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Abstract—We propose a method for improving the quality
of cone-beam tomographic reconstruction done with a C-arm.
C-arm scans frequently suffer from incomplete information due
to image truncation, limited scan length, or other limitations. Our
proposed “hybrid reconstruction” method injects information
from a prior anatomical model, derived from a subject-specific
computed tomography (CT) or from a statistical database (atlas),
where the C-arm X-ray data is missing. This significantly reduces
reconstruction artifacts with little loss of true information from the
X-ray projections. The methods consist of constructing anatom-
ical models, fast rendering of digitally reconstructed radiograph
(DRR) projections of the models, rigid or deformable registration
of the model and the X-ray images, and fusion of the DRR and
X-ray projections, all prior to a conventional filtered back-pro-
jection algorithm. Our experiments, conducted with a mobile
image intensifier C-arm, demonstrate visually and quantitatively
the contribution of data fusion to image quality, which we assess
through comparison to a “ground truth” CT. Importantly, we
show that a significantly improved reconstruction can be obtained
from a C-arm scan as short as 90 by complementing the observed
projections with DRRs of two prior models, namely an atlas
and a preoperative same-patient CT. The hybrid reconstruction
principles are applicable to other types of C-arms as well.

Index Terms—Anatomical atlas, C-arm, computed tomography
(CT), cone-beam reconstruction, hybrid reconstruction.

I. INTRODUCTION

C ONE-BEAM computed tomography (CBCT) [1] is an
increasingly popular 3D medical imaging modality.

One of its attractive properties is the ability to acquire the
images intra-operatively using C-arms without the need for a
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CT scanner. However, many such C-arm “scanners” may pro-
duce degraded results because of data loss during the imaging
process. In this paper, we address two problems which may
occur during a C-arm scan: image truncation and limited-arc, or
reduced scans. We show that under such conditions, traditional
reconstruction algorithms produce low quality images with
strong artifacts.

To address such limitations, we propose to complement the
observed X-ray images (or projections) with data from a prior
anatomical model. An immediate candidate for the prior would
be a same-patient CT volume registered with the acquired pro-
jections. But when a preoperative CT is not available, we pro-
pose to use a statistical “atlas” of the anatomy, which produces
an approximation of the patient. We show that this statistics-
based approximation may be sufficient for reconstructing a re-
gion of interest (ROI) that preserves the patient-specific infor-
mation from the projections, yet reduces artifacts caused by the
data loss.

The elements of this “hybrid” reconstruction, described in
Section IV, are anatomical models, 2D-3D registration between
them and X-ray images, fusion of the observed projections
with computed projections of the registered model, and then
reconstruction. In this paper, we discuss the techniques for
registration and data fusion, and present reconstruction results
from data collected with a C-arm (OEC 9600) in Section V. We
study the effects of various sources of anatomical data, with
varying similarity to the observed object, on the reconstruction.
We also test varying proportions of blending between the X-ray
images and the model to validate the extent to which the
recovered volume represents the real scanned object rather
than the prior model.

Importantly, our paper focuses on reconstruction from actual
scans with the C-arm rather than on a theoretical analysis of the
method or on simulation experiments (simulation results can be
found in [2]). This goal faced specific calibration challenges,
described in Section III-A, which also affect out quality assess-
ment methods (Section III-C). We ultimately show that our re-
constructions are visually similar and quantitatively correlated
with actual CT reconstructions, and that the fusion of a prior
model visually and quantitatively improves the reconstruction
relative to the use of truncated data.

The paper is organized as follows. Section II relates this work
to previous studies on data loss compensation in reconstruc-
tion. Section III presents the infrastructure, or “toolkit” used
in the research: the equipment and protocols we use for C-arm
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CBCT and quality assessment. Section IV describes the key
components of the hybrid reconstruction strategy: anatomical
models, 2D-3D registration, and data fusion. In Section V we
describe a series of experiments that evaluate the contribution
of the fused data to reconstruction. In Section VI we provide a
broader perspective on the experimental results. We conclude in
Section VII.

II. BACKGROUND

Cone-beam reconstruction algorithms have been studied
for decades [1], and the impact of missing data, such as
image truncation and reduced arcs, was recognized early on.
Methods addressing data loss can be divided into the following
strategies.

Sinogram completion methods, such as [3]–[6], typically
address truncation of the projected images due to a narrow
field-of-view (FOV). The truncation affects the sinusoidal path
of a pixel in the reconstructed volume, and these methods
attempt to recover the missing portions. Completion functions
proposed were a linear continuation [3], cylinder of uniform
density [4], minimal observed intensity [5], and others [6]. In
comparison, our hybrid reconstruction can be thought of as
completing the sinogram with a prior model which is registered
with the observed data. However, we note that a true sinogram
only exists on the midplane of the scan, while the hybrid
reconstruction can be used for off-central slices as well.

Total variation (TV) methods, such as [7]–[10], focus on
identifying object boundaries and fitting smooth densities
inside them. Sidky et al. used TV with observed data only to
improve limited-angle fan-beam [7] and later cone-beam [8]
reconstructions. Chen et al. [9] used TV to address low angular
sampling rate, with same-subject CT images as a reconstruction
prior. Noël et al. [10] propose a simplification to TV based on a
polygonal representation of the reconstructed objects. In com-
parison, this work uses conventional filtered back-projection
(FBP) without assumption of interior smoothness. We do use
prior models, which can be a same-patient CT or a generic atlas,
and address the registration problem between the observed data
and the prior.

Differentiated backprojection (DBP) applies the inverse
Hilbert transform to a back-projection of derivative-filtered
images to obtain the studied volume [11]–[15]. It was shown to
address the reduced scan problem by exactly reconstructing the
intersection of FOV and convex hull of the source trajectory
[11], [13], and also a truncated ROI [12], [14] under some
geometrical conditions. Our basic reconstruction method is
DBP [11], [16]. However, the experiments in this paper show
that without data completion, the boundary of the ROI still
contains strong artifacts. These are significantly reduced by
the truncation compensation in our method. Furthermore, we
note that even the relatively mild condition in [11]—a scan
arc of fan angle is required for a non-empty exactly
reconstructed ROI—is often unsatisfiable in practical C-arm
imaging protocols. The hybrid reconstruction provides a way
to estimate an extension even to such short arcs.

