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ABSTRACT
We present a compressed sensing based approach to re-

move gain field from magnetic resonance (MR) images of the

human brain. During image acquisition, the inhomogeneity

present in the radio-frequency (RF) coil appears as shading ar-

tifact in the intensity image. The inhomogeneity poses prob-

lem in any automatic algorithm that uses intensity as a feature.

It has been shown that at low field strength, the shading can

be assumed to be a smooth field that is composed of low fre-

quency components. Thus most inhomogeneity correction al-

gorithms assume some kind of explicit smoothness criteria on

the field. This sometimes limits the performance of the algo-

rithms if the actual inhomogeneity is not smooth, which is the

case at higher field strength. We describe a model-free, non-

parametric patch-based approach that uses compressed sens-

ing for the correction. We show that these features enable our

algorithm to perform comparably with a current state of the

art method N3 on images acquired at low field, while outper-

forming N3 when the image has non-smooth inhomogeneity,

such as 7T images.

Index Terms— MRI, intensity non-uniformity, intensity

inhomogeneity, 7T, bias field, bias correction

1. INTRODUCTION
Several core MR image processing algorithms such as reg-

istration and segmentation, use image intensity as a primary

feature. Any artifact in the intensities affects the performance

of the algorithms severely. Intensity inhomogeneity (IIH) or

intensity non-uniformity (INU) is an example of one such ar-

tifact. At low magnetic field (1T-3T), this is primarily caused

by the presence of non-linear characteristics present in the RF

receiver coil. At high field (e.g. 7T), this effect is accentuated

by the interactions between RF waves and electromagnetic

properties of the tissues [1].

Inhomogeneity correction algorithms can be categorized

into two primary classes, prospective and retrospective.

Prospective methods [2] correct the inhomogeneity by in-

cluding the imaging equations in the correction methodology,
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Fig. 1. A T1 weighted image from (a) GE 1.5T scanner, (b)
Siemens 3T scanner, (c) GE 4T scanner [9] and (d) Philips 7T

scanner.

usually by combining multiple images [3, 1] acquired un-

der different parameters. These methods are not applicable

to many studies where it is not always possible to acquire

multiple images with pre-defined parameters or the acquisi-

tion protocols are simply unknown. In contrast, retrospective

methods are essentially post-processing methods. They usu-

ally assume that the inhomogeneity field is a smoothly varying
non-anatomic multiplicative field, and is usually written as a

linear combination of low order smooth polynomials. Then

entropy minimization [4, 5] or deconvolution [6] is used to

estimate the smooth IIH field. Often, the correction step is

combined with a segmentation algorithm, where simultane-

ous estimation of tissue classes and inhomogeneity correction

can be achieved by a maximum likelihood estimator [7, 8].

The smoothness property of the IIH field has been well

studied for low field strength. But in high field, the smooth-

ness assumption is often violated. Fig. 1 shows T1-weighted

images from a 1.5T, 3T, 4T and 7T scanner, where at 7T, the

inhomogeneity is quite different. In this case, a small window

of intensity measurements should provide information about

the inhomogeneity. This idea is exploited in [10], where a

joint entropy minimization framework is described to remove

bias from many images simultaneously. In this work, how-

ever, we propose a non-parametric compressed sensing based

intensity non-uniformity correction (CSI-NC) approach that

does not have any explicit smoothness model on the estimated

field and does not require many images, thus being more ver-

satile and applicable to situations where the actual IIH is not

smooth, e.g. in 7T images.
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2. METHOD
2.1. Compressed Sensing
We use compressed sensing for our IIH approach. Com-

pressed sensing recovers sparse vectors from their projections

onto a set of random vectors [11, 12].

Suppose we want to reconstruct a signal x ∈ R
d which

is s-sparse, i.e. has at most s non-zero elements. We want

to observe another vector y ∈ R
n, n < d, such that each

element of y can be obtained by an inner product of x and

another vector from R
d. In short, compressed sensing deals

with reconstructing x ∈ R
d from y ∈ R

n, with y = Φx,

n < d, x being s-sparse, Φ ∈ R
n×d.

One approach of finding x is,

x̂ = min ||x||0 such that ||y − Φx||22 < ε1, (1)

where ε1 is the noise in the measurement and || · ||0 indicates

the number of non-zero elements in the vector. Although this

approach provides simple conditions on Φ [13], it is an NP-

hard problem. A second approach comes from,

x̂ = min ||x||1 such that ||y − Φx||22 < ε2, (2)

where ||x||1 is the L1 norm of a vector. This is a convex

problem and can be transformed into a linear program that

can easily be solved. If ε2 is unknown, Eqn. 2 can be written

in a more compact form,

x̂ = argmin
x

{||y − Φx||22 + λ||x||1}, (3)

where λ is a weighing factor. The sparsity on x̂ increases as

λ increases.

