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ABSTRACT 

Image labeling is an essential task for evaluating and analyzing morphometric features in medical imaging data. Labels 
can be obtained by either human interaction or automated segmentation algorithms. However, both approaches for 
labeling suffer from inevitable error due to noise and artifact in the acquired data. The Simultaneous Truth And 
Performance Level Estimation (STAPLE) algorithm was developed to combine multiple rater decisions and 
simultaneously estimate unobserved true labels as well as each rater’s level of performance (i.e., reliability). A 
generalization of STAPLE for the case of continuous-valued labels has also been proposed. In this paper, we first show 
that with the proposed Gaussian distribution assumption, this continuous STAPLE formulation yields equivalent 
likelihoods for the bias parameter, meaning that the bias parameter—one of the key performance indices—is actually 
indeterminate. We resolve this ambiguity by augmenting the STAPLE expectation maximization formulation to include 
a priori probabilities on the performance level parameters, which enables simultaneous, meaningful estimation of both 
the rater bias and variance performance measures.  We evaluate and demonstrate the efficacy of this approach in 
simulations and also through a human rater experiment involving the identification the intersection points of the right 
ventricle to the left ventricle in CINE cardiac data.  
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1. INTRODUCTION 
Characterization of the morphometric features of the heart to assess its clinical condition (e.g., coronary heart disease, 
arrhythmia, traumatic injury) necessitates the labeling and delineation of structures of interest. Typically, short axis 
images showing the cross section of the heart perpendicular to long axis connecting the heart apex and base are 
delineated to locate the left ventricle and the right ventricle [1].  Many approaches to the clinical and scientific analysis 
of heart motion employ human experts to: (1) delineate the epicardium (the outer contour of the left ventricle), 
(2) delineate the endocardium (the inner contour of the left ventricle), and (3) identify the two insertion points where the 
right ventricle connects to the left. Naturally, the raters will introduce errors, generate ambiguous interpretation of 
structures, and (occasionally) make careless mistakes. Hence, performance level assessment is an important aspect of 
interpreting reported structures. Of course, identification of the true labels is of central importance as well [2]. 

The Simultaneous Truth And Performance Level Estimation (STAPLE) algorithm enables fusion of labeled datasets 
created by a number of raters or automated methods [3]. The statistical approach involves maximum likelihood function 
calculation by expectation maximization (EM) algorithm [4]. The method iteratively constructs the estimated truth and 
estimated performance parameters in E-step and M-step repeatedly until convergence, which works well for volumetric 
multi-atlas multi-label process [5], in the case where the rater performance is characterized by sensitivity and specificity 
related to the probability whether he could assign a voxel with its underlying true label. 

The STAPLE algorithm can efficiently characterize multi-rater data for volumetric datasets such as the volume of the 
myocardium. However, label fusion for insertion points is not well captured by volumetric labels. The locations of the 
two RV (right ventricle) insertion points are indicated by directional vectors with continuous scalar elements in a K-
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dimensional vector space (usually K=2 in 2-D images). As a result, discrete volumetric label analysis is not a reasonable 
approximation for finding the truth and performance in continuous landmark identification. 

Previous methods have been proposed to handle a one-dimensional continuous space (a single scalar) [6], with rater 
decisions assumed to follow Gaussian distribution—a reasonable assumption for the prior distribution. However, using 
an analogous implementation of EM algorithm as in the classic STAPLE approach, the continuous version of STAPLE 
algorithm yields an equal likelihood for any bias parameter, which means that this approach cannot be used to fully 
evaluate rater performance (i.e., if bias is considered part of rater performance).   Since the identification of points in 
space represents a 2D or 3D continuous variable and since the existing approach does not handle rater bias correctly, a 
new continuous STAPLE algorithm must be developed.  

Herein, we present an extension of the expectation maximization algorithm for continuous landmark identification, with 
Gaussian distribution priors and maximum a posteriori function evaluation, in order to achieve a combined result of the 
locations of RV insertion points from various rater decisions. As we will see, by adding another prior for the 
performance parameters and performing a pre-estimation process, the rater bias will update and finally converge to a 
reasonable evaluation result. 

2. THEORY 
2.1 EM Algorithm for ML Estimation 

Suppose we have hired ܴ raters to perform the task of locating landmarks (e.g., the RV insertion points in short-axis 
CINE cardiac images). Let there be N true landmarks in a K-dimensional space. We assume each rater has constant bias 
and variance when locating all different landmarks. 

