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ABSTRACT  
This paper introduces a general reconstruction technique for using unregistered prior images within model-based pena-
lized-likelihood reconstruction. The resulting estimator is implicitly defined as the maximizer of an objective composed 
of a likelihood term that enforces a fit to data measurements and that incorporates the heteroscedastic statistics of the 
tomographic problem; and a penalty term that penalizes differences from prior image. Compressed sensing (p-norm) 
penalties are used to allow for differences between the reconstruction and the prior. Moreover, the penalty is paramete-
rized with registration terms that are jointly optimized as part of the reconstruction to allow for mismatched images. We 
apply this novel approach to synthetic data using a digital phantom as well as tomographic data derived from a cone-
beam CT test bench. The test bench data includes sparse data acquisitions of a custom modifiable anthropomorphic lung 
phantom that can simulate lung nodule surveillance. Sparse reconstructions using this approach demonstrate the simulta-
neous incorporation of prior imagery and the necessary registration to utilize those priors. 

INTRODUCTION  
There are numerous clinical situations where repeated tomographic acquisitions are prescribed. For example in lung can-
cer treatment such scans are used both for diagnostics as well as image-guided procedures. Specifically, repeated surveil-
lance scans are used diagnostically to monitor nodule size over the course of treatment. Similarly, CT may be used in a 
Cine mode to guide a biopsy needle. In both cases, there tends to be substantial similarity between images in the acquisi-
tion sequence. Such similarities have previously been exploited in reconstruction methods as image priors for subsequent 
reconstructions (most notably in PICCS reconstructions [1,2]) from sparse data acquisitions. These sparse acquisitions 
can be angularly undersampled, limited arcs, and/or highly truncated; providing the opportunity for significant dose re-
ductions or decreased acquisition times.  

PICCS reconstruction relies on compressed sensing norms (the L1 norm being one particular choice) that are well-suited 
to ill-posed problems [3,4] due to their ability to enforce sparse reconstructions from ill-posed problems. Typically, this 
property is utilized by applying a so-called sparsifying transformation to the estimated imagery (like a spatial gradient), 
if the underlying image itself is not already a sparse entity. When prior images are utilized in a reconstruction, one would 
expect that the difference between a registered prior image and the new reconstruction is sparse – having significant val-
ues only in a region of change. (In some cases, additional sparsifying transforms are applied even though this difference 
may already be sparse.) If the prior image is not well-registered, one would expect there to be more significant differenc-
es and the prior image would have decreased utility. As such, PICCS approaches that include prior image registration 
have already been developed [5]. 

All of the approaches mentioned above seek to minimize an objective function composed of p-norm difference between 
the prior image and the estimate subject to a constraint that observed data matches the re-projected image estimate. This 
is typically applied as a linear constraint matching the log-transformed data with the re-projected estimate. While this 
approach is attractive since it strictly enforces the data match criterion, it does not recognize that different measurements 
may contain different information content. For example, it is common to presume that x-ray measurement follow a Pois-
son noise distribution. As such, the noise variance can be substantially space-variant with different “rays” possessing 
very different SNR. (Since PICCS treats all measurements equally it may be implicitly assuming a noise model that is 
homoscedastic in the log-transformed measurement space.) 

In this paper we propose an alternate reconstruction approach that maintains a measurement model that includes the pro-
jection statistics; and incorporates an image prior (with possibly unregistered imagery). The specifics of this approach 
are outlined, and applied to simulated and real acquisitions of a lung nodule phantom in the following sections.  
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METHODS 
In [6], it was recognized that a total variation constraint could alternately be considered using a penalty method. In this 
case, one would perform an unconstrained optimization on an objective function that is composed of a balance of data fit 
terms and priors. These priors may enforce various smoothness criteria on the reconstructions, or they may incorporate 
previously acquired images. We utilize such a framework in the development of our penalized-likelihood approach. A 
brief mathematical introduction of this approach follows. 
Consider a general (sparse) measurement model that relates a discretized object (μ) to mean measurements (ݕത) ݕത = ଴exp (െ݈)ܫ =  (ߤۯെ) ଴expܫ

where I0 is the number of (unattenuated) photons for each projection ray, and A is the so-called system matrix that is the 
discrete projection operator (for all angles and detector elements). One can presume an arbitrary noise model for the 
measurements; however, selecting the commonly applied Poisson model with independent measurements yields the fol-
lowing log-likelihood (dropping inconsequential constant terms) 

yi ~ Poisson ՜    ݌(ݕ௜|ߤ) = expሾെݕത௜(ߤ)ሿ ሾ௬ത೔(ఓ)ሿ೤೔௬೔!      