It has been shown that if Φ follows the global restricted

isometry property (RIP) [12], then the solutions to Eqn. 1 and

Eqn. 2 are identical and the optimal solution can be obtained

by such an L1 minimization problem. This result is interest-

ing because most random matrices satisfy the RIP [14]. Thus,

to reconstruct x, we have to observe its projections onto a set

of random vectors.

2.2. Patch Based Correction
Assume the MR image is partitioned into p×q×r patches. If

the bias field is not globally smooth, then we can assume that

it is at least uniform over a small image patch. Let d = pqr,

thus each patch can be thought of as a d×1 vector. Assuming

that the gain field is multiplicative, each image patch yk ∈
R

d, k ∈ Ω, can be written as,

yk = gky�
k + ηk, gk > 0 (4)

Here, Ω is the image domain, y�
k is the inhomogeneity free

image patch, gk is the bias field for kth location, and η is the

image noise. For further analysis, for simplicity we assume

that ηk = 0,∀k.

The idea behind a patch-matching process is that we want

to match yk to a set of vectors, called a dictionary, which is

given by Φ ∈ R
d×N , such that yk = Φxk, xk ∈ R

N , and

the high-dimensional sparse vector xk carries the information

about the multiplicative field gk.

Intuitively, for a particular yk, its sparsest representation

xk from Eqn. 2 is such a vector that xk has exactly one non-

negative element. That implies yk is matched to exactly one

vector φ from Φ by a scaling factor f , φ being a column of

Φ. Thus any multiplicative effect on yk is reflected on the

scaling factor f , which gives a measure of inhomogeneity.

In the same context, we follow the idea of the non-negative

garrote [15] so that the sparse representations are constrained

by xk ≥ 0, to have a meaningful positive weighting of the

dictionary Φ.

Specifically, consider the sparse representations of yk and

y�
k as xk and x�

k, respectively. Then Eqn. 3 gives,

x̂k = argmin
x

{||yk − Φx||22 + λ||x||1},x ≥ 0 (5)

x̂�
k = argmin

x
{||y�

k − Φx||22 + λ�||x||1},x ≥ 0 (6)

Now if yk = gky�
k, Eqn. 5 gives,

x̂k = argmin
x

{||gky�
k − Φx||22 + λ||x||1},

⇒ x̂k = argmin
x

{
||y�

k − Φ
x
gk

||22 +
λ

gk

∣∣∣∣
∣∣∣∣ x
gk

∣∣∣∣
∣∣∣∣
1

}
, (7)

By appropriate conditions on Φ as described earlier, and

choosing λ = gkλ�, Eqn. 7 and Eqn. 6 give x̂k = x̂�
kgk.

Thus, an appropriate estimator of gk is given by,

gk =
||x̂k||1
||x̂�

k||1
. (8)

2.3. Choice of x̂�
k and Φ

Eqn. 8 suggests that in an ideal situation, if two inhomogene-

ity free patches ŷi and ŷj are of same the tissue and have the

same intensity, then x̂�
i = x̂�

j and gi ∝ ||x̂i||1, i.e., the L1

norm of the sparse representation gives the relative amount of

gain field for the same tissue.

For a particular k, x̂�
k can be found using a prior infor-

mation about the tissue classes, which can be obtained from

a segmentation of the image. The image being already cor-

rupted with IIH, we only need an approximate segmentation

of the image. In our experiments, we have used an atlas based

segmentation called TOADS [16] that uses a probability atlas

to do the segmentation. We use an approximate segmentation

from TOADS, which gives a reasonable segmentation even in

the presence of heavy inhomogeneity (c.f. Fig. 3(e)). We use

1 iteration of the segmentation algorithm, which provides a

hard segmentation image with 4 classes, cerebro-spinal fluid

(CSF), gray matter (GM), white matter (WM) and ventricles.

For each of the classes, a mean y(l), l = 1, . . . , 4 is computed,

and their corresponding x̂�(l) are found from Eqn. 5.

102



Fig. 2. Plot of σ vs. the coefficient of variation (CV) be-

tween the true field and the estimated field, smoothed by a 3D

Gaussian filter of size σ. The minimum CV is achieved when

σ = 10mm.

The compressed sensing literature suggests that a good

choice of Φ is a random matrix. For our experiments, we

generate Φ’s from a uniform distribution once.

The algorithm is described as follows,

1. Partition the image into patches yk, k ∈ Ω of size p ×
q × r. In our experiments, p = q = r = 3. Generate

a random d × N matrix Φ. In our experiments, we

arbitrarily select N = 1000.

2. Find an approximate segmentation of the image using

TOADS and compute the mean y(l)’s that represents

the lth class, l = 1, . . . , 4. Find the corresponding

x̂�(l)’s using Φ in Eqn. 5.

3. For each k, find the type of the tissue l0 ∈ {1, . . . , 4}
that yk belongs to. If there is more than one tissue type

in yk, we choose the dominant one for simplicity. Then

x̂�
k = x̂�(l0)

4. Find the sparse representation of yk as x̂k from Eqn. 5.

We use λ = 0.5.