Therefore, the truth matrix is  

ࢀ ൌ ێێۏ
ۑۑےே்ڭ௜்࢚ڭଵ்࢚࢚ۍێ

ېۑ ൌ ێێۏ
ଵଵݐۍێ ଵଶݐ ڮ ڭଵ௄ݐ ڭ ڮ ௜ଵݐڭ ௜ଶݐ ڮ ڭ௜௄ݐ ڭ ڮ ேଵݐڭ ேଶݐ ڮ ۑۑےே௄ݐ

ېۑ
ேൈ௄

௜௞ݐ  א  (1)

Each rater ݆ gives a 2-D decision matrix point by point, and the 3-D ܰ ൈ ܭ ൈ ܴ decision matrix is 

௝ࡰ ൌ ێێێۏ
ۑۑۑے௝ே்ࢊڭ௝௜்ࢊڭ௝ଵ்ࢊۍێ

ېۑ ൌ ێێۏ
ۍێ ௝݀ଵଵ ௝݀ଵଶ ڮ ௝݀ଵ௄ڭ ڭ ڮ ௝݀௜ଵڭ ௝݀௜ଶ ڮ ௝݀௜௄ڭ ڭ ڮ ௝݀ேଵڭ ௝݀ேଶ ڮ ௝݀ே௄ۑۑے

ېۑ
ேൈ௄

௝௜௞ࢊ א , ݆ ൌ 1, … , ܴ (2)

Each rater's performance level is evaluated by ࣂ௝ ൌ ሼࣆ௝, ઱௝ሽ, where ࣆ௝ is a vector denoting the average bias of rater ݆ and ઱௝ is his ܭ ൈ  covariance matrix. Under a Gaussian distribution, we can model the probability density function (pdf) of ܭ
rater ݆’s decision for point ݅ as ݂൫ࢊ௝௜ห࢚௜, ,௝ࣆ ઱௝൯ ൌ ଵሺଶగሻ಼/మටୢୣ୲ ሺ઱ೕሻ ݁ିଵଶሺࢊೕ೔ିሺ࢚೔ାࣆೕሻሻ೅઱ೕషభሺࢊೕ೔ିሺ࢚೔ାࣆೕሻሻ (3)

Now with ࣂ ൌ ሼࣂଵ, … , ,௝ࣂ … ,  .simultaneously ࢀ and ࣂ ሺ௡ሻ as the result of the n-th iteration and finally getࣂ ோሽ, by EM algorithm we will updateࣂ

As developed in the classic STAPLE paper [3], the expectation of the log likelihood function, i.e.,   ܳெ௅൫ ࣂห ࣂሺ௡ሻ൯ ൌ ൫lnܧ ݂ሺࡰ, ,ࡰ|ሻࣂ|ࢀ ሺ௡ሻ൯ࣂ ൌ න lnሺ݂ሺࡰ, ሻሻಿൈ಼ࢀሻ݂ሺࣂ|ࢀ ݂൫ࡰ|ࢀ, (4) ࢀሺ௡ሻ൯݀ࣂ

is to be maximized.  Here we assume the distribution of truth ln ݂ሺࢀሻ is constant, such that it is the same as maximizing 
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න lnሺ݂ሺࢀ|ࡰ, ሻሻಿൈ಼ࢀሻ݂ሺࣂ ݂൫ࡰ|ࢀ, (5) ࢀሺ௡ሻ൯݀ࣂ

Assuming independence among different raters and among different landmarks, the first term in the integrand of (5) is 
just the Gaussian we assumed. The second term is 

݂൫ࡰ|ࢀ, ሺ௡ሻ൯ࣂ ൌ ݂൫ࢀ, ሺ௡ሻሻࣂ|ࡰሺ௡ሻ൯݂ሺࣂ|ࡰ ൌ ݂൫ࢀ|ࡰ, ׬ሻࢀሺ௡ሻ൯݂ሺࣂ ݂ሺࢀ|ࡰᇱ, ᇱሻಿൈ಼ࢀሺ௡ሻሻ݂ሺࣂ ᇱࢀ݀ ൌ ݂൫ࢀ|ࡰ, ׬ሺ௡ሻ൯ࣂ ݂ሺࢀ|ࡰᇱ, ሺ௡ሻሻಿൈ಼ࣂ ᇱൌࢀ݀ ෑ ෑ ݂൫ࢊ௝௜|࢚௜, ׬௝ሺ௡ሻ൯ࣂ ݂ ቀࢊ௝௜|࢚௜ᇱ, ௝ሺ௡ሻቁ಼ࣂ ࢚݀௜ᇱ୨୧  