Within the DBP framework, Kudo et al. [15] showed that
a priori knowledge of a small interior portion of the ROI can

provide a unique reconstruction. In comparison, in this work
the ROI is regarded as an unknown region of change, whose
reconstruction is assisted by prior knowledge of its exterior.
This approach was demonstrated by Ramamurthi [17], who pro-
posed to fuse the Hilbert transform of a prior model (e.g., a CT
scan) of the object into the DBP framework. Left open in his
work are the questions of how the prior information is obtained,
how it is registered with the acquired images, and how the two
sources are normalized to a meaningful dynamic range (see Sec-
tion IV-C). This work continues Ramamurthi’s path, addressing
these questions through statistical anatomical atlases, their reg-
istration with X-ray images, and an alternative method of fusing
the data sources in the projected image space. Sadowsky et al.
[2] demonstrated the technique in simulation experiments to
compensate for reduced trajectory. Here, we extend this ap-
proach to real X-ray projections.

To summarize, this paper proposes and demonstrates a prac-
tical approach to compensate for missing X-ray data based on
a prior anatomical model. Our approach differs from classical
sinogram completion that relies on very little prior knowledge,
and from DBP methods that focus only on an interior ROI re-
gardless of its boundary or exterior. We regard the hybrid re-
construction as a potential complementary technique, that can
be combined, for example, with sinogram completion or TV
methods. We show that statistical anatomical models can be
used as priors in the absence of an exact CT. And we demon-
strate the method using real X-ray data, addressing registration
and range normalization issues.

III. RECONSTRUCTION TOOLKIT

In this section, we describe the reconstruction “toolkit”—
basic methods of data acquisition and processing used in our ex-
periments. They include the imaging devices, their calibration
and acquisition protocols, the reconstruction algorithm and the
tools for image quality assessment. These tools define the base-
line for the reconstruction results, which hybrid reconstruction,
described in the next section, should improve.

A. System Calibration and Image Acquisition

The system used to acquire X-ray images is an OEC 9600
C-arm (GE OEC Medical Systems, Salt Lake City, UT, 1993)
with a nominal 9-in X-ray image intensifier (XRII), which we
fitted for reconstruction. We note that the methods proposed in
Section IV are equally suitable for other types of C-arms, such
as those incorporating a flat-panel detector.

To calibrate the acquired data, we developed a protocol in-
volving a calibration phantom mounted on the XRII, whose
X-ray images provide information on the warp pattern inside the
XRII and the projection’s intrinsic (pin-hole) parameters (see
Fig. 1). This type of calibration has been studied in many pre-
vious works, for example [18]–[21]. However, during the scan
of a specimen, the phantom is taken off the XRII, and the pa-
rameters are estimated by lookup and interpolation of data in a
separate calibration scan, using the arm’s pose as an “index.” We
use an external system—the Polaris optical tracker (NDI, ON,
Canada)—to acquire the extrinsic imaging parameters (camera
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Fig. 1. The calibration phantom. (a) Mounted on the C-arm XRII. (b) An X-ray
image: the grid is used to compute dewarp parameters, and the diamonds and
diagonals for pin-hole parameters.

pose). The complete details of the calibration protocol are listed
in [22].

Scans are executed by turning the C-arm on its motorized
“L-arm” axis (alternatively called “U-arm”) in continuous mo-
tion. The X-ray tube is fired at eight pulses per second, and data
is collected with a WinTV 2000 frame grabber (Hauppauge Dig-
ital, Inc., Hauppauge, NY). Typically, the warp-corrected (rec-
tified) images are of size 480 480 pixels, with a pixel size of
0.45 0.45 mm , and 8 bits per pixel. These parameters define a
nominal detector-plane FOV of 216 mm; but since the isocenter,
where the scanned specimen is placed, is about 300 mm away
from the detector, and the source-detector distance is about 980
mm, the effective FOV diameter around the isocenter is approx-
imately mm. The actual X-ray data takes a
roughly circular portion of the image, of about 440 pixels in di-
ameter.

To provide consistent imaging conditions throughout the
scan, we manually set the C-arm’s kVp and mA values, and
disable the automatic contrast-enhancing features of histogram
equalization and gain adjustment. Subsequently, we assume
that the recorded intensity of a pixel is linearly related
to the accumulated X-ray energy hitting the respective area of
the detector, and therefore the attenuation integral for the pixel

is . This is a simplifying assumption,
which likely distorts the reconstruction to some degree (for
example, we do not account for nonlinear detector responses, or
for beam hardening effects). Better calibration of the detector
response, as well as better detector sensitivity (as in [23]) may
produce better reconstruction results overall.

B. Reconstruction Algorithm

For CBCT volume reconstruction, we used a Feldkamp-type
volume of interest (VOI) reconstruction algorithm [16] which
is a variation of an FBP-type 2D fan-beam reconstruction al-
gorithm originally proposed by Noo et al. [11] for ROI recon-
struction. Noo’s method has merits when a full (360 ) or short
( fan angle) scan is not achievable, which is the case
for most mobile C-arms. It enables exact ROI reconstruction
with very-short scan data ( fan angle) if all the lines
passing through the ROI (rather than the whole object) are im-
aged without truncation. Generalized into a Feldkamp-type al-
gorithm, it inherits its Feldkamp’s exact reconstruction proper-

ties. Its correctness and merits have been well verified in sim-
ulations [16]. Truncated X-ray projections, however, produce
strong artifacts along the truncation edge, as shown in Section V.

The modified VOI reconstruction is formulated as follows.
Let denote the angular support of the source tra-
jectory and be the angle of an individual source position. Let

be the pixel value at the image point as given in
the X-ray image taken at , where is the image axis parallel
to the scan plane; and let be the projected coor-
dinates of for the view of .

The voxel value is computed by

(1)

with

(2)

where is the distance between the source and the isocenter;
is the distance between the source and the detector plane; and

is the Hilbert transform operator in the direction.
is a redundancy weighting function given by [11, eq. (40), (46)].

Note that our C-arm scanner does not perform a perfect or-
bital scan, and we typically approximate some of the parame-
ters, such as and , by using the mean over all camera poses.
In an exemplary scan, the standard deviation in was on the
order of about 2.0 mm with mm. Therefore,
we expect the reconstruction errors introduced by this approxi-
mation to be small. We note also that cross sections other than
the midplane are reconstructed only approximately, with errors
increasing with the distance from the midplane [17].

C. Quality Assessment

Ultimately, we wish to compare a CBCT volume with a CT
scan of the same specimen. This requires a registration between
the two volumes, which we describe next. We also address here
the issue of incompatible units in the CT and CBCT volumes,
and present a way for quantitatively comparing the volumes.

