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Abstract
Prostate brachytherapy guided by transrectal ultrasound is a common treatment option for early
stage prostate cancer. Prostate cancer accounts for 28% of cancer cases and 11% of cancer deaths
in men with 217,730 estimated new cases and 32,050 estimated deaths in 2010 in the United
States alone. The major current limitation is the inability to reliably localize implanted radiation
seeds spatially in relation to the prostate. Multimodality approaches that incorporate X-ray for
seed localization have been proposed, but they require both accurate tracking of the imaging
device and segmentation of the seeds. Some use image-based radiographic fiducials to track the X-
ray device, but manual intervention is needed to select proper regions of interest for segmenting
both the tracking fiducial and the seeds, to evaluate the segmentation results, and to correct the
segmentations in the case of segmentation failure, thus requiring a significant amount of extra time
in the operating room. In this paper, we present an automatic segmentation algorithm that
simultaneously segments the tracking fiducial and brachytherapy seeds, thereby minimizing the
need for manual intervention. In addition, through the innovative use of image processing
techniques such as mathematical morphology, Hough transforms, and RANSAC, our method can
detect and separate overlapping seeds that are common in brachytherapy implant images. Our
algorithm was validated on 55 phantom and 206 patient images, successfully segmenting both the
fiducial and seeds with a mean seed segmentation rate of 96% and sub-millimeter accuracy.
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1. Introduction
Prostate cancer is a serious health concern in North America, accounting for 28% of all
newly diagnosed cancers among men in the United States while remaining among the most
fatal of cancers [1]. Efforts are continually made to diagnose prostate cancer at its early
stage and treat it effectively. One of the several treatment options available today is low
dose rate (LDR) brachytherapy, a procedure involving the permanent implantation of
numerous (~100) small radioactive sources known as seeds into the prostate. LDR
brachytherapy is a very effective means to treating prostate cancer, and has in fact become a
common choice because of its excellent long-term treatment outcomes of maximizing cancer
control while minimizing morbidity [2].

LDR brachytherapy is used to treat about 55,000 patients annually in the U.S. Although
generally popular among patients, the American Brachytherapy Society suggests there is
potential to improve prostate brachytherapy, particularly in performing intraoperative
treatment planning (ITP) and delivery [3]. Traditionally, a transrectal ultrasound (TRUS)
prostate volume study is performed a few weeks before the brachytherapy surgery to
determine an individual treatment plan for the patient. However, many alterations occur
between the planning study and the implantation procedure, including changes in prostate
shape, patient positioning, and overall setup. Brachytherapy has therefore been moving
towards ITP—i.e., a process of creating and/or updating the treatment plan inside the
operating room (OR) in order to eliminate the disadvantages of the preplanning method. A
major current limitation of ITP, however, is the difficulty in correctly, rapidly, and
automatically localizing currently implanted seeds in relation to the prostate. This prevents
the computation of current dose distribution based on existing seed positions, thereby
preventing quantitatively informed dynamic revision of the treatment plan during surgery. If
fast and accurate dose computation based on intraoperative images were available, a truly
optimized brachytherapy procedure would be possible, thereby further maximizing cancer
control and minimizing morbidity. Unlike HDR (high dose rate) brachytherapy, LDR does
not provide an opportunity for temporal modulation of the dose distribution and is totally
dependent upon accuracy of seed placement in the prostate. The localization of
brachytherapy seeds therefore plays a critical role in improving treatment for prostate cancer
patients.

