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Diffusion-weighted images of the human brain are acquired more and more routinely in clinical research
settings, yet segmenting and labeling white matter tracts in these images is still challenging. We present in
this paper a fully automated method to extract many anatomical tracts at once on diffusion tensor images,
based on a Markov random field model and anatomical priors. The approach provides a direct voxel labeling,
models explicitly fiber crossings and can handle white matter lesions. Experiments on simulations and
repeatability studies show robustness to noise and reproducibility of the algorithm, which has been made

© 2011 Elsevier Inc. All rights reserved.

Introduction

Diffusion-weighted imaging (DWI) has become a major tool for
the in vivo study of connectivity in the human brain in health and
disease (Basser and Jones, 2002; Bihan et al.,, 2001). Clinical
researchers have been increasingly interested in using DWI in their
studies, and have widely adopted diffusion tensor derived indices of
white matter (WM) integrity such as fractional anisotropy (FA) and
mean, parallel and perpendicular diffusivity (Horsfield and Jones,
2002). Furthermore, recent works have shown that a tract-based
analysis of the white matter has the promise to offer a deeper insight
into its characteristics in health and disease (O'Donnell et al., 2009;
Reich et al.,, 2006; Yushkevich et al., 2008).

Obtaining an anatomical segmentation of white matter tracts,
however, has proven to be difficult for several reasons. DWI
tractography, which provides information about the connections
between remote regions of the brain (Mori and van Zijl, 2002), does
not directly lead to the characterization of fiber bundles (tracts)
corresponding to known anatomy, and requires grouping, trimming,
and labeling of the numerically computed fibers (Kouby et al., 2005;
Lawes et al., 2008; Maddah et al., 2007; Mayer et al., 2011; Mori et al.,
2005; O'Donnell and Westin, 2007; Ziyan et al., 2009). Fiber tracking
reliability can further vary with imaging resolution, noise and patient
orientation (Wakana et al., 2007) as well as decreased anisotropy or
lesions that occur with disease, and more advanced methods (Behrens
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et al., 2007; Descoteaux et al., 2009; Jones, 2008; Reisert et al., 2011;
Tuch, 2004) require longer imaging times, often impractical for
clinical imaging. Finally, the presence of pathology influences many of
these methods and may confound the results in studies of diseases
involving WM lesions (Reich et al., 2010).

Alternative approaches have been proposed to represent and study
the white matter, most prominently a skeleton representation built on
the FA map (Smith et al.,, 2006) and a region-based parcellation (Mori et
al., 2008). Both methods rely on deformable registration strategies to
align the diffusion images to labeled templates or group averages
(Ceritoglu et al, 2009; Yang et al, 2008). These methods provide
indirect information about the tracts and may be misled by WM lesions,
which disrupt the FA map and provide undesirable features for
registration algorithms to match between subjects.

In this work, we present a new approach to fiber tract segmen-
tation capable of accurate performance on routine clinical acquisi-
tions. With an atlas-based Markov random field (MRF) representation,
we derive a fast, scalable estimation algorithm to reliably segment
most of the major anatomical fiber tracts within the human brain. The
approach bypasses tractography and associated issues and is therefore
considered a “direct” tract segmentation approach. Our approach
models overlapping and crossing fibers and robustly handles the
presence of noise and white matter lesions without manual initiali-
zation or pre-filtering. The method was tested and validated on
simulations and repeatability studies, and has been successfully
applied to the analysis of WM tracts in multiple sclerosis (MS). The
algorithm (coded in the cross-platform Java programming language)
together with its statistical tract atlas is available for free on the NITRC.
org website.
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Related works

Previous methods for direct tract segmentation include a method
based on level sets (Lenglet et al., 2006), one using non-parametric
fuzzy classification (Awate et al., 2007), and tensor-space clustering
approaches (Goh and Vidal, 2008; Rodrigues et al., 2009). These
methods required the specification of initial regions of interest (ROIs)
corresponding to specific tracts of interest. Some probabilistic
tractography methods evaluate the connection strength between
regions or voxels (Fletcher et al., 2007; Parker and Alexander, 2003;
Yendiki et al.,, 2008); however, the connection pathways they can
define are not necessarily identifiable as known anatomical tracts.

Recent studies indicate that multi-atlas registration combined
with image-based segmentation approaches has improved accuracy
(Heckemann et al., 2010). Indeed, statistical atlas-based approaches
incorporated in voxel classification techniques (Hagler et al., 2009;
Maddah et al., 2008) or in parametric deformable models (Eckstein et
al.,, 2009) have shown some promising results for segmenting
anatomical tracts. In particular, Hagler et al.(2009) proposed to use
a statistical atlas essentially equivalent to the one presented here.
However, these methods have so far considered each fiber tract as a
separate structure without explicitly addressing either joint segmen-
tation or crossing tracts. MRFs have been previously considered for
regularizing diffusion tensors (Poupon et al., 1998), but have not been
used for segmentation. Our work brings together MRF modeling and
atlas-based segmentation in a global and computationally efficient
algorithm that explicitly handles fiber crossings and lesions in clinical-
quality images.