On each specimen, six to ten small, high contrast
markers—metal beads or screws—were attached, to be used as
fiducials. They were localized manually in the CT volume and
2D X-ray images, and their 3D positions relative to the CBCT
volume were computed using the C-arm’s scan calibration.
Then, a rigid registration [24] was computed between the two
volumes of CT and CBCT. The CT volumes were resampled to
the grid of C-arm reconstruction, and the result was regarded as
“ground truth.” To exclude differences caused by the presence
of different objects within the FOV of the compared volumes
(such as the CT bed), we defined a region of interest (ROI) over
which the numerical comparison took place.
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In [2], Sadowsky et al. demonstrated the basic hybrid re-
construction technique in simulation, and were able to com-
pare reconstructed data sets directly. In this paper, however, be-
cause of the simplified calibration model (see Section III-A),
we could not precisely reconstruct linear attenuation coefficients
(LAC) or Hounsfield units. Therefore, the quantitative compar-
ison of the volumes comprised the following statistical mea-
sures of similarity, described next: 1) correlation coefficient, 2)
mutual information (MI) [25], and 3) structural similarity index
(SSIM) [26].

The correlation coefficient between two sets of samples,
and is computed as

(3)

where and are the means, and standard deviations of
and respectively. Its value roughly indicates how “linear” the
relation is between voxel values within the ROI; values closer
to 1 indicate a stronger positive correlation.

MI indicates the ability to predict statistically the value of a
voxel in one reconstruction knowing the value in the other. It is
computed as

(4)

where is the entropy, computed for the marginal distribution
of samples in and and the joint distribution of pairs .
In practice, we divide voxel intensities into discrete values
(“bins”) and count the voxels falling in each bin to obtain an
empirical distribution

then compute the entropy

(5)

Higher MI values for two images (or volumes) mean higher sim-
ilarity between them.

SSIM [26] combines multiple similarity factors: luminance
( ), contrast ( ), and structure ( ), which are computed locally
with a moving window and then averaged. For two image re-
gions, and , the similarity factors are defined as

where , , and are constants included to avoid instability,
and . The three com-
ponents are combined as

(6)

TABLE I
NORMALIZATION PARAMETERS IN COMPARING

CT AND CBCT RECONSTRUCTIONS

Notice that each component, and ultimately their SSIM product,
has a value between 0 and 1, with higher values indicating higher
similarity, and 1 indicating equality.

Normalization of the reconstructed voxels is part of each of
the similarity measures. Broadly, it may include thresholding,
shifting (adding bias), scaling, and binning (coarse discretiza-
tion). We summarize the normalization parameters we chose for
our experiments in Table I.

IV. HYBRID RECONSTRUCTION METHODS

A hybrid reconstruction process includes the following steps,
which are illustrated in Fig. 2. Preoperative anatomical data is
collected from patients and analyzed. The outcome may be a
statistical atlas or a patient-specific model. During surgery, the
patient is scanned with a C-arm to acquire a set of orbital X-ray
images. A subset of the images is registered (deformably or
rigidly) with the pre-operative model. Then additional images
can be rendered from the model to fill-in missing data in the
X-ray projections. The two information sources are fused as
inputs to a conventional cone-beam reconstruction algorithm.
The outcome is a hybrid volume that combines the observed
intra-operative data with the prior knowledge.

A. Anatomical Models and X-ray Simulation

Our representation of the anatomy of the scanned object,
which is to be combined with the X-ray data, includes shape
and radiodensity. We follow Yao [27] in using a tetrahedral
mesh for the shape and barycentric-form Bernstein polynomials
to approximate volumetric density. This representation has two
important properties: topology-preserving deformations are
relatively easy to apply, and an analytical line-integral formula
for the density enables us to efficiently compute simulated
projections of this deformable structure. Yao’s work includes
further discussion of the tetrahedral mesh properties. The cre-
ation of the model is outlined in Fig. 3 and summarized below.

Statistical atlases are created by analysis of a training pop-
ulation. First, an initial shape is generated by manual labeling
of a hand-picked template CT volume and tessellation of the
anatomy of interest into a tetrahedral mesh [28]. Deformable
registration is computed from the template CT to each training
study [29]. The transformation is applied to the template mesh,
and principal component analysis (PCA) is performed for the
concatenated list of mesh vertices [30]. The outcome is a
“mean shape”

(7)
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Fig. 2. Outline of the hybrid reconstruction process.

Fig. 3. An outline of the anatomical atlas creation process (images 3 and 4
courtesy of L. M. Ellingsen).

and shape modes, , which are displacements to be added to
the mean vertex positions.

New shape instances can be synthesized as

(8)

where is a user-defined number of shape modes in use, and
are scalar weights applied to the modes. We treat

the special case of a patient-specific mesh, derived directly from
a CT without deformable registration, as having only a mean
shape—the patient’s shape—and modes.

Within the space of each tetrahedron of the template mesh, a
density polynomial is fitted to the template CT intensities. Given
the vertices of a tetrahedron as the ordered set

, we form the matrix of homogeneous vertex coordinates

(9)

Then, the barycentric coordinates of a point relative to
are

(10)

In this notation, the density polynomials take the form

(11)

where is the degree of the polynomial;
is a multi-index vector; is a “free” scalar coefficient; and

is a multinomial factor. Fitting the poly-
nomial to CT data means determining the set of free coeffi-
cients by which the polynomial best approximates (by
least square error) a given CT volume. This is done indepen-
dently for every tetrahedron in the template mesh to approxi-
mate the template CT.

We note that Yao [27] proposed to perform PCA on the den-
sity polynomials in addition to the shape statistical analysis. In
contrast, we used a simple atlas whose density distribution was
derived only from the template CT. Potentially, an atlas that in-
corporates density statistics may produce a closer estimation of
an observed specimen. Yet we show here, and earlier in [2], that
the coarser approximation of the atlas based on template inten-
sities still assists in the hybrid reconstruction. The subject of
density statistics is under study separately from this paper [31].

Simulated X-ray images, commonly known as digitally re-
constructed radiographs (DRRs), can be computed efficiently
from a shape instance and the density polynomials [32]. The
rendering involves computation of integrals of the radiodensity
function along the projection lines of image pixels. Encoding
density as polynomials provides a closed-form equation for the
integral, listed in [32]. The algorithm computes the projected
silhouette of each tetrahedron, which is sent to a graphics pro-
cessing unit (GPU) that computes the integral for each pixel and
accumulates the result.

An example of a DRR of a dry pelvis specimen is shown in
Fig. 4(a), and is comparable to an actual X-ray image seen in
Fig. 4(b).

B. 2D-3D Registration

To register a model with a C-arm scan, we first select a small
subset of targets, e.g., four to six images, out of the full scan (see
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Fig. 4. Simulated image and registration of model and C-arm X-ray. (a) A DRR
image of a mesh model of a dry pelvis specimen. (b) An X-ray image of the
specimen, to which the mesh model was rigidly registered by maximization of
mutual information. (c) An overlay of the edges of image (a) on image (b). The
full dynamic range of each image was normalized independently to ��� ��.

more details below). Given the projection parameters of the im-
ages, our registration process repeatedly creates DRRs of the
model and compares them with the targets. We use the Down-
hill Simplex (DS) optimizer [33], [34] to search through pose
and shape parameters, including translation , rotation , scale

and shape mode weights , to maximize mutual informa-
tion (MI) [25], [35] [see (4)] between the targets and atlas pro-
jections.