Seed localization is a challenging task. While the seed positions can be estimated by the
treatment plan or by localizing the needle tips visualized in the TRUS images when
implanting the seeds into the prostate, such estimates are inaccurate for various reasons.
First, the seeds can naturally migrate in the soft tissue of the prostate. Secondly, the prostate
itself can deform due to patient movement, needle insertion, or edema caused by the
procedure. Finally, the surgeon can place seeds imprecisely during implantation. Direct
image-based seed localization is also difficult since TRUS is limited in its ability to
visualize the seeds due to noise and multipath scattering caused by the numerous seeds. In
order to overcome these obstacles, various researchers have proposed multi-modality
approaches that include X-rays to localize the seeds in relation to the prostate. However,
most of these approaches require very expensive X-ray imaging systems such as radiation
therapy simulators [4, 5] or CT scanners [6, 7] for accurate seed reconstruction, thus
requiring dedicated suites or specific setups that are not typically used for this procedure and
are prohibitive in cost. In addition, the position of the patient is very different inside the
imaging gantry compared to the position during the implant procedure, thus making the
registration between the X-ray and TRUS volumes challenging. On the other hand, Jain et
al. [8] have proposed an alternative system that uses the ubiquitous non-isocentric mobile C-
arm to complement TRUS. In their system, TRUS is used to image the prostate while 3 to 4
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C-arm X-ray shots are taken at arbitrary poses to image the seeds, all while the patient is still
positioned on the surgical table with his legs in a high lithotomy position. The three-
dimensional (3-D) seed locations are reconstructed from these two-dimensional (2-D) X-ray
images, which are subsequently registered to the TRUS prostate volume, making dynamic
dose calculation possible. In order to achieve accurate tracking of the C-arm and registration
with the TRUS frame, they mount a radiographic tracking fiducial called FTRAC [9] (see
Fig. 1) to the needle-guiding template in a mechanically calibrated position, thereby
providing a transformation between X-ray and TRUS.

The system proposed by Jain et al. [8] is very attractive as a practical solution for dynamic
dose calculation, since it is cost-effective and can be easily adopted by minimally altering
the contemporary TRUS-guided brachytherapy procedure. However, significant
improvements can be made in the workflow of their system, especially in regards to
segmentation. A key element to the described approach by Jain et al. is the fluoroscope
tracking fiducial (FTRAC), a compact image-based tracking fiducial composed of radio-
opaque beads (BBs), lines and ellipses (see Fig. 2). The FTRAC is designed to solve two
important issues for localizing seeds: 1) the estimation of the C-arm pose for seed
reconstruction and 2) registration to the prostate volume computed from TRUS images.
However, while most other portions of the system are fully automatic, current segmentation
algorithms of the FTRAC [10] and the seeds [11] require operator intervention, bringing the
entire pipeline to a halt. The reason for this is that both the FTRAC and the seeds are located
in the same X-ray field of view, and current algorithms require the operator to outline a
region of interest (ROI) each for the FTRAC and for the seeds so that these features can be
processed separately. Even with properly selected ROIs, such algorithms often need further
intervention because of automatic segmentation failure, in which case the operator has to
manually correct or entirely resegment the features. There are several alternative seed
segmentation algorithms available [12, 13], but none would eliminate the need of user
intervention since they also require the selection of an ROI in this framework. Overall, these
drawbacks inhibit the workflow of ITP, which is problematic in the OR where time is of
critical importance.

In this paper, we propose an ROI-free segmentation of both the radiographic tracking
fiducial and the seeds. The purpose of this work is two-fold: 1) to accomplish fully
automatic pipelining from image acquisition to seed reconstruction by removing the
requirement of selecting ROIs, and 2) to minimize manual intervention caused from
automatic segmentation failures. Although we focus on the segmentation of the FTRAC in
this paper, our methods can be easily applied to various radiographic tracking fiducials that
use points, lines, or conics [14, 15].

2. Methods
Our proposed algorithm (see Fig. 3) takes as input a single X-ray grayscale image and
outputs the equations of the lines, the 2-D image coordinates of the points, and the equations
of the conics (note that the FTRAC has 3 parallel lines, 9 BBs, and 2 ellipses) as well as the
2-D image coordinates of the brachytherapy seeds. In cases when there are overlapping
seeds in a projection view, the algorithm automatically classifies them as overlapping and
outputs separated image coordinates. If desired, the resulting segmentation can be overlaid
on the input image for visualization (see Fig. 4). There are several assumptions made
regarding the X-ray image, all of which are practical in the clinical setting: 1) the X-ray
image has been corrected for geometric image distortion caused by the X-ray image
intensifier, 2) the FTRAC and seeds are fully visible within the X-ray field of view (FOV),
3) the FTRAC appears to the right of the seeds without overlapping them, 4) the FTRAC is
oriented upright, and 5) the TRUS probe is retracted and therefore not located in the FOV.
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Our algorithm was tested on Palladium-103 seeds which tend to appear small and oval in X-
ray.