Methods

Our segmentation method combines the global information of
location and direction contained in a probabilistic atlas of known
white matter tracts with the local diffusion information obtained from
the image within a MRF model (Li, 2009). In a MRF, the conditional
probability distribution for the labels [ at x is entirely determined by
the conditional probability distribution in their neighborhood. Due to
the Hammersley-Clifford theorem, the joint distribution follows a
Gibbs distribution:

P{ly) =2"" exp% (; VixD + L Vaxyl m))7 1

for a MRF including a unary term V;(x,) and a pairwise term V,(x,y,l,m),
with y and m the location and label of a voxel in the neighborhood
of x,I, T a scaling parameter and Z a normalization factor. The terms
V, and V, are often referred to as energy terms, and we will also use
U(x,l) =Vi(x,l) + 2, mV2(x,y,l,m) to denote the overall energy at voxel
x.Inour model, the unary term V;(x,/) combines the tensor direction and
diffusion characteristics of the data with the tract atlas to encode the
likelihood of each label [ at x, and the pairwise term V;(x,y,l,m) encodes
the local connections between neighboring diffusion tensors.

As it is well known that there is extensive overlap and crossing
between multiple tracts at the current voxel resolution in diffusion
MR, it would be unrealistic to expect a given voxel to contain a single
tract everywhere, and so our set of labels {/} must not only include
labels for each separate tract but also overlapping tracts within a
single voxel. To avoid combinatorial explosion, we limit ourselves to a
maximum of two tracts per voxel and exclude unlikely pairs (see
Section Anatomical constraints). The approach can in principle be
extended to multiple overlaps, provided that the underlying diffusion
information is sufficient to differentiate multiple crossings from
isotropic regions.

To obtain a tract segmentation, we need to first model V; and V5 as
a function of the diffusion data for the possible labels and then to
maximize P({l}) with respect to the label field {/}. The resulting

segmented tracts are represented by membership functions (proba-
bilistic assignments at each voxel) and can be analyzed in a variety of
ways including computation of tract volume and determining average
diffusion properties (e.g., FA, MD).

Our segmentation algorithm, referred to as Diffusion-Oriented
Tract Segmentation (DOTS), is organized as follows. First, the diffusion
weighted images are combined and pre-processed to obtain tensor
images (Section Diffusion-weighted image pre-processing). DOTS
starts by registering our probabilistic atlas (described in Section White
matter tract atlas) to the DTI data, and then using the MRF model to
estimate the posterior probability of the voxel label given the data
(Section Markov random modeling of diffusion). The model incorpo-
rates information about the local anisotropy (Section Diffusion type),
the connectivity between neighboring voxels (Section Local tensor
connectivity) and the statistics of the atlas (Section Atlas information).
Section Propagation of the tract probabilities brings all the different
components of the MRF into the probability function P({l}) to be
maximized by the algorithm. Additional optional modeling is
provided to exclude anatomically irrelevant crossing configurations
(Section Anatomical constraints) and to handle white matter lesions
(Section Handling WM pathology). Additional implementation de-
tails are given in Section Algorithm details.

Diffusion-weighted image pre-processing

To process a series of diffusion-weighted images, we first perform
a tensor reconstruction to get a set of diffusion eigenvectors and
associated eigenvalues { vn(x),)\n(x)}] N at each voxel x with the

standard linear reconstruction method (Basser and Jones, 2002). The
images are first aligned to the b0 image and corrected for distortions
against a structural image within the CATNAP software (Landman et
al., 2007). Extra-cranial tissues are removed with an automatic skull-
stripping method (Carass et al, 2007) applied to a co-registered
structural image or using a semi-automatic method (Bazin et al., 2007)
applied to the mean diffusivity image if a structural image is not available.

White matter tract atlas

Our statistical atlas is based on the atlas of Mori et al.(2005).
Following the atlas tract definitions and delineation protocols, we
obtained a set of semi-manual delineations of major tracts, which we
augmented with additional expert delineations of a few other tracts of
interest. All tracts were delineated using tractography and multiple
regions of interest (ROI) selection in DTI Studio." Our standard atlas
currently includes the following fiber tracts (separated for left and
right when applicable): anterior, superior, and posterior thalamic
radiations, corpus callosum and tapetum, inferior and superior
longitudinal and fronto-occipital fasciculi, cingulum, fornix, uncinate
fasciculus, optic tract, optic radiation, cortico-spinal and cortico-
pontine tracts, medial lemniscus, inferior, middle, and superior
cerebellar peduncles (see Table 1).