(6)

The weight of each landmark can be defined as 

௜ܹሺ௡ሻሺ࢚௜ሻ ൌ ෑ ݂൫ࢊ௝௜|࢚௜, ׬௝ሺ௡ሻ൯ࣂ ݂ ቀࢊ௝௜|࢚௜ᇱ, ௝ሺ௡ሻቁ಼ࣂ ࢚݀௜ᇱ୨  

ൌ ଵሺଶగሻ಼/మටୢୣ୲ ሺ࡭೔ሺ೙ሻሻ ݁ିଵଶሺ࢚೔ି࡭೔ሺ೙ሻ࢈೔ሺ೙ሻሻ೅࡭೔షభሺ೙ሻሺ࢚೔ି࡭೔ሺ೙ሻ࢈೔ሺ೙ሻሻ (7)

where ࡭௜ሺ௡ሻ ൌ ሺ∑ ઱௝ିଵሺ௡ሻሻ୨ ିଵ
 and ࢈௜ሺ௡ሻ ൌ ∑ ઱௝ିଵሺ௡ሻ൫ࢊ௝௜ െ ௝ሺ௡ሻ൯௝ࣆ . After sufficient number of iterations, ࡭௜ሺ௡ሻ࢈௜ሺ௡ሻ ՜࡭௜ሺஶሻ࢈௜ሺஶሻ, which is the estimated true position of landmark ݅. 

This completes the so-called E-step. For the M-step, we need to update the performance parameters ࣆ௝ሺ௡ሻ and ઱௝ሺ௡ሻ in 
each iteration. From (5) we have ሼࣆሺ௡ାଵሻ, ઱ሺ௡ାଵሻሽ ൌ arg max ෍ ෍ න ln ݂൫ࢊ௝௜|࢚௜, ௝൯಼ࣂ ௜ܹሺ௡ሻሺ࢚௜ሻ࢚݀௜௝௜  (8)

For each rater, ሼࣆ௝ሺ௡ାଵሻ, ઱௝ሺ௡ାଵሻሽ ൌ arg max ෍ න ln ݂൫ࢊ௝௜|࢚௜, ௝൯಼ࣂ ௜ܹሺ௡ሻሺ࢚௜ሻ࢚݀௜௜  

ൌ arg max ෍ න ൤െ 12 ln det൫઱௝൯ െ 12 ቀࢊ௝௜ െ ൫࢚௜൅ࣆ௝൯ቁ் ઱௝ିଵ ቀࢊ௝௜ െ ൫࢚௜൅ࣆ௝൯ቁ൨಼ ௜ܹሺ௡ሻሺ࢚௜ሻ࢚݀௜௜  

ൌ: arg max  ௝ܨ

(9)

To find the maximum point of ܨ௝, take the partial derivatives and set them to zero, ∂ܨ௝∂ࣆ௝ ൌ 0, ௝∂઱௝ܨ∂ ൌ 0 

׵ ۔ۖەۖ
ۓ ௝ሺ௡ାଵሻࣆ ൌ 1ܰ ෍൫ࢊ௝௜ െ ௜ሺ௡ሻ൯௜઱௝ሺ௡ାଵሻ࢈௜ሺ௡ሻ࡭ ൌ 1ܰ ෍ሾ࡭௜ሺ௡ሻ ൅ ൫ࢊ௝௜ െ ௝௜ࢊ௜ሺ௡ሻ൯൫࢈௜ሺ௡ሻ࡭௝ሺ௡ାଵሻെࣆ െ ௜ሺ௡ሻ൯்ሿ௜࢈௜ሺ௡ሻ࡭௝ሺ௡ାଵሻെࣆ

 

(10)

Use these new parameters in E-step of next iteration for a new estimate of the truth, which is then used in calculation of 
newer parameters until convergence. Convergence is guaranteed by the nature of EM algorithm [7]. 
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2.2 Bias Update Failure 