;ݕ)ܮ  (ߤ = (ߤ|ݕ)݌ = ∏ ே௜ୀଵ(ߤ|௜ݕ)݌ = ∏ expே௜ୀଵ ሾെݕത௜(ߤ)ሿ ሾ௬ത೔(ఓ)ሿ೤೔௬೔!  

log ;ݕ)ܮ (ߤ =෥ ෍ ௜ݕ logሾܫ଴exp(െߤۯ)ሿ௜ െ ሾܫ଴exp(െߤۯ)ሿ௜ே
௜ୀଵ   

Maximization of the log-likelihood term alone would yield the maximum likelihood estimate whereas a general pena-
lized-likelihood technique would maximize the following objective ̂ߤ =  argmaxߤ log ;ߤ)ܮ (ݕ െ  (ߤ)ܴ

where R(·) is a general penalty to enforce desirable properties in the image (e.g. a roughness penalty to control noise in 
the reconstruction). Alternately, a PICCS-type objective can be expressed mathematically as follows ̂ߤ = argminఓ ߤ)ԡશଵߙൣ െ ԡ௣(்ߤ + (1 െ ԡ௣൧ߤԡશଶ(ߙ .ݏ    ߤ࡭   .ݐ = መ݈(ݕ) 

where the objective is composed of two terms and one constraint. The first term enforces similarity between the attenua-
tion estimate and a prior (or template) volume, ்ߤ. The use of a p-norm metric and a sparsifying operator, Ψ, allows for 
significant differences between the estimate and the prior (in the sparse domain). The second term is used to balance the 
similarity of the prior image with a general image property. Typically, Ψ is chosen to be a spatial gradient and the 
second term discourages noise or image roughness. Lastly, the constraint term enforces a relation of the attenuation back 
to the measurements using a linear equality constraint. Specifically, the projection of the attenuation estimate must 
match an estimate of the line integrals (typically found by normalizing and log-transforming the data). While this estima-
tor represents a constrained optimization, we may turn this into an unconstrained optimization by replacing the constraint 
with a penalty function. Specifically, ̂ߤ = argminఓ ߤ)ԡશଵߙൣ െ ԡ௣(்ߤ + (1 െ ԡ௣ߤԡશଶ(ߙ + ߤ࡭ฮߛ െ መ݈(ݕ)ฮ൧. 
In this case, one can select γ to be arbitrarily large to approximate the constrained objective. However, we now note that 
the data consistency term can be replaced by a likelihood-based data fidelity term. Specifically, we may now propose a 
penalized-likelihood solution (now a maximization because of the likelihood) using the following modified objective 
function ̂ߤ =  argmaxߤ log ;ߤ)ܮ (ݕ െ ;ߤ)ଵܴଵߚ (்ߤ െ ;ߤ)where  ቊܴଵ   (ߤ)ଶܴଶߚ (்ߤ =  ԡશଵ(ߤ െ (ߤ)ԡ௣భܴଶ(்ߤ =  ԡશଶߤԡ௣మ  

where there are two penalties that may be chosen to match the analogous terms in the unconstrained PICCS objective. 
Two regularization parameters (β1, β 2) control the relative influence of each term. Similarly, we allow for different spar-
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sifying operators and p-norms for each penalty. We will refer to the above reconstruction technique as PI-PLE (Prior 
Image Penalized Likelihood Estimation). 