2.1. Morphological image processing
As mathematical morphology [16] has proven fast and effective for segmenting various
features such as points and edges, we first review morphological operations that are
frequently applied to both binary and grayscale images in our segmentation process. The
following four translation invariant morphological operations are especially important,
forming a basis for other morphological operations. In these definitions, f is the input image
and B is the structuring element.

(1)

(2)

(3)

(4)

Erosion and dilation can be described as nonlinear shape filters that replace a pixel with the
minimum and maximum, respectively, of its neighborhood as indicated by a shaped
structuring element. Opening and closing are standard combinations of erosion and dilation
that are often used for filtering by shape.

There are also more advanced morphological operations used in our algorithm:

(5)

(6)

(7)

(8)

Conditional dilation is a stepwise region growing process, using repeated incremental
dilations to grow the marker image fm into the mask image f (note that every pixel in fm

must have a value less than or equal to that in f). It also provides a convenient means to
describe morphological reconstruction, which is the end result of continuous conditional
dilations. Top-hat is an operation involving the subtraction of an image by its opening, and
is used to enhance contrast in an image. It can also be used along with reconstruction, hence
top-hat by reconstruction, to provide more specific contrast depending on the structuring
element. Fig. 5 shows an example illustrating conditional dilation and reconstruction. Note
that a reconstructed image by definition is equivalent to an image after numerous conditional
dilations. However, the outputted reconstructed image is not necessarily equivalent to the
inputted mask image. This is related to the nature of the min function in conditional dilation.
In areas where the mask image f is less than the dilation ψδ(fm), the mask image is chosen
and thus reproduced; in other areas, the dilation is chosen rather than the mask and thus
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appears differently from the mask. Fig. 6 shows an example of top-hat and top-hat by
reconstruction. Note that these two operations often produce very different results.

The choice of structuring element (i.e., its size and shape) in these morphological operations
depends on the object at hand. Since object size can vary depending on resolution and scale,
the size of the structuring element must also adjust accordingly. However, once resolution
and scale are fixed, the size of the structuring element may likewise remain fixed. Since
object shape is not dependent on resolution or scale, the shape of the structuring element
may remain constant regardless of these factors.

2.2. FTRAC Lines and BBs
The FTRAC has a fixed structure that can be exploited; in particular, the 9 FTRAC BBs are
positioned by design coincidently on top of the 3 parallel FTRAC lines. This becomes the
basis for our approach of segmenting the lines and BBs simultaneously.

The first objective is to obtain a clean binary image of the FTRAC BBs. To do so, we
perform a top-hat by reconstruction operation using a disk-shaped structuring element on the
complemented X-ray image and then binarize the image using Otsu’s threshold [17] (see
Fig. 7a). The connected components [18] in the resulting binary image are then analyzed by
properties such as area (i.e. the number of pixels in a connected region), eccentricity,
solidity, and location to filter out objects that are not BBs (such as the implanted
brachytherapy seeds). The 9 FTRAC BBs are distinguished from the majority of seeds and
other remaining structures in the image due to their larger size, rounder shape, and location
to the right side of the image. The result is a binary image containing the FTRAC BBs and
very few if any remaining false detections (see Fig. 7b).