By examining Equation (10) in detail, we see:  ࣆ௝ሺ௡ାଵሻ ൌ 1ܰ ෍൫ࢊ௝௜ െ ௜ሺ௡ሻ൯௜࢈௜ሺ௡ሻ࡭ ൌ 1ܰ ෍൫ࢊ௝௜ െ ࢚௜ሺ௡ሻ൯௜  (11)

Replacing ࣆ௝ሺ௡ାଵሻ by ଵN ∑ ௝ሺ௡ାଵሻ௜ࣆ  yields 1ܰ ෍ ࢚௜ሺ௡ሻ௜ ൌ 1ܰ ෍൫ࢊ௝௜ െ ௝ሺ௡ାଵሻ൯௜ࣆ  (12)

While the right side appears to be related to ݆, the left side is independent of ݆, which means that regardless of having 
different raters this quantity is always going to be the same after each iteration. We should also note that ࡭௜ሺ௡ሻ is actually 
not dependent on ݅. As a result, by plugging in the definition of ࡭௜ሺ௡ሻ and ࢈௜ሺ௡ሻ into Equation (11) we can deduce that 

Therefore, the first iteration (initialization) is going to determine the bias and it will not change from then on. Unless we 
are able to initialize the iteration with the correct bias, there will always be constant error from the truth. 

This phenomenon can be interpreted in two ways. Intuitively, as each rater generates his “cluster” of points by making 
multiple decisions, the relative positions of all clusters is going to form a pattern. While the pattern shape is reflected in 
the variance, which can be evaluated by the EM algorithm, the pattern position can be located anywhere in the space. 
Corresponding to any point as truth in the space, there is a set of biases, which is acting equally in giving us the 
maximum likelihood function, as long as the pattern shape is not changed. There was no assumption to determine 
whether the true point location should be within the clusters or outside of them. Mathematically, according to [8], the 
EM algorithm is guaranteed to converge to a local optimum, while here any bias indicates a constant local optimum. 
This means that any bias is equivalent in characterizing the maximum of the likelihood function. 

Since any bias will maximize the likelihood function, more assumptions are needed to further restrict the estimated bias. 

2.3 EM Algorithm for MAP Estimation 

Let us add a Gaussian prior for the bias parameter as follows 

௝ሻࣂሺ݌ ൌ ௝ሻࣆሺ݌ ൌ ଵටଶగ஢ࣆೕమ ݁ି ଵଶ஢ࣆೕమ ሺࣆೕିࣆࣆೕሻ೅ሺࣆೕିࣆࣆೕሻ
 (14)

where ࣆࣆೕ and σࣆೕ are the mean and standard deviation of rater ݆’s bias parameter. 

Now we seek to maximize the log of the a posteriori function [9-11] 

௝ሺ௡ାଵሻࣆ ൌ 1ܰ ෍൫ࢊ௝௜ െ ࢚௜ሺ௡ሻ൯௜  

ൌ 1ܰ ෍ ௝௜௜ࢊ െ ௜ሺ௡ሻܰ࡭ ෍ ઱௝ି ଵሺ௡ሻ൫ࢊ௝௜ െ ௝ሺ௡ሻ൯௜,௝ࣆ  

ൌ 1ܰ ෍ ௝௜௜ࢊ െ ௜ሺ௡ሻܰ࡭ ෍ ઱௝ି ଵሺ௡ሻ௝ ෍ ࢚௜ሺ௡ିଵሻ௜  

ൌ 1ܰ ෍ ௝௜௜ࢊ െ ௜ሺ௡ሻܰ࡭ ௜ି࡭ ଵሺ௡ሻ ෍ ࢚௜ሺ௡ିଵሻ௜  

ൌ 1ܰ ෍൫ࢊ௝௜ െ ࢚௜ሺ௡ିଵሻ൯௜ ൌ ڮ ൌ 1ܰ ෍൫ࢊ௝௜ െ ࢚௜ሺ଴ሻ൯ ൌ௜  ௝ሺଵሻࣆ

(13)

Proc. of SPIE Vol. 7962  796206-4

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/16/2014 Terms of Use: http://spiedl.org/terms



 

 