Zöllei et al. [36] had a similar approach, but used stochastic
samples to estimate the MI score between images; our fast
method to compute DRRs enables us to use the full image in-
stead. We also found empirically that the DS optimizer is fairly
efficient, often better than gradient descent [36], for example.

Studholme et al. [37] suggested that normalized MI (NMI) as
the image similarity score is more robust than MI to an initially
small overlap between model and reference. Our independent
tests support this hypothesis. Yet we also observed that the use
of MI score can lead to a slightly higher final registration accu-
racy than NMI. For the purpose of this paper, the performance
of both scores is roughly the same, and we use MI for 2D-3D
registration.

As the registered prior model is fused with X-ray images for
hybrid reconstruction, we expect that the accuracy of the regis-
tration will affect the quality of hybrid reconstruction. The ac-
curacy of deformable 2D-3D registration between X-ray projec-
tions and a statistical anatomical atlas was measured in simula-
tion and real images by Sadowsky et al. [38]. Additional studies
were described in [22]. We summarize the results of these ex-
periments below.

Simulation experiments of rigid registration show very small
final translation and rotation errors, typically 0.1 mm and 0.1 ,
respectively, or less, compared with ground truth. Experiments
with real X-ray images had translation differences of 0.6–1.3
mm and rotation differences of 0.5 to 1.1 between MI-based
and fiducial-based registrations of a dry pelvis specimen. Both
differences are roughly within the boundaries of the calibration
errors of our imaging and tracking systems. For a visual ex-
ample, the alignment of the model shown in Fig. 4(a) relative to
the X-ray image in Fig. 4(b) was accomplished by such a rigid
registration.

Deformable registration of a statistical atlas and simulated
X-ray images was studied in [38]. Eleven test models of whole
pelvis bones, segmented from CT volumes, were left out of the
training population during atlas creation. The registration error

Fig. 5. Distribution of mean errors in deformable 2D-3D registration on the
surface of a pelvis model.

was measured as distances between the outer surface vertices
of the registered atlas shape and their nearest neighbors on the
tested surfaces. Typical mean errors were 2.0–2.5 mm. The er-
rors increased when narrower views of the test dataset were used
as targets.

The study also observed that the error is distributed unevenly
on the surface of the pelvis bone, with extremity points, such
as the crest of the ilium, the superior iliac spine or the ischium
having noticeably larger errors than broad surfaces (see Fig. 5).
One may expect registration errors to be greater in regions of
high curvature, given the averaging process in atlas creation
which can erode sharp curves. It is also possible that proper-
ties of the deformable registration, used to create the training
instances, affect errors in specific locations. This issue is still
being studied.

Our experiments [22] show that rigid registration can succeed
with a single anterior–posterior (AP) image of a pelvic spec-
imen, under ideal (simulated) imaging conditions. However, for
deformable registration additional views, e.g., lateral (LT) and
45 oblique (OB), contribute much to the registration quality.
Typically, an LT view of the sacrum serves as an excellent guide
for registration. When the imaging FOV is truncated, as with
many C-arms, “out of plane” (OOP) X-ray images, involving
camera motions outside a single scan’s orbit, effectively in-
crease the visible portion of the specimen, improving the regis-
tration. The registration experiments in [38] typically used four
to six target X-ray image out of the {AP, LT, 45 OB} and OOP
set.

As we note above (Section III-C), various normalization and
binning operations are applied to the MI input images. It is
known (cf. [39], [40]) that the choice of such parameters may af-
fect the registration outcome. In the experiments referred above,
the normalization parameters are the same as in Table I, i.e., we
divide the full dymanic range of the compared images into 256
bins. Given the final registration accuracy, our parameter choice
seems adequate.

C. Image Fusion

For fusion of prior model information with observed X-ray
projections, the units of image intensity in the two input sources
must be compatible. For example, if we consider fusion in the
Hilbert transform space [17], then the preoperative and CBCT
volumes must both be given in equivalent units. That is, the orig-
inal X-ray image data must be given as line integrals on a similar
scale as the prior volume. This is easily achievable in simulation
experiments by using Hounsfield unit-based attenuation coeffi-
cients.
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Fig. 6. Fusion of a C-arm X-ray image (inside circle) with a DRR projection of a prior model (periphery). (a) Linear scaling of intensities in each modality to
the range ��� ��. (b) The DRR image intensities remapped by spline to the dynamic range of X-ray image. (c) Fusion of the X-ray image and the remapped DRR.
(d) Fusion done by remapping the X-ray image intensities to the dynamic range of the DRR.

In practice, however, we are not always able to measure exact
attenuation integrals. As noted in Section III, the C-arm only
provides a coarse, hypothesized approximation of the attenua-
tion, subject to many measurement and calibration errors. Data
fusion under these conditions is particularly challenging.

An example of the differences between a computed DRR and
a C-arm image is shown in Fig. 4, where the DRR in image (a)
and the X-ray projection in (b) have been individually normal-
ized by linear scale to the range of . In the DRR, only a few
regions have the highest brightness, and most of the bone is rela-
tively dark. In comparison, the X-ray image is bright in more re-
gions. These differences are more noticeable in Fig. 6(a), which
attempts, ineffectively, to fuse the normalized images.

The problem is further aggravated when the X-ray tube volt-
ages in the scans differ. In the examples studied here, typical
C-arm scans were done at about 45–60 kVp (which produced
fair image quality with isolated specimens), while the CT scan-
ners use, typically, the 100–120 kVp range. The attenuation pro-
files vary significantly between these different energy levels, and
a calibration of the XRII response must consider this factor for
volumetric fusion to work. To address this issue, and bypass (to
a degree) the need for a complete calibration of the XRII, we
fuse the prior and observed data as projected images, which is
easier than fusing volumes.

When the model is registered (rigidly or deformably) with the
C-arm images, there is, presumably, a strong dependence be-
tween pixel intensities in the DRRs and intensities in the X-ray
images. A similar idea guides the multimodal mutual informa-
tion-based registration algorithms [25]. In the case of X-ray im-
ages and DRRs, we can safely assume that the mapping between
corresponding pixels is continuous and monotonic, up to (pos-
sibly spurious) registration errors and measurement noise.