Next, the FTRAC BBs are differentiated from false detections by the fact that they lie on
lines that are oriented roughly in the vertical direction. To do this, the Hough transform [19]
is applied to create a list of lines that pass through the pixels of the detected regions, sorted
by their line strength. The FTRAC lines are always among the strongest lines output by the
Hough transform since the BBs are large in size and since there are few false detections. The
FTRAC lines are further distinguished because they comprise three lines that are parallel,
roughly vertical, and are on the right side of the image (see Fig. 7c). Since the Hough
transform parameter space is fairly coarse (to reduce computation time), the three line
positions are further refined. In particular, the three lines are fit using least squares to line
edges produced from a thresholded top-hat operator using a vertical structuring element
applied to the complemented source image (see Fig. 7d). This process yields three precise
equations for the three FTRAC lines appearing in the source image.

Given the FTRAC lines, false BB detections are removed by applying morphological
reconstruction to the binary image (see Fig. 7b) using the intersections with the detected
FTRAC lines as the marker image. The centroids of the resulting connected components
give the estimated positions of the 9 FTRAC BBs.

2.3. FTRAC Ellipses
Segmentation of the FTRAC ellipses is much easier given knowledge of the positions of the
FTRAC lines and BBs for two reasons: 1) a rough estimate of the regions of the FTRAC
ellipses can be gained from the FTRAC lines and BBs, and 2) the FTRAC ellipse edges can
be distinguished from the FTRAC line edges. Still, determining the equations of the FTRAC
ellipses is still a challenging task as ellipse detection in itself is still an ongoing research
field.
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Our first objective in ellipse detection is to obtain a binary image containing the ellipse
edges. Naïve application of the Canny edge detector [20] yields double edges rather than a
desired single edge since the ellipse boundaries are spike edges rather than step edges.
Instead, we apply Otsu’s threshold to the result of a top-hat operation using a square
structuring element on the complemented input image (see Fig. 8a). Further image
processing follows, including 1) removing the edge pixels within a small range of the middle
FTRAC line since it passes through the center of the two ellipses and thus interferes with
ellipse detection, 2) filtering by area and shape using an opening with a square structuring
element to remove spurious non-ellipse edges, and 3) thinning the edges of the binary
image, which reduces complexity of ellipse detection by refining edges to have the width of
a single pixel (see Fig. 8b). These operations and their corresponding parameters are applied
uniformly to all images.

At this stage, we have a binary image containing thinned FTRAC ellipse edges as well as a
few remaining false edges. From here, we estimate an approximate region for each of the
two FTRAC ellipses so an ellipse detection algorithm can subsequently determine the
equations of the two ellipses separately. To do so, we exploit the now known positions of
the FTRAC BBs to define an outer boundary around the ellipses. A dividing line between
the two ellipse regions is then found by a two step process: first, by randomly positioning
lines parallel and in between the now known outermost FTRAC lines to search for lines with
four intersections, presumably two intersections per ellipse; and second, by finding the
average point between the two innermost intersections out of the four total intersections.
Such an average point then defines a horizontal line to separate the two ellipse regions.

Just as with lines, there exists a Hough transform for detecting ellipses. However, the
generalized Hough transform is impractical for this application since it requires a large
amount of memory. As an alternative, we used an ellipse detection algorithm based on
random sample consensus (RANSAC) [21], which is a technique to fit instances of a model
(in our case, ellipses) to data even in the presence of numerous outliers. The RANSAC
framework requires code for a model fitting method and an error distance measurement,
both of which already exist in the case of ellipses. We therefore implemented our RANSAC-
based ellipse detection algorithm with the aid of pre-existing code, including the numerically
stable ellipse fitting algorithm developed by Halir and Flusser [22] and the point-to-ellipse
distance calculation described by Xie and Ohya [23]. Using edge pixels selected within each
of the previously estimated FTRAC ellipse regions, our ellipse detection algorithm then
determines the equations of the two FTRAC ellipses.

2.4. Seeds
Segmentation of the FTRAC projection elements simplifies seed segmentation because the
seeds can be distinguished from potentially similar appearing features of the FTRAC, such
as the BBs. However, seed segmentation at this point is not trivial because: 1) other objects
in the entire field of view can appear as seeds, and 2) seeds can overlap one another in the
image making it difficult to identify their locations.