The above objective is suitable for image priors that are pre-registered; however, one may also jointly refine the image 
estimate and the registration by using the following objective that includes a registration transformation (W) and optimi-
zation of the associated registration parameters (δ). ൛̂ߤ, መൟߜ =  argmaxߤ, ߜ log ;ߤ)ܮ (ݕ െ ,ߤ)ଵܴଵߚ ;ߜ (்ߤ െ ,ߤ)where  ቊܴଵ   (ߤ)ଶܴଶߚ ;ߜ (்ߤ =  ԡશଵ(ߤ െ (ߤ)ԡ௣భܴଶ(்ߤ(ߜ)܅ =  ԡશଶߤԡ௣మ  

We will refer to this technique as PIR-PLE (Prior Image with Registration, Penalized Likelihood Estimation). In general, 
the above objective requires nonconvex optimization for p≤1. Similarly, the registration operator is likely to induce local 
minima for general objects. The nonconvexity due to the p-norm may be handled by using the graduated nonconvexity 
approach [7], where one starts with p>1 and reduces the value slowly during optimization. To simultaneously optimize 
for δ, we choose a space-alternating approach where we optimize over μ, then δ (and then repeat). While the optimiza-
tion of δ is subject to local minima, we find that there is often a reasonable capture range given a good starting estimate. 

The details of the optimization algorithm we utilize to solve the PIR-PLE objective are illustrated in Figure 1. Specifical-
ly for the optimization, we apply separable paraboloidal surrogates iterations [8,9] for fixed δ, followed by quasi-Newton 
(BFGS) or conjugate gradient iterations for fixed μ. Gradient-based optimization of δ requires differentiability of the 
PIR-PLE objective. Thus, one must be particularly careful in specifying various components of the PIR-PLE objective.  
Specifically, both the operator W, and the p-norms must be handled with some care. We have chosen to implement W as 
a kernel-based interpolator for which the gradient terms may be computed analytically. This presumes a differentiable 
kernel like b-splines or cubic kernels. The kernel-based approach is separable along each dimension, and highly paralle-
lizable. We have focused on rigid transformations and have implemented both the transformation operator and the deriv-
atives of the transformation operator with respect to the elements of δ in parallelized GPU code using nVidia’s CUDA 
libraries. Because p-norms are not, in general, differentiable at zero, we modify the norm to be quadratic within a small 
neighborhood of zero and to be a shifted p-norm outside that neighborhood such that the function and derivative match 
at the boundary.  This enforces differentiability of the entire objective. 

 
Figure 1. Flowchart representing the alternating maximization algorithm used to solve the PIR-PLE objective function for simultane-
ous estimation of the registration parameters (δ) and the attenuation volume (μ). 
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degrade the image quality in the unregistered case (note the line pairs in PI-PLE vs. PIR-PLE, especially in the angular 
undersampling case). We note that in each of these three acquisition cases the PIR-PLE objective provides a highly accu-
rate estimate of the in-plane translation with estimates being within a small fraction of a voxel. While the intentionally 
mismatched prior distorts the image data (note the oval shaped features on the right-hand side of the reconstructions that 
use prior image data); this is done in a predictable way - borrowing from the prior where data is missing and relying on 
the measurements otherwise. In particular, we see in the truncated data case that the annulus has been flattened due to 
the lack of horizontal frequencies in the acquisition in this region, and the reliance on the prior image whose annulus is 
of greater diameter. The opposite situation is found in the limited angle scenario where vertical frequencies are not ob-
tained for this region with the consequence of reconstructing something that looks like a vertically oriented elliptical 
annulus. 

A similar investigation was conducted using real data from a cone-beam computed tomography (CBCT) test bench. Fig-
ure 4 summarizes results from this investigation wherein an idealized lung nodule surveillance study was simulated. In 
this case a fully sampled CT scan of a phantom without a lung nodule is used as a prior image for reconstruction of a 
region-of-interest (ROI) short scan of the same (physically translated) phantom which now contains a lung nodule. This 
set of scans simulates the case of a patient having an initial scan with the finding of a suspicious nodule or region, who is 
then scheduled for a follow-up scan sometime in the future to assess any significant growth or change in that suspicious 
region of interest. The simplified in-plane translation of the phantom is a highly idealized version of the motion one 
would expect between the initial and follow-up scans. 