Following this, we estimate the mapping by sorting the pixels
of each modality independently and matching pixels by their
sorted position. Notice that the direct spatial correspondence be-
tween intensity-sorted pixels is lost, but the effect of spurious er-
rors is reduced. Then, we choose a small number (8–12) of cor-
responding representatives from the sorted lists, and fit a spline
through them to approximate the hypothesized monotonic non-
linear mapping. A graphic example of this process is shown in
Fig. 7, and the outcome of the mapping in Fig. 6(b). The map-
ping can be applied either from DRR to X-ray image intensities,
or in the opposite direction. Fig. 6(c) shows a fusion of an X-ray
image and a remapped DRR, and Fig. 6(d)—a remapped X-ray

Fig. 7. Matching graph of sorted DRR intensities (on an arbitrary scale) and
sorted X-ray image intensities (as normalized logarithm). The control points for
spline mapping between them are highlighted in circles.

image and a DRR. We tested the effect of both mapping direc-
tions in reconstruction experiments.

This method somewhat resembles intensity standardization
(for example, [41]) in setting the objective of bringing co-regis-
tered images to comparable intensities. But our solution is sim-
pler because we are dealing with a narrower problem domain.
We are not aware of other works that use a similar technique in
the context of completing missing data in X-ray based imaging
modalities.

If the missing data is a portion of each image, as with trun-
cated images, then intensity mapping can be computed for each
image independently. That is, a new spline is defined for each
acquired X-ray image, and the mapping functions may differ for
different views of the specimen. This makes the intensity map-
ping for the other type of information loss we study—the case
of reduced scan—more complex, as it may not be uniform over
the entire scan.

In this case, illustrated in Fig. 8, we choose an easier solu-
tion: we assume that the DRR intensities are “ground truth” and
remap the observed X-ray image intensities to that range. Ex-
trapolation of the intensity-mapping function is not required this
way, but it may affect the reconstruction quality.

In addition, for reduced C-arm scans, we must extrapolate the
camera trajectory to the portions missing from a short scan. This
is done by fitting a circle to the C-arm positions recorded in the
scan, and selecting new positions at regular intervals on it. Com-
pensating DRR images are computed for these new positions.

V. EXPERIMENTS AND RESULTS

In the experiments below, we scanned and reconstructed sev-
eral ex vivo isolated bone specimens: a femur, a dry pelvis,
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Fig. 8. Flowchart of the process for compensating limited-arc CBCT scans by
“extrapolation” based on a prior anatomical model.

TABLE II
STATISTICAL SIMILARITY MEASURES BETWEEN CBCT

AND CO-REGISTERED CT VOLUMES

and a fresh pelvis with some soft tissue and spinal vertebrae.
A volume of mm and voxels
was reconstructed from each. Quantitative similarity scores for
the truncation-compensated reconstructions are summarized in
Table II.

A. Femur Bone Specimen

This is a specimen of the left femur from a male human ca-
daver, into which bone cement (polymethyl methacrylate, or
PMMA, mixed with as a contrast agent) was injected.
While this specimen does not involve hybrid reconstruction, we
used it as a baseline for reconstruction quality in the subsequent
experiments.

CT and C-arm scans of the specimen and its right coun-
terpart were acquired before and after the injection. Here,

Fig. 9. Transverse cross sectional reconstructions of femur specimen, with
a rectangular ROI highlighted. (a) CT volume, resampled in registration with
CBCT. (b) CBCT reconstruction using observed X-ray images. (c) CBCT
reconstruction from a spline remapping of X-ray images to match CT projection
intensities.

we focus on the postinjection reconstruction, of which cross
sections are shown in Figs. 9 and 10. The figures include the
rectangular ROI over which similarity measures were com-
puted, selected to ignore other objects in the images, such as
the right femur or the wooden board. The voxel size of the
CT was 0.503 0.503 3.0 mm , which explains the coarse
appearance of the images in Fig. 10.

Visually, the CBCT provides relatively fine detail of the
scanned object. The boundaries of the bone cement, for ex-
ample, are comparable in both CT and CBCT. Inner structures,
such as the boundary between cortical and inner bone, are
visible even where the cortex is relatively thin.

Visual comparison between the “raw” and “remapped” re-
constructions [Fig. 9(b) and (c)] is subjective, i.e., differs be-
tween observers, and depends on the normalization applied to
the image. The raw reconstruction seems to produce finer detail,
while the remapped reconstruction may have less background
noise. Quantitatively, a high correlation of about 0.8 exists be-
tween either CBCT ROI and the CT, although the raw recon-
struction has a slightly higher score: 0.85 versus 0.79. A sim-
ilar trend is found with the MI scores (0.28 versus 0.21) and
the SSIM (0.24 versus 0.22). This argues in favor of using the
raw X-ray images as reconstruction input, rather than attempting
remap them to “DRR integrals.”

B. Dry Pelvis Specimen

The dry pelvis bone is shown in Fig. 11(a). Its X-ray images,
which are truncated, are shown in Fig. 4(b). A cross section from
its CT scan, whose voxel size was 0.512 0.512 0.5 mm, is
shown in Fig. 11(b). The cortex is identifiable, and the pores
of the spongy bone structure are filled with air. A C-arm
scan with 280 projections covering 232.5 was acquired, and
five of its images were selected as 3D-2D registration targets.
They were spaced about 50 –55 apart from each other, and
showed important anatomical features such as the lateral view
of the sacrum, the frontal view of the obturator foramen, and
the acetabulum.

We had limited success in registering the specimen with a de-
formable statistical atlas. General alignment was accomplished,
but accurate scale and shape recovery failed. This may be due to
various differences of structure between it and the live models,
some of which are examined in Section VI.

Our image-based rigid registration with a tetrahedral model
derived from the CT was successful, on the other hand. For
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Fig. 10. Orthogonal cross sections of femur reconstruction. (a) “Coronal” slice from CT. (b) Coronal slice from CBCT. (c) “Sagittal” slice from CT. (d) Sagittal
slice from CBCT.

Fig. 11. Transverse cross sectional midplane reconstructions of dry pelvis specimen. (a) A photograph of the specimen. (b) CT volume, resampled in
registration with CBCT. (c) CBCT reconstruction using truncated X-ray images, such as the ones in Fig. 4(b); the ROI for quantitative comparison is
highlighted. (d) CBCT reconstruction from a spline remapping of X-ray image intensities to match DRR intensities. (e) CBCT of observed X-ray images
fused with projections of a CT-based model. (f) CBCT using X-ray images remapped to DRR intensities and fused with CT-based model projections.

nine metal-bead fiducials manually identified in the CT and
X-ray images, the target registration error (TRE) between the
MI-based and fiducial-based registrations had a mean of 1.38
mm and maximum of 2.14 mm (these numbers include tracking
errors and fiducial localization errors). Following the image reg-
istration, we computed DRR images of the mesh, and fused
them with the X-ray images, as shown in Fig. 6.

