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Abstract
The tissue contrast of a magnetic resonance (MR) neuroimaging data set has a major impact on
image analysis tasks like registration and segmentation. It has been one of the core challenges of
medical imaging to guarantee the consistency of these tasks regardless of the contrasts of the MR
data. Inconsistencies in image analysis are attributable in part to variations in tissue contrast,
which in turn arise from operator variations during image acquisition as well as software and
hardware differences in the MR scanners. It is also a common problem that images with a desired
tissue contrast are completely missing in a given data set for reasons of cost, acquisition time,
forgetfulness, or patient comfort. Absence of this data can hamper the detailed, automatic analysis
of some or all data sets in a scientific study. A method to synthesize missing MR tissue contrasts
from available acquired images using an atlas containing the desired contrast and a patch-based
compressed sensing strategy is described. An important application of this general approach is to
synthesize a particular tissue contrast from multiple studies using a single atlas, thereby
normalizing all data sets into a common intensity space. Experiments on real data, obtained using
different scanners and pulse sequences, show improvement in segmentation consistency, which
could be extremely valuable in the pooling of multi-site multi-scanner neuroimaging studies.
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1 Introduction
Magnetic resonance (MR) imaging (MRI) is a noninvasive imaging modality that is the gold
standard for imaging the brain. MR image processing, particularly segmentation of brain
structures, has been used to further the understanding of normal aging or the progression of
diseases such as multiple sclerosis, Alzheimer’s disease, and schizophrenia. Large multi-site
and multi-center studies are often used to gather more data across a broader population or to
carry out follow-up imaging in longitudinal studies [12,16]. Because the intensities in
conventional MR images do not have specific numerical units (unlike those in computed
tomography (CT) images), there is a major concern about the consistency of quantitative
results obtained in these studies due to the different pulse sequences [5] and scanners [11]
that are used. In fact, because the intensity scale and the tissue contrast are dependent on the

MR acquisition pulse sequence as well as the underlying T1, T2, , PD values in the tissue
(cf. Fig. 1), any image processing task that is carried out on these data cannot normally be
expected to behave quite the same across subjects. In this work, we focus on the consistency
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of image processing tasks—particularly on the task of image segmentation—using
conventionally acquired MR data.

Numerous methods have been proposed to find the segmentation of cortical and sub-cortical
structures of the human brain. Some of these methods assume a statistical model [17] for the
probability distribution function (pdf) of the image intensity and generate a segmentation
rule based on a maximum likelihood (ML) estimation [8] or maximum a-priori (MAP)
estimation of the pdf parameters. Another popular class of segmentation method is based on
Fuzzy C-Means (FCM) [2] and its modifications [1]. But all of these methods are
intrinsically dependent on the tissue contrast of the image, which is dependent on the
acquisition parameters. Accordingly, the same data acquired under different pulse sequences
or different scanners, having different contrasts, yielding inconsistent segmentations [5].

One way of reducing the segmentation inconsistency is intensity normalization. Some
popular ways to do this are histogram equalization or histogram matching by non-rigid
registration [15], intensity scaling based on landmarks [18], intensity correction by a global
piecewise linear [19] or a polynomial mapping [14]. A common problem with these methods
is that the histogram matching is never perfect with discrete valued images. Also landmark
based methods are mostly initialized by manually chosen landmarks, which are time
consuming to create and lack robustness. Another way to normalize involves the use of the
peak intensities of white matter (WM) or gray matter (GM) [4] to match the image
histogram to a target histogram by information theoretic methods [25]. Histograms of the
segmented sub-cortical structures can also be matched to the individual histograms of the
sub-cortical structures of a registered atlas [13]. It has been shown to produce consistent
sub-cortical segmentation over datasets acquired under different scanners. In spite of their
efficiency, all these methods are intrinsically dependent on the accuracy of the underlying
segmentation of the image and the atlas-to-subject registration method. Another group of
techniques have been proposed to include the MR acquisition physics into the segmentation

methodology [21,11] to normalize all intensity images by their underlying T1, T2,  and PD
values. They suffer from the fact that many images are to be acquired with precise
acquisition parameters, which is often not possible in large scale studies.

In this paper, we propose an MR image example-based contrast synthesis (MIMECS)
method, that addresses the problem of intensity standardization over pulse sequences or
scanners. We build upon the concepts of compressed sensing [3,9] to develop a patch
matching approach, that uses patches from an atlas to synthesize different MR contrast
images for a given subject. The primary purpose of MIMECS synthesis—and therefore the
application for evaluation of its efficacy—is consistent segmentation across pulse sequences
and scanners.