To segment the seeds we first obtain a binary image of the seeds by thresholding the top-hat
by reconstruction of the complemented image using a disk-shaped structuring element (see
Fig. 9a). We chose a disk-shaped structuring element over a rectangular-shaped one since
seeds can appear in any orientation. After removing the FTRAC region using a bounding
quadrilateral determined by the FTRAC BBs and lines, we are left with a binary image of
the seeds and some spurious seed-like artifacts (see Fig. 9b). To remove these false
positives, we take advantage of the fact that seeds are typically positioned close to one
another. Therefore objects that are greater than an empirically determined threshold distance
from the densest seed region are assumed to be false positives and removed from the binary
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image. Such spurious detections are rare (and we do not see such an artifact in Fig. 9b)
because the densest objects in the image are usually associated with either the seeds or the
FTRAC BBs; but occasionally the urethral catheter used during surgery bends in such a way
as to produce an artifact (see Fig. 13b), and this step is typically effective in removing it.

At this point we have a binary image comprising only seeds, but some of these seeds are
overlapping. We identify overlapping seeds based on the following physical principle.
Assume a single seed with uniform attenuation coefficient μ is placed in a radio-transparent
medium. According to Beer’s Law,

where I(x, y) is the image intensity at position (x, y), I0 is the original X-ray intensity, and z
is orthogonal to the image plane along the line of projection. We can rearrange this equation
to obtain:

Here, V is the volume of a single seed and is clearly constant irrespective of the projection
direction. Moreover, if there are n seeds in the projection, then the total volume is nV, and
the resulting value to the double integral is nμV. Therefore the calculation of

 over each connected seed region of the image can serve as a metric for
identify overlapping seeds, with the resulting value being constant for a single seed, double
the constant for two overlapping seeds, triple for three seeds, and so forth.

There are several issues to consider when implementing this principle. First, seeds are not
actually placed in a radio-transparent medium as described above since the patient anatomy
surrounding the seeds has some degree of radio-opaqueness. Moreover, we generally do not
know the value of the source intensity I0. Nonetheless, the complemented top-hat by
reconstruction that was previously calculated can effectively solve these two issues and

represent  in this strategy. This is made possible since top-hat by reconstruction not
only enhances contrast but removes nearly all background effects in the process. As a result,
this emulates a normalized projection of seeds through a radio-transparent medium,
evaluating to 1 at positions (x, y)where there is no seed and a value between 0 and 1 where
there is a seed (see Fig. 9c). Another issue to consider is that the image is digital, so rather
than calculate a double integral, we calculate a double summation. Finally, we also do not
know the actual value of μV. However, this value can be estimated by taking the median
value of this metric among all the connected regions, since in general the vast majority of
regions are single seeds. Therefore, all seeds visible from regions with a metric value greater
than a defined threshold are considered overlapped seeds, and these indications are included
as an output of the algorithm.

The final step is to determine the positions of the individual seeds identified above to be in
overlapping regions. We use the facts that palladium seeds in X-ray are small and appear
Gaussian shaped in intensity (see Figs. 9d and 9e), and that the k-means [24] clustering
algorithm works particularly well with Gaussian distributed data. Briefly, the k-means
algorithm takes an array of data values (which might be vectors) as input and, given a user-
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specified number of clusters, outputs the cluster means and the cluster classification for each
data point. In our case, each pixel of a particular overlapping region is set up as a data point
multiple times according to the intensity of that pixel. For example, if pixel (50,100) has
intensity value of 128 in 256-grayscale, there would be 128 instances of the data point
(50,100) in the input to k-means. The previously described metric also provides a good
estimate for the number of seeds n found in an overlapping region and is therefore used as
the number of clusters input to the k-means algorithm. The cluster means determined by k-
means are the estimated positions of seeds found in overlapping regions. The positions of
the remaining seeds found in non-overlapping regions are calculated by each region’s
centroid (see Fig. 9f).