Fig. 11 shows also four midplane CBCT reconstructions. Im-
ages (c) and (d) show reconstructions from truncated X-ray im-
ages, where in image (c) we used the raw data, and in (d) we
remapped it to the range of DRR intensities. The external shape
and inner structures can be discerned in both. Notice the strong
arc-shaped artifacts, caused by the loss of information in the
truncated FOV. We defined the ROI for quantitative compar-
ison, whose boundary is highlighted in image (c), as a trun-
cated sphere within the “fully visible” portion of the volume.
Some reconstruction artifacts are present even within this ROI.
Image (d) contains fewer artifacts in the external air portion of
the ROI, while the raw reconstruction shows better details of the
inner structures. When fused X-ray and DRR images are used
as reconstruction input, the artifacts are reduced, as seen in im-
ages (e) and (f).

Quantitative comparison demonstrates a similar trend. With
the raw X-ray images, the correlation coefficient rises from 0.66
to 0.69, the MI from 0.16 to 0.17, and the SSIM index from
0.52 to 0.68. With the intensities remapped to DRR ranges, the
scores are 0.66 for correlation, 0.10–0.14 for MI, and 0.58–0.72
for SSIM index. This demonstrates that artifact reduction takes
place not only outside the FOV, but inside as well.

C. Fresh Pelvis Specimen

The third specimen, shown in Fig. 12(a), was a fresh pelvis,
which had been stripped of most of the soft tissue and sepa-
rated from the femurs, though a part of the spinal column re-

Fig. 12. Images of the fresh pelvis specimen. (a) A photograph of the specimen.
(b) An X-ray image, before taking logarithm, highlighting the fiducial screws
(magenta circles) and the cement injected near the ilio-sacral joint (yellow out-
line). (c) An overlay of green edges from an image of an atlas, deformably reg-
istered with the X-ray scan. (d) Fusion of X-ray image (at center, after taking
logarithm) and a DRR computed from a CT scan of the specimen (periphery).
(e) A similar fusion of the X-ray image and the registered atlas; notice the slight
misalignment of the iliac crest and the absence of the spine from the atlas.

mained attached. Eight small stainless steel screws were driven
into the bone as registration fiducials. Their heads were manu-
ally located in CT scans and X-ray images of the specimen to
define a “ground truth” registration. In addition, PMMA was in-
jected near the right ilio-sacral joint, simulating a sacroplasty.
A rectified X-ray of the specimen, including these elements, is
shown in Fig. 12(b).

This specimen poses more challenges than image truncation
alone. Fig. 12(b) includes many white pixels, where the detector
was saturated with X-ray photons, and the anatomy cannot be
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identified. This demonstrates a practical difficulty to find a uni-
form tube setting that provides good contrast from all view di-
rections. The anterior-posterior X-ray images included white
(“saturated”) pixels, while lateral images of the same specimen,
at the same tube setting, included black (“occluded”) pixels. In
such cases, increasing or decreasing the kVp does not prevent
signal loss.

In addition, the presence of some soft tissue and spinal verte-
brae is a challenge to our atlas-based registration, since neither
is modeled in the atlas. Furthermore, the fused reconstruction
of the atlas with the X-ray images after registration is expected
to be relatively degraded due to the same reason. Future atlases
may include soft tissue models and multiple bones to address
this. We discuss this further in Section VI.

To register the X-ray images and the atlas, we acquired ad-
ditional static X-ray images from various directions, including
some which were not along the reconstruction scan’s trajectory,
i.e., “out of plane” (OOP) X-ray projections. Six of them were
selected as registration targets: covering an arc of about 179
from one lateral view of the sacrum to the opposite lateral view,
with oblique views and two frontal views at different
planes. Based on [38], we expect OOP views to provide addi-
tional shape information and thus improve the registration.

A visual example of the results of a deformable registration
of our atlas to the X-ray images is shown in Fig. 12(c). We see
that the overall shape was captured by the atlas, but misalign-
ments, seen more clearly in image (e), still exist. As an error
metric, we computed distances between the boundary vertices
of the atlas mesh and a manually-segmented surface shape of
the bone only in the specimen. The mean error was 3.95 mm,
and the maximum was 17.78 mm. This is higher than earlier re-
sults, such as [38], where errors were on the order of 2.1 mm
on average. But considering the confounding factors described
above—signal loss and unmodeled tissue—this is arguably a
good registration.

Fusion of the X-ray images with prior data highlights more
challenges. Fig. 12(d) shows the X-ray image fused with a DRR
made from a CT of the specimen. The fiducial-based alignment
of the two is good. But a difference can be seen in the “back-
ground,” where the CT bed is projected as gray pixels, compared
to mostly black pixels in the background of the X-ray image.
Image (e) shows a fusion with the atlas. Here we see some mis-
alignment of features, a difference in the intensities, and, con-
spicuously, the absence of the spine from the atlas.

Reconstruction was computed from the original, truncated
X-ray images, from a fusion of X-ray images with CT projec-
tions, and from a fusion of X-ray images with atlas projection
as before. Exemplary midplane slices from the original CT (re-
sampled) and the different CBCT volumes are shown in Fig. 13.
Image (a), the CT, clearly shows the difference between mate-
rials such as soft tissue, bone, and bone cement. Importantly,
the different materials are visible in all the reconstructions, in-
cluding inner structures such as the vertebral foramen or the gap
between bones in the ilio-sacral joint. Two blobs of bone cement
are distinctly visible, roughly with the same shape. A resection
of the soft tissue was made in order to inject the bone cement,
and is also visible on the posterior side of the specimen.

Fig. 13. Reconstruction of fresh pelvis specimen: the midplane slice. (a) Re-
sampled CT volume, with the similarity ROI highlighted. (b) Reconstruction
from truncated X-ray images. (c) Reconstruction from X-ray images fused with
CT projections. (d) Reconstruction from X-ray images fused with atlas projec-
tions. (e)–(g) Off-midplane slices from the CT, CT-fused CBCT, and atlas-fused
CBCT; notice the stronger artifacts in image (g), compared with (f).

Furthermore, the coarse approximation of the anatomy by the
deformable atlas still improves the reconstructed volume. The
artifacts were visibly reduced [compare Fig. 13(b) and (d)], al-
though off the midplane, discrepancies between the CT and the
atlas are noticeable, seen in Fig. 13(e)–(g). The image quality
metrics increased from (0.76, 0.43, 0.48) in the truncated recon-
struction to (0.83, 0.54, 0.50) when the CT was fused in, and to
(0.78, 0.49, 052)—a more modest increase—when the atlas was
used.