There are a few key differences with previous methods of intensity normalizations
[19,18,25,4,13,11,21]. MIMECS is a pre-processing step to the segmentation. It neither
needs to estimate T1, T2, PD values, nor does it need the intrinsic MR acquisition
parameters, like echo time (TE) or repetition time (TR). It also does not need landmarks or
any atlas-to-subject registration, thus being fully automatic and independent of the choice of
registration methods used in any subsequent processing. We use it to normalize a dataset
which is acquired under different pulse sequences and on different scanners [12], thus
having diverse contrasts. On this dataset, we show that MIMECS can normalize all the
images to a particular contrast, that produce more consistent cortical segmentations
compared to their original contrasts.

The paper is organized as follows. First, we briefly summarize compressed sensing in Sec
2.1. Then we describe the imaging model in Sec. 3.1 and the contrast synthesis algorithm is
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explained in Sec. 3.3. A validation study with phantoms is described in Sec. 4.1. Then, we
use MIMECS to simulate alternate pulse sequences and show its applicability as an intensity
normalization and histogram matching process on a set of multi-site and multi-scanner data
in Sec. 4.2.

2 Background
2.1 Compressed Sensing

We use the idea of compressed sensing in our MIMECS approach. Compressed sensing
exactly recovers sparse vectors from their projections onto a set of random vectors [9,3] that
need not form a basis. The idea behind compressed sensing comes from the fact that most of
the signals that we observe are usually sparse, thus it is better not to observe the full signal,
but a part of it, and reconstruct the whole signal from those small number of measurements.

Suppose we want to reconstruct a signal x ∈ ℝn which is s-sparse, i.e. has at most s non-zero
elements. We want to observe another vector y ∈ ℝd, s < d < n, such that each element of y
can be obtained by an inner product of x and another vector from ℝn. Then, compressed
sensing can be used to reconstruct x ∈ ℝn exactly from y ℝd, with y = Φx, d < n, x being s-
sparse, Φ ∈ ℝd×n. Thus, compressed sensing is also a way to reduce the dimension of the
observed sparse data in a lossless way.

One approach for finding x is to solve

(1)

where ε1 is the noise in the measurement and || · ||0 indicates the number of non-zero
elements in the vector. Although this approach provides some simple conditions on Φ [10],
it is an NP-hard problem. Another approach is to solve

(2)

where ||x||1 is the L1 norm of a vector. This is a convex problem and can be transformed into
a linear program that can be solved in polynomial time. If ε2 is unknown, Eqn. 2 can be
written in the following form,

(3)

where λ is a weighing factor. The sparsity on x̂ increases as λ increases.

It has been shown that if Φ follows the global restricted isometry property (RIP) [3], then
the solutions to Eqn. 1 and Eqn. 2 are identical and the optimal solution can be obtained by
an L1 minimization problem using Eqn. 3. This result is interesting because it has been
shown that random subsets of incoherent matrices satisfy the RIP [24]. Thus, to reconstruct
x, it is possible to observe its projections onto a set of previously chosen incoherent vectors.
We use this idea to find a sparse vector for each patch and then use that sparse vector as an
index into the atlas.
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3 Method
3.1 Imaging Model

Consider two MR images Y1 and Y2 of the same person, acquired at the same time, but
having two different MR contrasts, C1 and C2, labeled as 1 and 2. E.g. Y1 and Y2 can be
either T1-w, T2-w or PD-w images. They could be either 2D slices or 3D volumes. The
imaging equations can be written as,

(4)

(5)

where Θ1 and Θ2 are the intrinsic imaging parameters, like TR, TE, flip angle etc for that
particular acquisition,  and  are imaging equations [7] corresponding to the contrast or
the pulse sequence used, η1 and η2 are random noise. T1, T2 and PD are relaxation times and
the proton density maps of the tissues. They could be 2D or 3D maps, according to Y1 and
Y2.

Ideally, if a number of C1 contrast images of the subject is acquired, with the Θ’s known for
all the acquisitions, then an estimate of the underlying T1, T2 and PD maps can be obtained
by either directly inverting  in Eqn. 4 [11] or by a least square estimate [21]. Then Y2 can
directly be synthesized using Θ2 and the estimates of T1, T2 and PD ’s using Eqn. 5.