Our atlas includes both the spatial probability P;(x) of the existence
of label [ at voxel x as well as the most probable diffusion direction
d;(x) along the tract. Deterministic tractography usually provides very
conservative delineations, including only the portion of the tracts that
can be reconstructed through multiple ROIs. For this reason, we
extended the definition of the tracts in the vicinity of the delineated
regions with a smoothing function:

pi(x) = k*1i(x)

>,pi)d, ) (2)

—t _ t < pt
di(x) = >, p0) Yy EN(X)s.t.p;(y) > p; (%),

! http://www.mristudio.org/.
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Table 1

Tract labels.
Acronym Name
ATRL, ATRR Anterior thalamic radiation (left, right)
CCF, CCP, CCS Corpus callosum (frontal, posterior and superior)
CGL, CGR Cingulum (left, right)
CPTL, CPTR Cortico-pontine tract (left, right)
CSTL, CSTR Cortico-spinal tract (left, right)
FNXL, FNXR Fornix (left, right)
ICPL, ICPR Inferior cerebellar peduncle (left, right)
IFOL, IFOR Inferior fronto-occipital fascicle (left, right)
ILFL, ILFR Inferior longitudinal fascicle (left, right)

MCP Middle cerebellar peduncle

MLL, MLR Medial lemniscus (left, right)

OPRL, OPRR Optic radiation (left, right)

OPTL, OPTR Optic tract (left, right)

PTRL, PTRR Posterior thalamic radiation (left, right)
SCPL, SCPR Superior cerebellar peduncle (left, right)
SFOL, SFOR Superior fronto-occipital fascicle (left, right)
SLFL, SFLR Superior longitudinal fascicle (left, right)
STRL, STRR Superior thalamic radiation (left, right)

TAP Tapetum

UNCL, UNCR Uncinate fascicle (left, right)

where r{(x) is the delineated tract region, pf(x) the smoothed delin-
eation, k a smoothing kernel, dl( ) the principal direction at voxel x
in image t for tract [, and N(x) is the neighborhood defined by the
smoothing kernel. Note that the directions are meaningful at first
only inside the delineated regions r{, and must be extrapolated from
higher probability to lower probability regions. The directions are
orientation-independent (i.e. d and —d are the same directions), so
the sums of directions are performed as follows:

d, +dy=d, + d,if d,"d, >0, 3)
_d:—gz otherwise

where d is the oriented vector corresponding to direction d. The
averaged direction in Eq. (2) may not have unit norm, unless all
the directions are the same. This provides information about the
uncertainty in direction at each location in the atlas. In this work we
use a linear smoothing kernel of radius 5 mm to construct our atlas.
The size of the kernel has some impact on the segmentation, as a
larger scale is better at representing tracts with large individual

"-

variations but also increases the risk of mislabeling regions with too
many overlapping candidates. Our experiments however indicate
that a small but reasonable smoothing (5 mm corresponds to about
two voxels at the atlas' original resolution) improves the results.

Examples from the atlas are given in Fig. 1. Although this atlas
includes most of the major WM tracts in the human brain, the
segmentation also includes isotropic regions like the gray matter
structures or the ventricles, and some undefined regions of white
matter, for instance the “U” fibers that connect neighboring gyri of the
cortex. We model the isotropic regions by creating a low anisotropy
mask (FA<0.1) and we capture the undefined white matter regions
by subtracting from the opposite mask (FA>0.1) any region included
in one of the tracts defined above.

Markov random modeling of diffusion

Given the DTI data and the statistical atlas above, we derive below
the terms of the MRF model of Eq. (12): unary terms representing local
diffusion properties of the tensor and the contributions of the tract
atlas in terms of shape and direction, and a binary term representing
connectivity between neighboring tensors.

Our set of possible labels includes the individual tracts listed in
Table 1, undefined fiber tracts and isotropic regions, as well as
overlapping pairs of tracts. In the following, we describe general
properties that apply to any individual tract, group of overlapping
tracts or isotropic region independently of the specific label. Let us
denote by T,0, and I general attributes of the single tract, overlapping
tracts and isotropic regions respectively.

Diffusion type

At every voxel x, we can have one of three types of structures in this
model: isotropic diffusion, diffusion along a single tract, or diffusion
along multiple tracts overlapping or crossing. To model the type of
diffusion, we use indices of diffusion along a single tract (T), overlapping
tracts (0), and isotropic regions (I) derived from the linear, planar and
spherical indices of (Westin et al., 2002):

N

= 22200 don) = MR 4= 2. @

drlx) = S22 ) =~

Note that water may still diffuse along a single direction for
overlapping but aligned tracts, so we cannot differentiate between the
two in regions of linear diffusion and dp>dr (see Fig. 2b).