Figs. 10–13 demonstrate a second example of the steps in our algorithm, this time for a
clinical case that is also presented in our results.

3. Results
The algorithm was tested on 55 phantom and 206 clinical images. X-ray images were taken
using an OEC 9600 (phantom images) and an OEC 9800 (clinical images) using an analog
NTSC video output with an image size of 720×480 pixels and a pixel resolution of 0.44 mm
× 0.44 mm. Although it is possible to use digital DICOM images, they are not universally
supported in all C-arms and generally cannot be retrieved quickly in the OR.

The outputs of the algorithm were compared to manually corrected automatic segmentations
of the FTRAC and the seeds. The manually corrected segmentation of the FTRAC was first
computed using an automatic algorithm requiring an ROI [10]. Manual corrections followed,
with the BBs segmented by choosing the nearest darkest points to the user’s selected points,
the lines by performing least squares fitting of the 5 points per line that the user selects, and
the ellipses by least squares fitting of the 7 points per ellipse that the user selects. As with
the FTRAC, the manually corrected segmentation of the seeds was first computed by an
automatic algorithm requiring an ROI [11], and then followed by any manual corrections.
All manual segmentations were done by a well trained operator who had hundreds of cases
of experience segmenting the FTRAC and seeds. In the most difficult cases where it is
unclear whether a seed is overlapped, multiple poses were examined to verify the correct
manual segmentation. Automatic segmentations of both the FTRAC and the seeds in the
proposed algorithm required 5 seconds per image on average when running on a PC with a
2.33 GHz Intel Core 2 Duo processor.

Differences between manually corrected and automatic segmentations of the FTRAC are
included in Tables 1–4 and were calculated as follows. Let the subscripts m and a represent
the manually corrected and automatic segmentations, respectively. BB segmentation
differences are calculated using the Euclidean distance between the two BB coordinates,
(xm, ym) and (xa, ya). For line segmentation differences, let ρ and θ represent the parameters
for the equation of a line, such that

The difference in perpendicular distance to origin is |ρm − ρa| and the difference in angle is |
θm − θa|. For ellipse segmentation differences, let h, k, a, b, θ be the parameters for the
equation of an ellipse, such that
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The difference in center position is calculated as , the difference in
major axis is |am − aa|, the difference in minor axis is |bm − ba|, and the difference in
orientation is |θm − θa|. Finally, for pose estimation differences, pose is calculated from the
FTRAC segmentations using the pose recovery mathematics provided by Jain et al. [9] and
is given in the homogeneous form

where rij represents entries in the rotation matrix R, and ti represents entries in the

translation vector T. Difference in rotation angle is thus computed as ,
and translation difference is computed as |tm − ta| for each of the three axes.

3.1. Phantom Experiments
A phantom was created with gelatin and implanted with 5 different seed configurations
comprising 20, 40, 60, 80, 100, and 120 seeds, respectively. A total of 55 images (10 images
for 20 seeds and 9 images for the other cases) were taken at various C-arm poses as would
be done in a clinical setting (see Fig. 4).

For FTRAC segmentation, our algorithm was able to segment 53 of the 55 distortion
corrected phantom images successfully, resulting in a 96.4% success rate. We define
successful segmentation here as having less than 2 degrees difference in rotation angle
compared to manually corrected segmentation, using pose as the standard since it is a simple
unifying metric for all the feature segmentations of the FTRAC. Moreover, current
reconstruction algorithms can handle pose errors of less than 2 degrees with greater than
97.5% success rate [25]. Segmentation failure can therefore result either by failing to
produce segmentation outputs for all features, or by inaccurately segmenting features so
large differences in rotation angle occur. A sample result is shown in Fig. 4, and differences
in the successful automatic FTRAC segmentations of the phantom images and their
manually corrected counterparts are shown in Tables 1–4.