ܳெ஺௉൫ ࣂห ሺ௡ሻ൯ࣂ ൌ ܳெ௅൫ หࣂ ሺ௡ሻ൯ࣂ ൅ ln ݌ ሺࣂሻ (15)

In equation (9), function ܨ௝ now becomes 

௝ܨ ൌ ෍ න ൤െ 12 ln det൫઱௝൯ െ 12 ቀࢊ௝௜ െ ൫࢚௜൅ࣆ௝൯ቁ் ઱௝ିଵ ቀࢊ௝௜ െ ൫࢚௜൅ࣆ௝൯ቁ൨಼ ௜ܹሺ௡ሻሺ࢚௜ሻ࢚݀௜௜ ൅ ln ݌ ሺࣂ௝ሻ (16)

The E-step is the same as above but the M-step becomes 

۔ۖەۖ
ۓ ௝ሺ௡ାଵሻࣆ ൌ ሺࡵ ൅ ઱௝ሺ௡ାଵሻܰσࣆೕଶ ሻିଵሺ1ܰ ෍൫ࢊ௝௜ െ ௜ሺ௡ሻ൯௜࢈௜ሺ௡ሻ࡭ ൅ ઱௝ሺ௡ାଵሻܰσࣆೕଶ ೕሻࣆࣆ

઱௝ሺ௡ାଵሻ ൌ 1ܰ ෍ሾ࡭௜ሺ௡ሻ ൅ ൫ࢊ௝௜ െ ௝௜ࢊ௜ሺ௡ሻ൯൫࢈௜ሺ௡ሻ࡭௝ሺ௡ାଵሻെࣆ െ ௜ሺ௡ሻ൯்ሿ௜࢈௜ሺ௡ሻ࡭௝ሺ௡ାଵሻെࣆ
 (17)

so that the constant bias problem no longer exists and we can get a meaningful solution for the MAP biases. 

To perform this technique, ࣆࣆೕ, σࣆೕଶ  has to be determined in advance. Here we suggest two ways of doing this: 

1. The Weak Prior – to assign the most probable values to them. Usually the rater may not deviate too far from the 
truth and their biases are very close to the zero vector. It is reasonable to let ࣆࣆೕ be zero and σࣆೕ be large (e.g., 10 
voxels etc.). As long as σࣆೕ is large enough, the estimated result will be good. However, if one rater has too large of 
a bias, which might happen when he misunderstands the labeling instructions or deliberately performs badly, the 
weak prior will probably cause the later EM iteration to misinterpret his large bias as a large variance. 

2. The Data Adaptive Prior – to use a pre-estimation process to obtain a coarse estimate of the truth before EM 
iterations. The pre-estimation takes all rater decisions for one landmark and calculates a weighted average of its 
position iteratively, then uses the average rater deviation from the coarse truth as ࣆࣆೕ. In each iteration, the distance 
of the rater decision from the current averaged coarse truth is computed, whose inverse is going to act as a weight of 
this rater in next iteration. Therefore, if the rater constantly deviates from the majority decisions, his decision will 
not affect the coarse truth very much and his pre-estimated bias ࣆࣆೕ is going to be large, which distinguishes his 
large bias for later EM iterations. 

3. RESULTS 
3.1 Rater Performance Simulations 

To simulate the truth and rater performance, a random pattern with 50 point locations is drawn from a uniform 
independent 2-D random distribution in the range of [0, 100], which is represented in Figure 1 by circles. Meanwhile, 20 
raters with manually chosen biases and variances are generated (Table 1 shows the first 4 rater parameters), as well as 
their performances (dots in Figure 1) on identifying all of the 50 points. The performances in this experiment are actually 
the deviations of the point position vectors from the 50 generated true locations and are drawn randomly from a 2-D 
Gaussian distribution density with means and variances the same as rater parameters. For visualization purposes 4 of the 
rater performances are shown with different symbols. It is easily seen the “triangle rater” (No.3 in Table 1) has a large 
bias and therefore his decision pattern is shifted toward the upper right corner, while the “x rater” (No.4 in Table 1) has a 
large variance and therefore his decision pattern is seriously scattered around. 