Fig. 1. Examples from the WM tract atlas: maximum intensity projection along the sagittal direction (except for MCP in the axial direction, and FNX, CPT in sagittal and coronal
directions) of the shape prior multiplied by the color-coded direction prior.
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Local tensor connectivity

The evidence for fiber tracts comes from the diffusion tensors: if
two tensors are aligned they likely correspond to the same tract or
overlapping tracts. The connectivity between neighboring tensors is
modeled as follows, assuming a single tract:

stxy) = (1= min(6(V,(0, Vy ).0( Vi), Vyy ) )) 5
x (1=20(V, (), V1(v) )

where VXy represents the direction vector between voxels x and y,
Vi (x) and Vi (y) represent the principal eigenvector directions at x
and y, and 9(71 , 72) = %arccos( | V1 Vs ).The function 6(71, 72)
gives the angle between directions V; and v, normalized in [0,1].
Because it is linear, it is more sensitive to small angular variations than
the product V1 V5. In some of the following cases, the vectors in this
formula have less than unit norm as a way to encode uncertainty in
their direction as a lower bound on angles. In such cases, the function
6( vy, V,) returns values in [o,1], where o = 2arccos(| vy | |va ).
Note that other measures involving the complete tensor are possible
and they may be interesting to explore in the future.

The similarity function sy(x,y) is close to +1 when the diffusion
directions at x and y are aligned with each other and with the path from
x toy. If both diffusion directions are orthogonal to that path, we cannot
assume that they are related even if they are aligned: many fiber tracts
have “kissing” fibers that follow the same direction before diverging. In
such cases, sy(x,y) goes to zero in order to model the uncertainty. When
the diffusion directions are orthogonal and one of them is aligned with
the path, then it is clear that both points cannot be part of the same tract,
which translates into a negative value up to —1 (see Figs. 2c-e).

For crossing or overlapping fibers, the main diffusion direction can
easily switch from 71 to 72 if the tensor is “flat”, and so we extend
the connectivity to consider the secondary directions:

{Vo), Vo)

= arg min

The first part of this equation means that we select the pair of

directions at x and y that are best aligned among the first two
. — — — — . N

eigenvectors { Vi(X), Va(x), v1(y), vz(y)}. We penalize the v, by

N\ . . .
)\—2 to account for the uncertainty due to the fact that it is required to

bé orthogonal to V1. Note also that these directions are not the true
fiber directions, which cannot be retrieved with the tensor represen-
tation. However, the erroneous tensors will be similar and share
directions as long as the two fibers are crossing along similar direc-
tions and the diffusion is slightly stronger in one direction. In practice,
many regions of overlap between the tracts that we can observe at
clinical resolution involve primarily kissing fibers as opposed to
crossing ones, for which the principal direction of diffusion as esti-
mated from a tensor reconstruction is still meaningful.

Finally, isotropic regions are assumed to have uniform connectivity
si(x, y) =s;, given as a prior parameter. The value of s; will influence
how labels from isotropic regions propagate into anisotropic ones as
compared to fibers and overlapping regions. Because all the regions
evolve simultaneously, we set s;= 1/N; in our experiments, where N,
is the total number of regions in the atlas.

Atlas information

The atlas provides a prior on tract location P; and tract direction d;,
which is integrated in the MRF model through a shape prior term u;
and a direction coefficient ¢; as follows.

Because we allow the presence of multiple tracts at a location, the
prior probability for a particular label defined by the atlas cannot be
used directly. Instead, we define the shape prior term u;(x) for a single
tract [ as follows:

pi(x)
uyx) =pX) =———, 7
(%) = P9 = s 7)
giving high values where the prior probability p,(x) is high and likely
to be a single tract (), pm(x) = pi(x), for all tract labels m).