There are several drawbacks for this strategy. Θ1 and Θ2 are often not known,  and  are
difficult to model accurately or multiple acquisitions are not taken. Therefore, it is almost
impossible to reconstruct Y2 from Y1 using the straight-forward approach. We will try to
synthesize Y2 from Y1 using an atlas.

3.2 Atlas Description
Define an atlas  as a pair of images,  = {φ1, φ2}, where φ1 and φ2 are C1 and C2 contrasts
of the same subject having the same resolution. We assume that φ1 and φ2 are co-registered.
Also assume that φ1 and φ2 are made of p × q × r 3D patches. For convenience, we assume
that each of the 3D patches is stacked into a 1D vector of size d × 1, d = p × q × r. The
patches are then denoted by d ×1 vectors φ1(i) and φ2(i), i ∈ Ωφ. Ωφ is the image domain of
both φ1 and φ2, as they are co-registered. Then we define the C1 and C2 contrast dictionaries
Φ1 and Φ2 ∈ ℝd×N, where the columns of Φ1 and Φ2 are patches φ1(i) and φ2(i), i ∈ Ωφ from
the atlas and N = |Ωφ| is the number of patches from . Clearly, a column of Φ1 corresponds
to the same column in Φ2.

3.3 Contrast Synthesis
Now, given a subject image Y1 of contrast C1, we want to generate its C2 contrast using
Φ’s. Y1 is first decomposed into d × 1 patches y1(j), j ∈ ΩY, ΩY is the input image domain.
The primary idea of MIMECS is that each subject patch y1(j) can be matched to one or more
patches from the dictionary Φ1, because they are of the same C1 contrast. The matching
patches have their own C2 contrast counterparts in Φ2, which are then used to synthesize the
C2 contrast version of y1(j). As a result, the need of any atlas to subject registration is
eliminated. This idea of patch matching can be explained efficiently using the idea of sparse
priors [26] in a compressed sensing paradigm.
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From Eqn. 4 and Eqn. 5, if  and  are linear operators of , then
a pseudo-inverse on Eqn. 4 will provide Y2 from Y1. Ignoring noise, the reconstruction of
Y2 can be written as,

(6)

This inverse problem is ill-posed because G is almost always never known. The problem is
regularized by assuming that any patch y1(j) can be found from a rich and over-complete
dictionary Φ1, having the same contrast as y1(j), by

(7)

|| · ||0 is the L0 norm, denoting number of non-zero elements in a vector. Intuitively, the
sparsest representation x1(j) denotes an index of Φ1, such that y1(j) is matched to a particular
column of Φ1. This regularized problem is written in a compressed sensing paradigm
following Eqn. 3,

(8)

where λ is a weighing factor, as defined in Eqn. 3. A positivity constraint on the sparse
representation x1(j) is enforced to impose a valid anatomical meaning on the elements of
x1(j), such that an element of x1(j) denotes a positive weight of how much a column of Φ1
contributes in reconstructing y1(j). This positivity constraint was previously explored in
Lasso [23].

With the sparse representation of y1(j), we simply reconstruct the C2 contrast patch as,

(9)

Then the C2 contrast image Y2 is reconstructed by combining all the ŷ2(j)’s thus obtained.

3.4 Contrast Synthesis with Modified Dictionary
Typically for a 256 × 256 × 198 image volume, number of example patches N ≈ 100, 0000.
It is computationally very intensive to work with Φ1 that is of the order of 27×100, 0000. To
reduce the computation overhead, we use a dictionary selection procedure that uses an
approximate segmentation of the input image. The rationale can be seen from the fact that if
a patch y1(j) is known to come from a certain tissue type, e.g., pure white matter (WM), the
computation of Eqn. 8 can be reduced by choosing a subset of Φ1 that contains only pure
WM patches.

We break down Φ1, as well as Φ2, into several sub-dictionaries of separate tissue classes,
which are obtained from a topology preserving anatomy driven segmentation, called
TOADS [1]. The atlas φ1 is segmented into 6 tissue classes, namely cerebro-spinal fluid
(CSF), ventricles, gray matter (GM), white matter (WM), basal ganglia and thalamus,
labeled l ∈ L = {1, …, 6}, respectively. The segmentation of φ1, denoted as Sφ, is similarly

decomposed into patches sφ(i), i ∈ Ωφ. The sub-dictionaries  and  for each tissue class
l are generated as,
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(10)

Fig. 2(a)–(c) show atlas SPGR and MPRAGE contrasts (φ1 and φ2) and their segmentation
(Sφ).