For seed segmentation, our algorithm detected 3485 seeds while there were 3629 seeds.
3479 detected seeds from our algorithm matched to the manually corrected seeds, resulting
in a 95.9% seed detection rate and a 0.2% false positive rate. More specific results are
recorded in Table 5.

3.2. Clinical Study
A total of 206 patient images were collected from 7 patients under the Institutional Review
Board’s approved protocols at the Johns Hopkins Hospital. For all patients, Palladium-103
seeds (Theragenics®, GA, United States) were implanted. The X-ray images were taken at
various C-arm poses, and the number of implanted seeds varied from 22 to 84 seeds (see
Fig. 10).

44 of the 206 clinical images were not properly taken with the complete FTRAC in the field
of view, therefore failing to satisfy one of the assumptions of our algorithm. Of the
remaining 162 images, 143 FTRAC segmentations were successful resulting in an 88.3%
success rate. A sample result is shown in Fig. 10, and quantitative differences between
successful automatic and manually corrected segmentations are also shown in Tables 1–4
within the row or column labeled “Clinical”.
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For seed segmentation, 13 among the 143 images with successful FTRAC segmentations
were improperly taken with the TRUS probe in the field of view, being useful for FTRAC
segmentation development but inappropriate for seed segmentation evaluation.
Consequently, in the remaining 130 images, our algorithm detected 7118 seeds while there
were 7014 seeds. 6936 detected seeds in our algorithm matched to the manually corrected
segmented seeds, resulting in a 98.9% seed detection rate but a 2.6% false positive rate.
More specific results are also recorded in Table 5.

4. Discussion and Conclusion
We have developed an algorithm to simultaneously segment the FTRAC and the seeds while
effectively identifying and separating overlapped seeds. The end result is a pipelined seed
reconstruction system for prostate brachytherapy and minimized manual intervention caused
by segmentation failures.

With the addition of this algorithm, processing begins immediately after image acquisition,
so the steps of distortion correction, FTRAC segmentation, seed segmentation, and pose
estimation are automatically pipelined. Once three images are acquired, seed reconstruction
(using a technique described elsewhere [25]) completes the pipeline so that dose distribution
calculations can be obtained. All computations are easily completed within the tens of
seconds it takes for the technician to rotate the C-arm to the proper pose for acquiring the
next X-ray image.

Although the algorithm fulfills its purpose, there are a few items that require caution. First,
this algorithm uses the FTRAC fiducial, which is sensitive to segmentation differences along
the depth (z) direction (see Table 4) and is not yet commonly used in brachytherapy
procedures. However, since most fiducials are likewise composed of lines, BBs, and/or
ellipses, there is high confidence that the fiducial segmentation techniques used in this
algorithm can be generalized to other fiducials. Secondly, our algorithm was only tested for
implants of Palladium-103 seeds, not for implants of Iodine-125 seeds that are also
commonly used in many clinics. Since iodine seeds appear larger and more rectangular than
palladium seeds under X-ray, it is unknown whether our algorithm will show similar
segmentation performance on iodine seeds. However, it is important to note that the theory
for segmenting palladium seeds and iodine seeds is similar, and the general steps of
morphological processing, calculating the double summation, and applying k-means would
likely be applicable to iodine seeds also. Finally, while this algorithm is able to resolve most
overlapping seeds in projection images, it is unable to completely identify every seed in the
image, especially in cases where one seed completely hides another. However, there are
many existing matching-based [25, 26] and tomosynthesis-based [5, 27] reconstruction
algorithms that can handle this “hidden seed” problem as well as the potential issue of
reconstructing images with differing number of detected seeds.