To compute ¢, we compare the direction prior d(x) with the
principal direction v, (x) of the tensor in the image to segment:

%)

a(x) = [dyx)] [ 1-20( V%), —5
()]

(8)

The coefficient ¢; is positive when the directions coincide, and
negative when they are orthogonal. The uncertainty on the direction

Fig. 2. Example data set depicting diffusion type and connectivity functions for single (top) and overlapping tracts (bottom): a) original image color map, b) dr, do, ) s, So in the X direction,
d) st, sointhe Y direction, e) sy, S in the Z direction. The diffusion functions are defined in [0, 1], whereas the connectivity functions are defined in [— 1, 1]. Although the functions for single
and overlapping tracts appear very similar, there are some subtle differences: dr is darker in regions of crossing (e.g. the junction between ATR, IFO and CCF), and the single tract
connectivity maps sy appear sharper because they include more negative values (it is more likely to find similar directions when using first and second eigenvectors, as in o).
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prior, represented by its norm, lowers both positive and negative
values of c;. For two crossing tracts [ and m, the shape prior term
combines the priors of both objects with the likelihood for two
overlapping tracts:

DI + P (X) o

= 9P (0 P

Um (X)

If the tracts have different orientations, the reconstructed tensor
will represent a mixture pointing to a different direction than the
individual diffusion tensors for each tract. H0£ever, if we assume the
true tensors with principal directions vectors d 1 ;(x) and d 1, (x) to be
prolate tensors with high anisotropy, we can derive from the Stejskal-
Tanner equation that the estimated tensor for the mlxture will have for
its principal direction the vector d,m( X) = d”( X) + dlm( X) with
largest norm.

The composite tensor direction d,m( X) is then renormalized so

d, (x + d
that its norm is 4]+ 1d1n()] . From this composite vector, we
can define the following dll‘eCthI‘I coefficient as we did before in the
single tract case:

() = [d ()| (1 26 (71 <x),i’~'"(")) ) : (10)
@]

Finally, isotropic regions use the same shape prior as individual

tracts and assume no preferred direction, setting ¢;(x) = 1.

Propagation of the tract probabilities

Once we have the various elements of diffusion and atlas infor-
mation above, we can derive the terms of the energy function. From
the diffusion and prior-based terms, we derive the following unary
term:

Vi, D) = dr(X)u(x)ci(x)
Vix,I,m) = do(x)ul,m(x)cl‘m(x) (11)

Viix D = 50w (x)

for single tracts, overlapping tracts and isotropic regions respectively.
We combine all the terms as a product since we require all three
conditions to be met jointly in order to attribute a label I to a given
voxel (unlike with more classical probabilistic models, we cannot
separate the terms of V; into a sum of conditionally independent
elements).

The neighborhood term propagates the unary energy values along
the most likely fiber directions or isotropically depending on the type
of label. Let x* = argmaxyen " (x)sr(X.y), where N7 (x) is the half of
the 26-neighborhood N(x) of x such that vxy v1( )> 0, and similarly
X~ =argmaxyen  x)Sr(X.y), with N7 (x) such that vxy vl( )<0. The
same definition holds for overlapping tracts, substituting so(x,y) to
sr(x,y). The binary term V,(x,y,l,m) is only non-zero if y=x" or
y=x" and I,m include one same label, leading to the following
formula for the energy term U(x,]) = Vy(x,l) + 2 mV2(x,y,lm) at x:

Ux, 1) = dr(x)u(x)ci(x) + sp(x,x7) max, (U(x",1),U(x",1,m))
+ sp(x,x) max,, (Ux~,1),U(x",l,m))
U(x,1,m) = do(X)uy (%) (X)
+ 5o(x,x")max(U(x", L m),U(x",1),U(x",m)) (12)

+ So(x,x )max(U(x~,I,m),U(x",1),U(x",m))

UGeT) = Sdan®) + ot e SUD.

L
INX)|

These three equations list all the possible cases: single tract labels,
pairs of overlapping labels, and isotropic regions. Because regions of
overlap interact with single tract regions, the energy can propagate
between different labels as long as they share a common tract.

With this model, only the neighboring voxels most likely to be along
the same tract are considered for single or overlapping tracts, whereas
the contribution of all neighbors is averaged for isotropic regions. By
using such a subset of the neighborhood, we greatly simplify the
structure of the MRF and improve computational stability, as the field is
locally oriented along the tracts, removing many loops in the
neighborhood graph. The probability function can be efficiently
maximized through an iterated conditional modes algorithm which
converges quickly in practice and requires little computational overhead
(Besag, 1986). This simplified neighborhood structure enables us to
estimate the MRF efficiently without the help of a more elaborate MRF
solver (Bazin et al., 2009a; Kolmogorov and Zabih, 2004).

Anatomical constraints

Even with a limit of two overlapping tracts per voxel, the number
of possible pairs grows quickly when including more white matter
tracts. However, it is well known from anatomy that certain pairs of
tracts will not overlap, even in the presence of deforming pathology or
trauma. For instance, it is clear that the superior longitudinal
fasciculus (SLF) should not interact with the uncinate tract (UNC),
or the cortico-spinal tract (CST) with the frontal forceps (CCF). From
this observation, we restrict the possible label pairs to a list set a priori
from anatomical information. The list may depend on image
resolution, as more tracts will overlap in a voxel of coarser resolution.

