the floor region was added, the clusters reflected the

additional upward motion in the lower tongue, thus being

more consistent with the y clusters. Thus, the cluster

analysis and the PCA behaved similarly for each ROI.

4.2 Individual subjects and averaged data

The datasets used in these analyses were quite

inhomogeneous; there were replicates of one individual,

multiple languages and one partial glossectomy. Because

of this and the small number of subjects, the PC1 £ PC2

fits varied widely across the subjects. The patient was no

more unusual than some of the other subjects on the first

two PCs and the cluster results.

It is worth noting that the average velocity field was in

itself a good representation of the motion patterns. The

transition from /i/ to /u/ primarily requires backward

motion of the tongue and little or no motion of the jaw, as

these sounds are known to use a ‘high-front’ and a ‘high-

back’ tongue position, respectively. Nonetheless, the

observed motion went beyond rigid translation. The

average velocity field showed lowering of the anterior

tongue and some elevation of the tongue root (Figure 3,

Panel 5), as did many of the individual datasets (Figure 2).

These vector directions occurred because the tongue,

which has no internal skeleton, is moved by activating the

internal muscles inserted at all the locations on the surface

of the tongue. As these muscles contract, they cause local

deformation that moves and also deforms the tongue. The

average velocity field represented this phenomenon well.

4.3 Comparison between the results of cluster analysis
and PCA

Two interesting examples provide insight into what the

two methods reveal. In the first example, both the methods

captured similarity in the motion patterns of the Japanese

speaker (7) and the AE glossectomy speaker (8). All the

cluster analyses showed a tight clustering between these

two subjects. In addition, these subjects were loaded

similarly on the PCs, with a relatively large loading on

PC2 and a lesser one on PC1. However, their motion

similarities have entirely different underlying reasons:

language vs. loss of muscle tissue. Both the subjects

moved the tongue very little (note the colour map in

Figure 3). The patient lost a section of mucosa and muscle

in the left lateral tongue, which was replaced by a flap of

the skin tissue extracted from the radial forearm. This

additional bulk and weight, which facilitates bolus

containment and execution of consonants, must be

moved using the remaining reduced musculature. In

addition, the sensation and motor control of the tongue tip

on the resected side may be reduced due to loss of nerve

fibres on the resected side; the extent of this loss is

unknown in this patient. Thus, his tongue motions are

slower, shorter and less deformed than normal AE

speakers, probably due to the effects of the flap. The

Japanese speaker, on the other hand, was producing a

Japanese /�/. This is a mid-high, unrounded vowel that is

in a different category from the English /u/. His tongue

position for /u/ was directly posterior and fairly nearby to

that for /i/ necessitating a small, nearly straight-back

motion between them. The higher PCs distinguished these

two subjects. Table 4 shows that PC1 þ PC2 accounted

for 100% of the variance for Subject 7, but only 61% for

Subject 8. PCs 3 and 4 accounted for 24 and 11% of

Subject 8’s variance, respectively. Interestingly, PC3

accounted for 44% of Subject 6’s velocity field as well,

who was the next most similar subject.

The second example shows that both the techniques

captured the same variation across the sessions for datasets

1–3 (the same subject) in the tongue-plus-floor data. This

was the Tamil speaker. The vowels /i/ and /u/ in Tamil are

not appreciably different from English in their citation

form, as was spoken here. Dataset 2 loaded positively on

PC1 and negatively on PC2, dataset 1 loaded positively on

both and dataset 3 was negative on both. The cluster

analyses for both the y and x–y data tightly grouped

datasets 1 and 2, but not dataset 3 (Figure 7), consistent

with their loadings on PC1. The x clusters tightly grouped
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datasets 2 and 3, consistent with the loadings on PC2.

Further studies must be conducted to determine how

typical this intra-subject variability is when repeat datasets

are collected across a time span of a year.

4.4 One motion strategy or two?

In the present study, the goal of determining whether all

the subjects used essentially the same speech gesture with

slight individual variation or used different gestures, could

not be fully achieved due to the small size of the dataset

and the varied demographics of the subjects. With a more

homogeneous dataset, such as normal subjects who are all

native speakers of the same language, fewer PCs should

represent more variance. However, the three AE speakers

(Figure 2 and Nos 4–6) showed a fair amount of

variability, suggesting that the differences seen in these

data may be replicated in a single-language dataset.

Both PCA and cluster analysis are good first steps in

understanding a potential duality between the subjects’

production of these deformations. The tongue-plus-floor

clusters (Figure 7) and PC1 (Figure 2) categorised two

groups of speakers who moved the tongue from /i/ to /u/

using back vs. down/back tongue motion. Although the

inference of muscle activation patterns needs to come from

the strain data, which is being analysed separately, the

present dataset allows for some speculation in the use of

motor control strategies. Speakers 3, 6, 7 and 8 comprised

one cluster and loaded negatively on PC1. These subjects

may have used the styloglossus muscle primarily to pull

the tongue back, because their tongue-body vectors

followed the line of action for that muscle quite closely

(Figure 2). For the normal subjects (3, 6 and 7), the

deformation included upward motion of the tongue base,

which is consistent with the pull of styloglossus on the

tissue or with shortening of the floor muscles. Although

this is not entirely consistent with the study by Baer et al.