 

 

 
Figure 4. Top left: Image of the anthropomorphic chest phantom on the 
CBCT test bench. Top center: Image of phantom (flipped). Phantom 
contains simulated heart, lungs, mediastinum, lung nodules, spine and 
ribs. Top right: PLE image of phantom used as an image prior based on 
a 360° (360 angle) acquisition. Center left: PLE of a ROI short scan (99 
angles over 180° + fan). Center center: PIR-PLE of ROI short scan. 
Center right: PLE of a 360° scan. Bottom row: zoomed versions of the 
center row images about the lung nodule. The ROI is indicated by a 
green circle. The PIR-PLE translation estimate was (3.994,-3.995) vox-
els. In this case p1=1.4 and Ψ1 was the identity transform for the R1 
penalty; and p2=2 and Ψ2 was the first-order spatial difference operator 
for the R2 penalty. 
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For this study we used a chest phantom composed of a plastic torso shell that included tissue mimicking components for 
the chest wall, ribs, mediastinum, heart, and spine. Lungs were simulated using natural sponges wetted with water to 
approximate natural lung attenuation. A polyethylene sphere was used to simulate the lung nodule and was inserted into 
the interior of the natural sponge. The detector is a PaxScan 4030CB (Varian Medical Systems) with 1024, lateral, 0.388 
mm detector pixels. The system geometry is 150 cm source-to-detector and 120 cm source-to-axis of rotation. Full 2D 
scan acquisitions were comprised of 360° rotations using 360 angles. The follow-up ROI scan was achieved by digitally 
subsetting complete data to be a short scan over 220° using 99 angles (1/2 the angular sampling and a short scan). A cir-
cular ROI was specified in the reconstruction volume and dynamic digital collimation was used to simulate exposure of 
the ROI only. Noise statistics of the unattenuated beam were used to approximate the noise equivalent number of pho-
tons (approximately 6 x 104 photons) for data scaling for the Poisson model. All data were reconstructed onto a 820 x 
820, 0.4 mm voxel grid. Two test bench acquisitions were performed of the chest phantom: one with and one without the 
simulated lung nodule. The phantom was translated on the scanning platform by a few millimeters between scans. 

The reconstruction of the initial scan using a standard PLE with quadratic penalty is shown in the top right of Figure 4.  
A circle indicates the ROI for the simulated follow-up scan. A reconstruction of the sparse ROI acquisition data is shown 
in the bottom left. We note that this scan is subject to significant artifacts outside the ROI, and within the ROI the spatial 
resolution is considerably reduced due to the angular undersampling. Reconstruction using the PIR-PLE objective is 
shown bottom center. In this case, the β1 parameter was chosen to yield a good balance between the prior image and the 
data, and the β2 parameter was chosen to yield qualitatively the same apparent spatial resolution of the reconstructed 
image. For comparison, a PLE reconstruction of a complete data set is also shown at the bottom right. We note excellent 
agreement between the PIR-PLE-based sparse data reconstruction and the fully sampled PLE reconstruction. 

DISCUSSION 
We have introduced a penalized-likelihood framework that allows for incorporation of prior images. Such a tool is par-
ticularly powerful in the case of sparse data acquisitions. We identified two specific objective functions that presume 
previously registered imagery (PI-PLE) or unregistered images that are registered simultaneously with reconstruction of 
sparse data (PIR-PLE). While this approach is motivated by compressed sensing methods like PICCS [1], this technique 
also allows for sophisticated measurement modeling that includes the statistical distribution of the data. Whereas tradi-
tional PICCS approaches enforce an equality constraint that the reconstruction match the data, the proposed approach 
allows for statistically motivated weightings between different measurements based on their information content. We 
have proposed as algorithm for solving the PIR-PLE objective using an alternating minimization approach. This algo-
rithm relies on specific choices for the registration operator that ensures differentiability of the objective function.  
Preliminary results with both simulated and test bench data suggest that the algorithm can simultaneously incorporate 
information from previously acquired images and estimate the registration parameters. Moreover, there appears to be a 
substantial improvement in image quality with a significant reduction in data acquired as compared with traditional ap-
proaches that do not incorporate the prior images. While we have identified the specific case of lung nodule surveillance 
as one particular application of this reconstruction framework, one might apply this approach to any scenario where se-
quences of (possibly misregistered) tomographic data are acquired. 
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