To obtain such information from atlases and anatomy experts is
challenging when the number of tracts to be estimated grows. We define
an overlap probability for each pair of tracts in the atlas as follows:

maxxpm (X)pl(x) (13)

Po(™:D = {inax, py () (max ()

where p,,(x),pi(x) are the spatial probabilities for tracts m,l. We then
restrict the possible label pairs to those such that Po>1/2.

Similarly, we make the assumption that our blurred atlas priors
should fully include the corresponding tracts, thus estimating only
probabilities for tracts with non-zero prior at each voxel. These two
modeling constraints greatly reduce the combinatorial increase and
computational burden when additional tracts and potential crossings
are added to the atlas, which allowed the method to scale well from an
initial atlas of 10 tracts to our current atlas of 39 tracts.

Handling WM pathology

Despite the development of many diffusion MRI processing
algorithms in recent years, studies of the WM structures have been
difficult when pathology is present. In diseases like multiple sclerosis,
Alzheimer's disease, or even in normal aging, lesions appear inside the
WM, changing the diffusion properties of the tissue (Reich et al., 2010;
Wheeler-Kingshott and Cercignani, 2009).

Our approach is already robust to most lesions as it combines
information coming from multiple directions around the area of
lesion, however lesions with a sharp decrease in anisotropy will likely
be segmented as isotropic regions rather than tracts. If we have an
estimate of the lesion location from co-registered structural MRI
(using Shiee et al., 2010 in our case), we can use that information as an
additional prior: to compensate for the low anisotropy inside lesions,
we simply update the indices in all lesion voxels i by:

()‘_dr(i) + dy(i) (14)



P.-L. Bazin et al. / Neurolmage 58 (2011) 458-468 463

This update enforces that DOTS segments lesions as part of at least
one tract, provided that the local diffusion direction matches the atlas.
Note that DOTS includes a tract label for unidentified WM regions and
allows isotropic regions to spread to their neighborhood, so the
lesions are not forced to merge with a nearby tract if their tensor
directions are not compatible.

Algorithmic details

The complete segmentation process is performed as follows. First
we register the shape and direction atlas to the skull-stripped tensor
image to be segmented with a multi-scale gradient descent method
that maximizes Ex = >_x>_ lla(x)p;(T(x))|[>, where a(x) is the frac-
tional anisotropy and T a rigid transform. The direction atlas is rotated
accordingly. Next, the estimation algorithm is initialized with U(x,l) =
Vi(x,l), and then refined using iterated conditional modes and
registration until convergence. Convergence is measured by the pro-
portion of changed labels for each iteration.

To reduce computational overhead, we only record the energy
function for the Nj labels with highest energy at a given voxel, and
approximate the others to zero. In our experiments, no significant
differences could be observed in the results for Nz> 8. Also note that the
connectivities sp(x,x ™), s{(x,x ), So(xxT), and so(x,x ") are functions of
the data alone, and can be precomputed to improve computation speed.
A181x217x 181 voxel image (1 mm cubic resolution) is processed with
this method in less than 30 min, and a more typical 256 x 256 x 60 voxel
image takes about 10 min to converge on a modern workstation with
8 GB of available memory.

Once the algorithm has converged, we obtain a hard segmentation
by selecting the labeling of highest energy, and attributing the voxel
to the underlying tract or tracts in case of overlap; see Fig. 3. The
corresponding membership function is given by:

p(l) = . SXPEUCLD) + 0 exp(gUx,l,m) (15)
Zm EXp(gOU(X, m)) + Zm‘n EXp(gOU(X, m, n))

where gy is a parameter controlling the sharpness of the membership.
The DOTS algorithm has been implemented as a plug-in for the
MIPAV software package (McAuliffe et al., 2001) and the JIST pipeline

Fig. 3. DOTS segmentation example for one subject of our reproducibility study in axial,
coronal, sagittal views and 3D rendering. Regions of overlapping tracts are displayed as
a checkerboard pattern of the tracts' colors in the 2D views. It is notable that many
regions of overlap are found in practice. The recovered tracts boundaries are also
somewhat irregular, as such boundaries are poorly defined on the tensor images.

environment (Lucas et al., 2010). The software is freely available on
the NITRC repository.2

Experiments

We present here a simple synthetic experiment as well as real data
experiments on clinical-quality data sets using our 39 tract labels
atlas. Additional experiments performed with preliminary atlases
have been reported in Bazin et al.(2009b).