5. Find the gain field gk using x̂k and x̂�(l0) using Eqn. 8.

Here we note that all images are normalized, so that their

WM peaks have the same value. The final inhomogeneity

field becomes blocky because there is no explicit smoothness

criterion on the image model. As a post-processing step, we

smooth the field by a Gaussian filter with size σ, that we esti-

mate based on phantom validation, described in the next sec-

tion. The filter also smooths out bad estimates of x̂k’s near

the tissue boundaries.

3. RESULTS
3.1. Phantom Validation
We compare CSI-NC with a current state of the art method

called non-parametric non-uniform intensity normalization

(N3) [6], which tries to restore the corrupt image by a his-

togram deconvolution assuming the field is smooth. We use

a phantom image from Brainweb [17] database, for which

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. (a) Original inhomogeneity free image, (b) cor-

rupted by 20% INU as described in [17], (c) N3 corrected

image, (d) CSI-NC corrected image, (e) crude segmenta-

tion by TOADS [16] that is used to find x̂�(l) described in

Sec. 2.3, (f) true inhomogeneity field “C”, (g) N3 inhomo-

geneity field, (h) CSI-NC field, smoothed by a Gaussian filter

of size σ = 10mm.

the inhomogeneity field is known (referred to as “field C”

on [17]). The final inhomogeneity field is smoothed by a 3D

Gaussian filter of size σ, chosen such that the coefficient of

variation (CV) of the estimated smooth field and true field is

minimum. CV is defined as C = σ(Be/Ba)
μ(Be/Ba) , where Be and

Ba are the estimated and the applied field and it measures

how much the estimated field differs from the true field in a

normalized way. Fig. 2 shows the plot of σ vs the CV. The

minimum CV= 0.01 is attained at σ = 10mm. The magni-

tude of the CV is comparable to that reported earlier [4]. The

original and corrected images and the corresponding fields

are shown in Fig. 3.

3.2. Experiment on 7T images
As Brainweb phantoms have very smooth inhomogeneity, it

is very difficult to see the improvement of CSI-NC over other

methods. It is explicitly seen when the inhomogeneity is not

smooth. In those cases, the polynomial based algorithms will

not perform better simply by increasing the degree of polyno-

mials because the coefficients can not be estimated in a robust

fashion in a high-dimensional parameter space. Instead, we

employ a patch based method. We use both CSI-NC and N3

on Philips 7T MPRAGE (magnetization prepared rapid gra-

dient echo) and FLAIR (fluid attenuated inversion recovery)

images, 256 × 320 × 320 volumes, 0.70mm isotropic.

As we don’t have any ground truth to compare the inho-

mogeneity fields, we visually compare the results from the

two algorithms. Fig. 4 shows a 7T FLAIR image and its cor-

rection by both N3 and CSI-NC. As N3 assumes some un-

derlying smoothness criterion on the inhomogeneity field, it

can not remove the localized IIH present in the CSF at the
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(a) (b) (c) (d) (e)
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Fig. 4. (a) Original 7T FLAIR image, (b) N3 corrected

FLAIR, (c) CSI-NC corrected image, (d) N3 field, (e)
smoothed field from CSI-NC, smoothed by Gaussian filter of

size 10mm, (f) a sagittal view of the original FLAIR, (g) sagit-

tal view of N3 corrected image, (h) sagittal view of CSI-NC

corrected image. As N3 assumes an underlying smoothness

model on the inhomogeneity, small localized inhomogeneity

that are present in small tissue structures are not corrected.

superior part of the brain (Fig. 4(g)), while CSI-NC, being a

patch-based method, corrects the bias in that area (Fig. 4(h)).

We also use one 7T MPRAGE image to test the effective-

ness of our algorithm. In the absense of a ground truth, we

visualize the inner cortical surfaces, generated using a geo-

metric deformable model based surface reconstuction algo-

rithm [18]. Fig. 5(a) shows the original MPRAGE image,

showing large inhomogeneity near the anterior and posterior

parts of the brain. Its correction by N3 and CSI-NC are shown

in Figs. 5(a)-(b). A zoomed view of the anterior part shows

that inner surface is pushed outwards deep inside GM on N3

corrected image, while it respects the WM-GM contrast in the

CSI-NC corrected image.

4. SUMMARY AND CONCLUSION
We have presented a patch based intensity inhomogeneity cor-

rection method that uses the concept of compressed sensing.

Our method is non-parametric, model-free and does not im-

pose any smoothness constraint on the field. We have shown

that our method works better on 7T images, at least visually,

compared to N3, although there is some over-correction visi-

ble near the peri-ventricular region, where the method needs

improvement. Future work includes estimation of optimal

size λ, N and size of patches. We would also validate the

method on 7T images.
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