D. Reduced Arc Compensation

Our final example deals with a common limitation of C-arm
cone-beam scans, which is independent of detector size or cali-
bration issues. Many times, acquiring a “short scan” that covers
an arc of fan angle is impossible due to various phys-
ical constraints on the rotation of the arm. For instance, in the
OEC 9600, the opening of the “C” is narrower than a typical sur-
gical table, and this prevents its rotation about the patient using
the motorized axis.

The hybrid reconstruction strategy may be especially useful
in such cases. This time, in addition to truncation compensation
in individual X-ray images, we also complete missing views by
extrapolation of the scan trajectory with DRR projections of the
prior model, as illustrated in Fig. 8. We demonstrate the process
on the fresh pelvis specimen.

The experiment was conducted as follows. We trimmed the
data of the original scan, covering over 230 , to narrower an-
gles: 90 –210 in increments of 20 (compared with about 193
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Fig. 14. Reconstruction of the fresh pelvis specimen with a reduced arc trajectory, and compensation by a preoperative scan, an atlas, and a postoperative CT scan,
all registered to the original 210 C-arm scan. Two regions of interest, a magenta semicircle and a green rectangle, are highlighted on a slice from the “ground
truth” postoperative CT. The semicircle is the “complete” FOV, and the rectangle is the volumetric bounding box of the injected cement. The dynamic range of the
images was normalized based on the parameters in Table I.

required for a short scan). A circular trajectory was fitted to
the original, slightly irregular C-arm trajectory. DRR images
were computed at uniform intervals for this trajectory from three
datasets: 1) a preoperative CT scan of the specimen, 2) a post-
operative scan (which includes the bone cement), and 3) the
statistical atlas. The CT volumes were rigidly registered to the
C-arm scan by the fiducials, and the atlas by MI maximiza-
tion as described in Section IV-A. The DRRs, with their re-
spective projection matrices, substituted for the views that were
trimmed off the original trajectory. Examples of slices recon-
structed without the extrapolation and with extrapolation based
on the three sources is shown in Fig. 14.

The first row shows the reconstruction based only on the trun-
cated X-ray images, with no prior information. Arc-shaped trun-
cation artifacts are visible. In reconstructions from scans shorter
than 190 , the anatomical detail is degraded, although the high-
contrast cement is visible even in the 90 reconstruction.

In the second row, the postoperative CT is used to compensate
for truncation, but not for the reduced scan. The arc artifacts
are reduced, and the overall image quality is better. Yet, in the
shorter scans little but the bone cement can be discerned. The
210 scan, while still noisy, includes essentially the complete
structure of the specimen.

Notice, in the first and second rows, that the shortest scans,
of 90 –110 , were sufficient only to recover the high-contrast
elements. The intensity window’s top was set at 0.4 of the max-
imal intensity, yet only the cement can be discerned. Adjusting
the intensity window cannot add the missing information.

In the third row, the X-ray images are fused with a preop-
erative CT scan, which, presumably, is the most accurate prior
available during surgery, yet does not include the bone cement.
We notice that the cement is still reconstructed from the 90 arc,
with a somewhat decreased contrast. Likewise, the resected soft
tissue region is blurred where a reduced C-arm arc was used,
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Fig. 15. Behavior of the correlation coefficient similarity score between the “ground truth” postoperative CT and a number of CBCT reconstructions, involving
different sources of prior data: raw X-ray images without a prior, raw data compensated for truncation only, and compensation for reduced arc length using preop-
erative CT, statistical atlas and postoperative CT. Notice the contribution of the prior CT and the atlas to the reconstruction from the reduced scan arc of 90 . The
regions of interest are (a) the full FOV, and (b) a box containing the injected cement. These are highlighted in Fig. 14.

and appears sharper as the angle increases. This is because the
resection was made during the operation on the specimen, where
preoperatively the tissue was whole. We can identify these ele-
ments of relatively high contrast even with the limited informa-
tion of a 90 scan.

The fourth row represents the scenario where a preoperative
CT is unavailable, and a statistical atlas is used to complete
missing data. The alignment of the atlas and the CBCT volume
is fair—the vertebral foramen, for example, aligns well in both
volumes. We reconstructed the bone cement from the 90 scan,
though not as sharply as when the preoperative CT was used.
Since the atlas is a coarse approximation of the specimen, we see
a transition between the reconstruction from a 90 X-ray scan
(combined with 120 of DRR projections), and the 210 X-ray
scan that uses only truncation compensation. The high depen-
dency on the atlas to compensate the 90 scan creates a recon-
struction that resembles the atlas more than the corresponding
hybrid that used the preoperative CT.

In the last row, the postoperative CT was used to compensate
for both truncation and limited scan. This represents the the-
oretical “best case,” where an exact model of the specimen is
available preoperatively, though such a case is unrealistic. Visu-
ally the image quality is much improved, and the reconstructed
shape is consistent with the ground truth CT (unlike the preoper-
ative CT compensation). This reconstruction also demonstrates
the effect of varying relative portions of prior and observed data.
We notice, for example, that the reconstruction from the 90
C-arm scan includes the CT bed at the bottom of the image; the
corresponding region in the 210 scan shows a wooden board
on which the specimen lay.

These visual observations are reflected in the similarity scores
as well. Fig. 15 plots the correlation coefficient score between
the ground truth postoperative CT and the various CBCT recon-
structions as a function of the portion of observed X-ray images
in the reconstruction input. We cover two regions of interest,
which were highlighted in Fig. 14: a spherical segment of the
full FOV, and a box region that contains only the injected ce-
ment.

Without compensation, the correlation is consistently poor:
about 0.75 for the large FOV and only 0.66 in the region of
change at the maximum, which is attained for the 210 scan.
Truncation compensation, without reduced-arc compensation,
increases the correlations to 0.81 and 0.78 for the respective
regions. However, the truncation compensation helps little for
the reduced arc of 90 , where the correlation score is about 0.45
or 0.46 with or without the prior data.

When arc extrapolation is used, the correlation is consistently
higher. With the atlas, it goes from 0.69 at the low end to 0.75
at the high end for the large FOV, and from 0.68 to 0.75 for
the box. With the preoperative CT, the corresponding values are
0.77–0.78 and 0.75–0.77. Importantly, both the prior CT and the
atlas achieve a better correlation than the truncation compensa-
tion alone for scan arcs of 150 or less, which are common in
clinical use.

We also include the effect of using the postoperative CT
for compensation. The similarity decreases with the increased
length of the X-ray scan, because the hybrid volume is a blend
of the “ground truth” and the X-ray data, and the portion of
ground truth decreases when the arc length increases. The
correlation scores for this set of hybrid reconstructions are
the highest, simply because the prior model is identical to the
ground truth.