Synthetic crossing experiments

We first investigate the ability to recover crossing fibers with a
simulated image depicting crossing fiber tracts with various levels of
noise; see Fig. 4. The noise increases the number of voxels treated as
isotropic as they diverge from the directions learned in the atlas. The
crossing is correctly estimated as belonging to both fiber tracts,
although with lower certainty. Note that the tensors from the crossing
region were not included in the atlas, as would be expected from a
simple tractography-based delineation.

Reproducibility study

Segmenting tracts in a way that is consistent for repeated scans of
a given subject is a requirement for clinical studies. We tested the
reproducibility of our segmentation on the publicly available Kirby21
dataset (Landman et al., 2011), which consists of two sets of MR scans
taken on the same day for 21 healthy subjects, following a “Jones 30”
protocol (Jones et al, 1999). The scans for each subject were
processed separately with DOTS before co-registering their FA maps
for comparisons. Fig. 5 gives the average and standard deviation of the
Dice overlap, average boundary surface distance and volume
difference ratio. We also report the fiber tract volumes, as the volume
difference ratio and Dice coefficient become more variable for smaller
structures (in particular, WM tracts are much smaller than GM
structures for which volume measurements and Dice coefficients are
usually reported).

This experiment indicates that DOTS is robust to changes in patient
position and scanning noise. Most notably, the tract overlap is above
0.7 for the larger tracts, and stays above 0.6 even for the optic tract,
the cerebellar peduncles and the uncinate fasciculus, despite their
small sizes. The distance between estimated tract boundaries is about
half the imaging voxel size of 2.2 mm.

The segmentations from the two separate scans are very similar for
each subject, while the labels adapt well to different anatomies; see
Fig. 6. It is also noticeable that there is a large amount of overlap
between estimated labels, confirming the need for modeling overlap
at the current resolution of clinical DTL

Integration with fiber tractography

Although DOTS labels give a reliable representation of the white
matter tracts, they are quite different from the segmentation one
would obtain from manual bundling of tractography results. Because
our MRF model does not require long range interactions between
voxels, the DOTS labels are more inclusive. On the other hand, one can
independently reconstruct individual sample paths through the white
matter (generally referred to as “fibers,” although the term is
misleading) with any appropriate tractography technique (Behrens
et al.,, 2007; Koch et al., 2002; Mori et al., 1999; Reisert et al., 2011).

2 http://www.nitrc.org/projects/dots/.
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Sy

Fig. 4. Simulated crossing experiment at SNR 25 (top) and 5 (bottom). From left to right: a simulated image, the manual “fiber” delineation used in the atlas, the hard segmentation,
showing the intersection in white, and the two membership functions for the tracts. Note that the memberships decrease smoothly inside the crossing, as both tracts can have

membership values above 0.5 with our model.

Given a set of fibers computed by any tractography method, we
can associate a fiber f to a tract I using the following method:

FElf [epdx>1,
and | by (x)dx > fxefbm(x)dx, Vm#l
and | yerby(X)dx > 1| yopdx

where Iy is @ minimum length parameter set to 20 mm, b; a binary
function equal to 1 inside tract [ and O otherwise, and r a minimum
inclusion ratio set to 75%.

We performed fiber tractography on the Kirby21 dataset using the
FACT algorithm (Mori et al., 1999) with the following parameters: FA
start 0.2, FA stop 0.1 and maximum angle 60°, and labeled the
generated fibers with the above method. As shown in Fig. 7, the
labeled fibers form compact bundles with many fibers. It is notable
that the fibers extend further toward the outer boundaries of the WM
than the corresponding DOTS labels, as the deterministic tractography
procedure extends fibers until they reach a FA of 0.1, whereas the
DOTS model assigns lower probability to these regions of lower FA
and higher variability. Note that DOTS labels can easily be extended to
always include such regions if necessary using a white matter mask to
define a priori the boundaries of the isotropic regions.

Robustness to pathology

Finally, we assessed the application of DOTS on white matter
lesions on a data set of 10 multiple sclerosis subjects. We identified
white matter lesions on co-registered structural MRI (MPRAGE and
FLAIR) with (lesion)TOADS, an automated brain and lesion segmen-
tation tool (Shiee et al., 2010). DOTS was run with and without the
prior lesion map, to measure the impact of lesions on the labeling.

We measured average fractional anisotropy (FA) and volume for
the tracts, two measures of interest when assessing the impact of
lesions on white matter. When comparing uncorrected and corrected
measures with a t-test, we find small but significant differences
(generally a decrease) in FA for ATRR, CCS, FNXL, PTRL and more
important differences in volume (either increasing or decreasing by
up to 5% with the correction) for CSTL, ICPL, MLR, OPTL, PTRL, SCPR,
SLFL, SLFR, TAP and UNCL (p<0.05). These results clearly show that
the presence of lesions confounds DTI measurements unless they are
properly accounted for in the model.