(1988) showing that in AE, /u/ has a lower hyoid position

than /i/, it can be noted that of these three, only Subject 6 is

an AE speaker. The other two AE speakers have

downward and backward motion of the entire tongue and

tongue root, consistent with Baer et al. (1988). The

lowering seen in their tip may indicate activation of

inferior longitudinalis. Additional rigidity in the patient

tongue (8), due to scar tissue and flap, would have reduced

local deformation within the tongue, resulting in his rigid

backward motion. Subjects 1, 2, 4 and 5 comprised the

second cluster and loaded positively on PC1. They had

down/back motion and could have used the styloglossus or

hyoglossus as the primary muscle. If they used the

hyoglossus, which pulls the tongue down/back, the floor

would be more likely to move straight back, as observed in

Subjects 4 and 5. The upward motion of the tongue base in

Subjects 1 and 2 argues for the activation of the

styloglossus, which is consistent with this subject’s other

dataset (3). It is also possible that this up/back motion

results from the engagement of the floor muscles, which

can elevate the tongue-body. A better determination of

these contributions will be made in a parallel work

studying the 3D muscle anatomy, principal strains and

strains in the line of action of key muscles.

4.5 Methodological choices

The first methodological choice made in this study was the

application of a rigid and scalar registration method to our

subject data. This choice could affect the results of our

analysis. Alternatively, it would have been possible to

deformably register each tongue to a target tongue. In that

case, homologous points (those corresponding to the same

anatomy) among the subjects could be more easily

achieved, and the data analysis would seem to be

fundamentally more sound. For example, the lack of

perfect overlap, seen in Figure 2, as the disagreement

between the common region and the blue landmark

regions, would vanish. However, the data that we analysed

are vector data (velocities) that must be appropriately

interpreted under deformable registration. At present,

images that are rotated and scaled in order to achieve

registration must have their velocity field rotated and

scaled similarly. However, under deformable registration,

the velocity vectors should be individually and uniquely

scaled and rotated in order to agree with the deformations

being applied to the whole tongue. It is not immediately

clear how one would carry out this process. One might, for

example, directly apply the deformation gradient of the

computed (deformable registration) transformation to the

velocity field. However, it is equally sensible to compute a

polar decomposition of the deformation gradient and apply

only the rotational part of that decomposition to the velocity

field. These procedures would produce different results. On

the other hand, both these approaches derive their steps

from a very local picture of the implied transformation (the

deformation gradient), and this might not represent the best

approach given the deformations taking place at a larger

scale. Tradeoffs are inevitable as alternatives are

considered, and clear advantages of one approach over

the other may emerge in time. Although these approaches

are being explored, the current approach is considered

appropriate for this preliminary study.

PCA and cluster analysis quantify and simplify

complex relationships among the subjects. PCA looks at

between-subject variability, because the mean is sub-

tracted out and the two PC models project high-

dimensional data onto a low-dimensional representation.

The first two PCs in these data represent only 72–74% of

the variance. The cluster analysis represents all the data,

that is, the mean plus all the variance. The techniques are

related in that if the original data do not cluster, the PCs

would not reveal any relationships.
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Strengths and limitations of the methods can be seen in

the results obtained. In the comparison of Subjects 7 and 8,

both the analyses missed the subtle, but obvious

differences. Subject 8 moved the entire tongue almost

straight back, whereas when Subject 7 moved the upper

tongue backward, he angled the anterior part slightly

downward and the posterior part slightly upward. He also

moved the lower tongue upward. Although these two

subjects were more similar than the others, their

differences were not captured by the clusters or by the

first two PCs. The higher PCs, which revealed differences

in the deformation between the two, may elucidate

features of patient motion when a larger dataset is studied.

Cluster analysis, which incorporated all the features,

reduced the data to a greater extent than PCA, which

extracted component features and came out with similar

results. However, cluster analysis is a black box and does

not reveal what features are clustered. In the present dataset,

it was possible to guess what features formed some of the

clusters, especially using the PC eigenvalues and direct data

observation, but other cluster bases were opaque. In a PCA,

the eigenvectors of each PC can be drawn to roughly reveal

the dimension of variation represented by each PC, but

these dimensions are not always very interpretable. In the

present dataset, PC1 was more easily interpretable than

PC2. In both the analyses, there are no a priori models;

hence, the input data must still be examined thoroughly to

define the final model. These results make clear that one

must be careful to include all the important features of the

movement and not excessively reduce the dimensionality.

5. Conclusion

This paper examined the relationships between the tongue

motion deformations of eight speakers for a single speech

gesture using PCA and cluster analysis. A comparison of a

tongue-only ROIwith a tongue-plus-floorROI indicated that

the addition of the floor muscles allows one to observe their

contribution to the deformation, and equally importantly, to

interpret the indirect effects of distant muscles, such as the

styloglossus or hyoglossus, on the lower tongue and floor

region. The largerROI added complexity to the deformation,

which helped to interpret themotor control strategies used by

the speakers. Both the analyses found key features in the data

and had some overlap; both missed the subtleties in the

motions, as might be expected. This means that when

answering scientific questions, such as how many gestures

are used by the subjects, subtle differences may need

additional exploration. Additional types of data, such as

strain data, will help to interpret velocity field results.
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