Figure 2 shows the estimated truth denoted by stars via EM ML estimation as in classic STAPLE comparing to the 
estimated truth using EM MAP estimation with data adaptive prior. In ML approach, since bias is not correctly updated, 
although the estimated distribution pattern is correct, this entire pattern is shifted by a certain amount dependent on 
initialization. In MAP approach however, the bias is dragged into the iteration process and everything is updating and 
converging to a reasonable result. The estimated parameters and the mean square errors are shown in Table 2 and 3, 
from which one can also observe the obvious correction introduced by EM MAP estimation.  
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3.2 Real Data Testing on Identification of RV Insertion Points 

The high-resolution CINE MRI short axis images of the heart of a pig are obtained in a steady-state free suppression 
(SSFP) acquisition with breath holds on a commercial Philips 3T-Achieva whole body system. With 6 raters hired to 
identify 82 RV insertion points in 41 randomly selected slices, the ML MAP estimation process with data adaptive prior 
is implemented to analyze the underlying truth and rater performance level. From the 41 slices, the estimated results of 3 
of them are shown in Figure 3, where the red “x” demonstrates all rater decisions, and the green “o” shows the EM MAP 
Continuous STAPLE fusion comparing to an expert’s decision (yellow “x”) regarded as the underlying truth. The 3 
examples are selected specifically to demonstrate cases in various practical situations. In the first image, although one 
rater deviates too much to the right, the fusion corrects his mistake and the estimated truth is put on the correct spot, 
almost hitting the expert decision. In the second image, when the raters’ decisions are scattered around, fusion brings the 
result closer to the expert decision. In the last image, every rater deviates a certain amount to the same direction from the 
expert, inevitably causing the fusion also to deviate, while it is still brought close to the expert as much as possible by 
the estimation process. 

 
Figure 1. Simulated truth (circles) and rater decisions (dots) on the left and four of the raters’ decisions denoted by different 

symbols (+, square, triangle, x). There are 50 points and 20 raters simulated. The “triangle rater” (No.3 below) has a 
large bias. Therefore his decision pattern is shifted toward the upper right corner. 

 

Table 1. The first four simulated rater performance parameters (biases and variances). Rater 3 has a large bias and rater 4 
has a large variance. 

Raters 1 2 3 4 

Bias [1,2] [-3,1] [15,15] [-1,-1] 

Variance  ቂ3 00 6ቃ  ቂ4 11 1ቃ  ቂ 2 0.50.5 2 ቃ  ቂ10 22 14ቃ 
 

Proc. of SPIE Vol. 7962  796206-6

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/16/2014 Terms of Use: http://spiedl.org/terms



 

 

 
Figure 2. Estimated truth denoted by stars using EM ML estimation as in classic STAPLE (left) comparing to estimated 

truth using EM MAP estimation with data adaptive prior (right). In ML approach, the estimated distribution pattern 
seems to be correct, but is shifted to the upper right. In MAP approach, the bias gets properly estimated and everything 
is converging to a reasonable result. 

 

Table 2. Estimated first four rater performance parameters and the mean square errors in classic EM ML estimation. The 
bias is seriously deviated from the generated bias in Table 1 while the variance is quite close and characterized as a 
good approximation. 

Raters 1 2 3 4 Total MSE 

Estimated bias [-2.3151, -3.2919] [-6.2681, -4.7745] [11.6347, 9.2363] [-4.1992, -6.0098] 29.2464 

Estimated 
variance 

 ቂ 2.7596 െ0.7193െ0.7193 4.2321 ቃ  ቂ2.6768 0.56590.5659 0.6412ቃ  ቂ2.3302 0.27250.2725 2.0807ቃ  ቂ8.4825 4.59704.5970 13.1324ቃ 33.6249 

Estimated truth  47.0750 

 

Table 3. Estimated first four rater performance parameters and the mean square errors in EM MAP estimation with data 
adaptive prior. The bias is closer to the generated bias comparing to the previous result, and the MSE is much smaller, 
which corrects the mistakes in ML approach. 

Raters 1 2 3 4 Total MSE 

Estimated bias [0.9429, 1.8244] [-3.0101, 0.3419] [14.8927, 14.3526] [-0.9412, -0.8934] 2.8105 

Estimated 
variance 

 ቂ 2.7596 െ0.7193െ0.7193 4.2321 ቃ  ቂ2.6768 0.56590.5659 0.6412ቃ  ቂ2.3302 0.27250.2725 2.0807ቃ  ቂ8.4825 4.59704.5970 13.1324ቃ 33.6249 

Estimated truth  5.7861 
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