The individual segmentations, as depicted in Fig. 8 highlight the
accumulation of lesions along the peri-ventricular tracts (especially
the optic radiation) for subjects with large lesion loads, while the
interplay of focal lesions with other tracts appears more complex.
DOTS handles well the damaged regions on clinical quality DTI, and

we hope it will offer a more systematic way to study the relationship
of WM lesions with cerebral circuits and their relative impairment.

Discussion

We presented here an atlas-based segmentation technique to
reliably extract known anatomical tracts from clinical quality
diffusion tensor MRIL. As in the work of Hagler et al.(2009), the
method combines global statistical priors of shape and direction with
the local connectivity information extracted from the tensors. The
prior direction information in particular is important to disambiguate
many possible tracts. However, we also noticed that the atlas alone
was only partially successful, and that many parts of the tracts were
not directly identified where eigenvector directions were not well
aligned with the atlas. The MRF model plays a central role in solving
this problem, as it propagates well-defined labels to the neighboring
voxels along the tracts of the subject, reinforcing label probabilities.

The explicit modeling of crossings and overlapping regions is also a
key element, as many tracts overlap at the current resolution. The
algorithm is presently limited to crossings between two tracts, which
may be a source of error in regions of triple-perpendicular crossings
(Jeurissen et al., 2011). The main limitation resides in the tensor
representation: because these crossings would be indistinguishable
from isotropic regions, adding the extra degrees of freedom needed for
triple intersection may reduce the accuracy of the results. However, the
model could be extended easily from pairwise to multiple overlaps,
given a more elaborate model of diffusion at higher angular resolution or
even using regular DTI sequences (Landman et al., 2010). Finally, the
regions of multiple crossings are not necessarily estimated as isotropic
in the current model, because neighboring regions from the converging
tracts can propagate their labels into the crossing (srand Sp are usually
lower but non-zero in isotropic voxels), and we did not observe any
clear mislabeling in regions of multiple overlap.

Our experiments show that the DOTS segmentation is highly
reproducible, even for small and variable tracts. The tracts segmented
can be used readily as regions of interest for localized analysis of
specific white matter pathways. Tract based statistics can be extracted
separately for each tract, and effects of lesions or atrophy on
anisotropy measures are less likely to confound the results. The
segmented regions are somewhat larger than ones obtained through
bundling tractography results, inherently because the MRF model
does not require each voxel of the tract to be part of a complete path.
On the other hand, a larger region of interest can be beneficial when
computing statistics of the white matter. The results of DOTS can also
be combined with any tractography technique to generate labeled
fiber bundles in a fully automated fashion as well.
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Fig. 5. DOTS segmentation results for two successive acquisitions. Mean (bar) and standard deviation (line) for 21 subjects of the following measures (from top to bottom): Dice
overlap, average boundary surface distance, volume difference (as a percentage of the average volume), and average volume.

The atlas currently includes 39 separate tracts, covering most of the
deep white matter pathways. Additional tracts can easily be added
provided they can be identified reliably enough on diffusion MRI.
Anatomical constraints are however important in order to avoid
combinatorial explosion of the number of possible labels to estimate,
and the atlas would benefit from incorporating high resolution
anatomical delineations (Biirgel et al., 2006). The diffusion properties
of a given tract are not fully captured by the principal eigenvector
directions, and a more elaborate representation of the expected tensor
(or higher order model) shape might further increase accuracy at the
cost of higher computational demands and possibly a lowered
robustness to noise and lesions.

Even with the few limitations discussed above, essentially
inherited from the underlying tensor model of DTI, the DOTS software
provides a novel and practical tool for DTI analysis in routinely
acquired sequences, and we hope that making this method available
to the community will help neuroscientists study in more detail
individual white matter tracts in larger cohorts.
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Fig. 6. DOTS segmentation examples for three different subjects in coronal views for two separate acquisitions (top and middle). The bottom row displays selected regions of overlap,
which are indicated with a checkerboard pattern of the tracts’ colors. Regions of unlabeled white matter are indicated in red. Note that the labeling is very consistent even in the
regions of overlap where the tensors are more likely to be influenced by noise.

Fig. 7. Tractography results automatically labeled with DOTS for the three subjects of Fig. 6 in coronal view and 3D rendering. The bundles are overall rather homogeneous, and the
included regions are similar in size to the original DOTS labels, indicating that the reconstructed fibers follow quite closely the DOTS segmentation.

Fig. 8. DOTS segmentation examples for three different subjects with multiple sclerosis. The white matter lesions segmented from the co-registered structural images (T1 and FLAIR)
are indicated with a white outline. Although the lesions do not follow given tracts, it is clear that certain tracts are largely spared while others are strongly affected.
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