In our experiments, typically,  for a 256 × 256 × 198 image. With the smaller
atlas sub-dictionaries, we modify Eqn. 8 so as to reduce the search space for y1(j)’s. An
approximate segmentation of Y1, denoted as SY, is computed using one iteration of TOADS
(e.g., Fig.2(d)–(e)). SY is again decomposed into patches sY (j), j ∈ ΩY, so that the
information about the tissue classes for y1(j) is obtained from sY (j). Now, the contrast
synthesis algorithm described in Eqn. 8–9 is modified with the inclusion of the sub-
dictionaries,

1. Divide the atlases φ1, φ2 and the segmentation Sφ into d × 1 patches, and generate

the sub-dictionaries  and  according to Eqn. 10.

2. Find an approximate segmentation of the input C1 contrastY1 as SY. Divide the Y1
and SY into d × 1 patches y1(j)’s and sY (j)’s, j ∈ ΩY.

3. For each j, find all the tissue classes ℓ that sY (j) contains, ℓ ∈ L.

4. For each j, generate patch specific dictionaries Φ1(j) by concatenating all ’s and

Φ2(j) by concatenating ’s , ℓ ∈ L. Thus Φ1(j) contains all the potential classes
that y1(j) could belong to, according to its atlas based approximate segmentation.
Clearly, Φ1(j), Φ2(j) ∈ ℝd×Nj with Nj ≪ N. At this point, if Φ1(j) becomes too
large, we randomly choose a d × N0 random subset of Φ1(j) and the corresponding
subset of Φ2(j) for further analysis to minimize computational overhead, N0 < Nj.

5. Solve Eqn. 8 with y1(j) and Φ1(j) to get x1(j).

6. Solve Eqn. 9 with Φ2(j) and x1(j) thus obtained.

7. Repeat for every j ∈ ΩY.

4 Results
4.1 Estimation of λ

We use 3 × 3 × 3 patches in all our experiments. All the images are normalized so that their
peak WM intensities are unity. The optimal value of λ is obtained using a cross-validation
study on the Brainweb phantoms [6] following the idea of homotopy methods [20]. We use
the atlas C1 contrast as a T1-w (φ1) and C2 as a T2-w (φ2) phantom having 0% noise, shown
in Fig. 3(a)–(b). Now, using these two phantoms as atlas, we use the same φ1 phantom as the
test image Y1 and try to reconstruct its T2-w contrast Ŷ2, while the true T2-w contrast is
already known as φ2 = Y2. The optimal λ is obtained by,

(11)

while Φ1 and Φ2 are obtained from φ1 and φ2 as defined earlier. λ is varied from [0.1, 0.8]
and the optimal λ = 0.5 from Fig. 3(d). Using this λ, we generate a T2 contrast of the
phantom shown in Fig. 3(c). Ideally, if we are to use all the patches from Φ1 instead of
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creating sub-dictionary , λ̂ ≈ 0. However, the use of a reduced sized dictionary gives
improvement in computational efficiency with a sub-optimal performance, as seen from the
reconstructed image (Fig. 3(c)). We use this lambda for all the subsequent experiments.

4.2 Experiment on BIRN Data
There has been concerns over consistency of the segmentations arising from scanner
variability. To show that synthetic contrasts can produce consistent segmentations, we use
the “traveling subject” data [12] that consists of scans of the same person under different
pulse sequences and different scanners. These data were downloaded from the BIRN data
repository, project accession number 2007-BDR-6UHZ1. We use the scans of 3 subjects,
each consisting of one SPGR acquisitions from 1.5T GE, 4T GE, 1.5T Philips and 3T
Siemens scanners each and one MPRAGE acquisition from a 1.5T Siemens scanner, each of
them having 0.86 × 0.86 × 1.2 mm resolution. One of the subjects is shown in Fig. 4(a)–(e).
Their histograms are quite different (cf. Fig. 4(f)–(j)), and the Kullback-Leibler distance (KL
distance) between each pair of the normalized histograms (Table 1) affirms this fact. This
difference in histograms affect the consistency in the segmentations, shown in Fig. 4(k)–(o).