To conclude, this experiment studies the use of hybrid recon-
struction technique to compensate for reduced arc scans. We re-
cover high contrast details from very short scan angles, even as
low as 90 . The use of prior models to compensate for the re-
duced scan is beneficial even with a coarse approximation, such
as the statistical atlas, and the reconstruction quality improves
when the external data source is more similar to the observed
specimen. This calls for creation of more advanced anatomical
models as a potential tool for improving cone beam reconstruc-
tion with limited means.

VI. DISCUSSION

Image truncation and reduced scan length are common in
clinical uses of C-arm CBCT. Our experiments show that a
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hybrid reconstruction with prior anatomical models can very
significantly improve the reconstruction and reduce artifacts,
while preserving meaningful information from the observed
X-ray projections. This is of particular importance if a region
of change, such as injected cement or resected tissue, needs
to be reconstructed. Our similarity scores consistently show
that the various forms of hybrid reconstruction are better than
reconstruction from the limited data only.

There are a few points to pay attention to when studying the
quality of the reconstructed images. As we noted earlier, we ac-
complished only a partial calibration of our XRII detector, with
a simplified logarithmic model for the intensity response. The
recorded intensities suffer from various distortions, including
nonuniformities, nonlinearity, limited discretization range, heel
effect, saturation, full occlusion, photon scatter, and others,
which we did not address in this work. A better-calibrated
scanner or better detector technology (such as a flat-panel
detector) may produce better reconstructions than ours. The
incomplete calibration also means that we could only use
indirect similarity measures, as opposed to difference-based
metrics, which are most desirable.

With this said, we can draw several conclusions from the ex-
periments. The quality of hybrid reconstruction improves if the
prior model is more similar to the scanned specimen; but even
a relatively coarse approximation of the anatomy—a statistical
atlas that only includes parts of the specimen’s structure—still
produces a better reconstruction than without any prior.

Our registration of the atlas to the dry bone X-ray images was
not as good as with the fresh specimen. One possible reason
may be the dissimilarity in radiodensity between whole bone, as
modeled in the atlas, and the mostly hollow dry bone. Another
is that the specific dry specimen could be an outlier relative to
the space of training shapes. While future atlases may be more
robust and accurate than the one used here, outliers will likely
exist always. Therefore, an outlier detection method may be de-
sired.

As to the question of whether the original X-ray intensities
should be remapped based on CT projections, the general
answer is negative, as our results, summarized in Table II,
show. Almost always, the C-arm reconstructions directly from
the X-ray images have a higher similarity score to the CT than
reconstructions from remapped X-ray images. Although for
the reduced-arc compensation (Section V-D) we remapped the
X-ray images rather than the DRRs, it was done to simplify
the fusion process rather than have the best possible correlation
to CT. Better imaging systems, with better sensitivity and
calibration, may produce more consistent attenuation measures,
and not require intensity mapping. For the system studied here,
more robust techniques for intensity matching may exist.

Better anatomical models and reliable registration methods
should lead to better atlas-based hybrid reconstruction. An im-
mediate extension would include multiple bones, e.g., the fe-
murs and spinal vertebrae for the pelvis region. Importantly,
inclusion of soft tissue in the atlas is essential if the method
is applied to whole patients, as opposed to isolated specimens.
Soft tissue models need not be necessarily as detailed or accu-
rate as the bone models. Perhaps even a simple external mea-
surement of the patient could provide enough information about

his shape, and an assumption of uniform attenuation in the soft
tissue might be sufficient to model it. This idea relates back to
Boyd et al. [42], and its potential in deformable registration was
demonstrated by Sadowsky [22]. Overall, imaging and recon-
struction of soft tissue pose new challenges for future research.

Algorithms tailored for reconstructing a region of change, es-
pecially high-contrast ones such as the bone cement or resected
tissue, may also produce sharper reconstructions, compared to
the filtered back-projection we used. For example, hybrid recon-
struction may be used complementarily with sinogram comple-
tion methods such as [5] and [6], to obtain either an improved
registration (relying on sinogram-completed images) or a better
estimate of the volume under reconstruction.

We did not attempt to optimize the performance of our
methods. Our current image registration toolkit, based on [32]
and [38], has a performance bottleneck in exchanging data
between CPU and GPU, and a registration can take several
minutes. The reconstruction toolkit is implemented very simply
with a serial CPU computation. Modern GPU technology and
algorithms (e.g., [43]) can accelerate this component in the
pipeline.

Yet, we demonstrate that even a modest toolbox can be used
successfully for hybrid reconstruction. With the issues above
highlighted, this work paves the way towards its clinical use.

VII. CONCLUSION

This paper demonstrated the use of hybrid cone-beam re-
construction that fuses observed X-ray images from a C-arm
with a prior anatomical model to compensate for different types
of information loss. We addressed specific limitations of mo-
bile C-arms: narrow FOV that causes image truncation, and re-
duced scan trajectories. We showed how different types of prior
models—patient-specific CT or a statistical atlas—are regis-
tered with the X-ray images, and presented a practical method
to combine the different information sources as projected im-
ages. Our results are applicable not only to our relatively old
C-arm, but to more modern ones which still suffer from such
limitations.

A series of experiments showed that a high correlation be-
tween the CBCT and CT volumes can be accomplished, that
reconstruction artifacts are significantly reduced with the fu-
sion of prior images, and that high-contrast details can be re-
covered from a very short scan. For example, truncation com-
pensation increased the correlation coefficient between CT and
CBCT from 0.69 to 0.79 for a fresh pelvis specimen fused with
a statistical atlas. Reconstructions from reduced scans, as short
as 90 , improved the correlation with CT from about 0.45 to
about 0.7 with a statistical atlas and 0.77 with a prior CT. Fu-
sion of data from the reduced X-ray scan with a prior model can
provide important context for reconstructing a region of change
under limited imaging conditions.

Other potential uses of hybrid reconstruction include oc-
cluded regions, e.g., where surgical tools or implants are, or
saturated regions, where attenuation cannot be detected. The
technique might also be useful in standard CT reconstruction,
and in low-dose imaging protocols.

The quality of the reconstruction depends, among other fac-
tors, on the quality of the prior model. This calls for improved
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forms of statistical anatomical atlases. The atlas used here in-
cluded a single bone structure, and was just adequate for fusion
with a more complex anatomical structure of a fresh specimen,
and inadequate for fusion with a dry bone specimen. Future de-
velopments of the atlas may study the variations of density dis-
tribution inside the bone, and include models of other tissues,
such as internal organs and soft body structures.

Independently from the imaging devices and the representa-
tion of the anatomical model, we showed hybrid reconstruction
used with an actual X-ray system, and demonstrated how it im-
proves reconstruction quality by compensating for lost informa-
tion. This is the major result of our work.
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