With the aim of having consistent segmentation of these images, we want to normalize the
intensities of all the images to a particular target contrast. The purpose of choosing
MPRAGE as the target C2 contrast is to have better delineation of cortical structures,
because the GM-WM contrast is very poor on SPGR acquisitions. We use a GE 3T T1-w
SPGR and its MPRAGE acquisitions from the BLSA study [16] as atlas φ1 and φ2, shown in
Fig. 2(a)–(b). The synthesized images are shown in Fig. 5(a)–(e). It is seen from the images
that they have more similar contrasts than the original images, and this is visually confirmed
by the histograms in Fig. 5(f)–(j). Also, Table 1 shows that the the histograms of the
synthetic MPRAGEs are more similar, having the KL distances being an order of magnitude
less.

To show the improvement in segmentation consistency, we compare our method with a
registration based approach, where we deformably register the SPGR atlas φ1 to the SPGR
input image Y1 by ABA [22] and use that transformation on φ2 to generate the Ŷ2. Then the
segmentation is performed on the registered images. If Y1 is MPRAGE (e.g. in Siemens
1.5T scanner), φ2 is simply registered to Y1 to get Ŷ2. The Dice coefficients for the original,
registered and transformed images and the synthetic images are shown in Table 2. Original
images usually show poor consistency, especially between SPGR and MPRAGE
acquisitions, which was already reported in literature [5]. Table 2 also shows that the Dice
between SPGR and MPRAGE sequences is improved between the synthetic MPRAGE
versions of the images compared to their original scans.

5 Conclusion
We have developed a compressed sensing based method, called MIMECS, that uses
multiple contrast atlases to generate multiple contrasts of MR images. It is a patch-based
method, where a patch in the subject C1 contrast image is matched to an atlas to generate a
corresponding C2 contrast patch. An application of MIMECS is to normalize intensities
between MR images taken from different scanners and different pulse sequences to generate
synthetic images, while the synthetic images produce more consistent segmentation. In all
our experiments, we have used only one pair of images as atlas to generate patch
dictionaries. Also we have not particularly taken into account the topology of the structures.
Our future work includes inclusion of features like topology and labels as a matching
criteria, instead of only using intensities. Also we would like to explore the possibility of
including more atlases and more contrasts.
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Fig. 1.
Data acquired under different pulse sequences or different scanners: (a) An acquisition of a
Spoiled Gradient Recalled (SPGR) sequence in GE 3T scanner [16], (b) same subject with
Magnetization Prepared Rapid Gradient Echo (MPRAGE) sequence in GE 3T scanner, (c)
another subject [12], SPGR, GE 1.5T scanner, (d) same subject with MPRAGE sequence in
a Siemens 3.0T scanner. Evidently, tissue contrast is dependent on the choice of pulse
sequences, as well as on the choice of scanner. The contrast is intrinsically dependent on the
choice of MR acquisition parameters, like flip angle, repetition time, echo time etc.
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Fig. 2.
Modified dictionary using segmentation: (a) An example SPGR T1-w contrast atlas image
φ1 [16] from a GE 3T scanner, (b) its MPRAGE T1-w contrast φ2, (c) their TOADS [1]

segmentation Sφ, used to generate the sub-dictionaries  and  according to Eqn. 10, (d)
An SPGR T1-w subject image Y1 [12], (b) an approximate hard segmentation SY (obtained
from TOADS), used to choose a reduced sub-dictionary
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Fig. 3.
Optimal λ: (a) A T1-w Brainweb phantom φ1 [6], (b) original T2-w version φ2, they are
used as atlas. (c) Reconstructed T1-w image Φ1X(λ̂), from Eqn. 11, (d) Reconstructed T2-w

image (Ŷ2 = Φ2X(λ̂)) using Y1 = φ1, (e) plot of λ vs. the reconstruction error .
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Fig. 4.
BIRN data: T1-w SPGR contrasts from (a) GE 1.5T, (b) GE 4T, (c) Philips 1.5T, (d)
Siemens 3T scanner, (e) T1-w MPRAGE contrast from Siemens 1.5T. Their histograms are
shown in (f)–(j) and the hard segmentations [1] are shown in (k)–(o). The histograms are
quite different which is reflected on the difference in the segmentations.
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Fig. 5.
Synthesizing MPRAGE contrast from BIRN data: Synthetic MPRAGE contrasts of the data
shown in Fig. 4(a)–(e) using the atlas shown in Fig. 2(a)–(c). The histograms of the
synthetic MPRAGEs are shown in (f)–(j) and the hard segmentations [1] are shown in (k)–
(o).
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