A few algorithms have already been proposed for seed segmentation. Tubic et al. [12] have
proposed a seed segmentation algorithm similarly based on morphological processing while
also resolving overlapped seeds. However, there are several key differences between our
work and theirs, including the choice in automatic threshold selection, overlapped seed
analysis, and approach for resolving overlapped seeds. While we apply Otsu’s threshold, a
double summation metric, and k-means, Tubic et al. uses the bidimensional entropy method,
analysis by connected region properties, and simulated annealing. Our work has a higher
seed detection rate than their algorithm, boasting higher than a 96% detection rate compared
to their 92% detection rate. Su et al. [13] have also proposed a seed segmentation algorithm.
In their work, they have resolved overlapped seeds through a simulation study using
Gaussian classifiers and geometric analysis of clusters. Although they have done extensive
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work on simulation and phantom studies, they have not presented any clinical results.
Moreover, they present segmentation and cluster analysis time of 1 minute per projection.

While our algorithm is not perfect, it certainly improves the current workflow. At their
worst, previous algorithms would require the operator to travel back and forth from C-arm to
console, impeding with the multiple responsibilities of operating the C-arm, specifying
ROIs, inspecting the results, and manually correcting segmentations, which can take as
much as several additional minutes in the OR. Even at their best, they would still require the
operator to divert attention away from orienting the C-arm and towards managing ROIs on
the computer. On the other hand, at its best, our algorithm would allow the operator to focus
almost exclusively on the C-arm, only requiring him to take a glance from his position at the
C-arm to verify the results, and being limited only by his speed in C-arm operation. Even at
its worst, the operator always has the option to take another X-ray image at a slightly
adjusted C-arm position to allow the pipeline another chance to run successfully, or he can
manually correct segmentation errors as would be needed in the case of failure regardless of
segmentation algorithm.

We have presented our work for simultaneously segmenting the FTRAC and brachytherapy
seeds. Through innovative use of image processing techniques, our method is able to give
satisfactory results for both FTRAC and seed segmentation. Moreover, image acquisition
and preprocessing based on X-ray is pipelined without need for manual intervention, saving
crucial time in the OR and improving dynamic dosimetry system performance.

Acknowledgments
This work was supported by grants DoD W81XWH-05-1-0407, NIH/NCI 2R44CA099374, and NIH/NCI
1R01CA151395.

References
1. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA: A Cancer Journal for Clinicians.

2010:60. (published online: Jul. 7, 2010, doi: 10.3322/caac.20073).

2. Koukourakis G, Kelekis N, Armonis V, Kouloulias V. Brachytherapy for prostate cancer: a
systematic review. Advances in Urology. 2009

3. Nag S, Ciezki JP, Cormack R, Doggett S, DeWyngaert K, Edmundson GK, Stock RG, Stone NN,
Yu Y, Zelefsky MJ. Intraoperative planning and evaluation of permanent prostate brachytherapy:
Report of the American Brachytherapy Society. International Journal of Radiation Oncology
Biology Physics. 2001; 51(5):1422–1430.

4. Narayanan S, Cho PS, Marks RJ. Fast cross-projection algorithm for reconstruction of seeds in
prostate brachytherapy. Medical physics. 2002; 29(7):1572. [PubMed: 12148740]

5. Tutar IB, Managuli R, Shamdasani V, Cho PS, Pathak SD, Kim Y. Tomosynthesis-based
localization of radioactive seeds in prostate brachytherapy. Medical physics. 2003; 30(12):3135.
[PubMed: 14713080]

6. Kaplan ID, Meskell P, Oldenburg NE, Saltzman B, Kearney GP, Holupka EJ. Real-time computed
tomography dosimetry during ultrasound-guided brachytherapy for prostate cancer. Brachytherapy.
2006; 5(3):147–151. [PubMed: 16864065]

7. Fuller DB, Jin H. Computed tomography-ultrasound fusion brachytherapy: Description and
evolution of the technique. Brachytherapy. 2007; 6(4):272–279. [PubMed: 17964222]

8. Jain AK, Deguet A, Iordachita I, Chintalapani G, Blevins J, Le Y, Armour E, Burdette EC, Song D,
Fichtinger G. Intra-operative 3D guidance in prostate brachytherapy using a non-isocentric C-arm.
Lecture notes in computer science. 2007:4792–4799.

9. Jain AK, Mustafa T, Zhou Y, Burdette EC, Chirikjian GS, Fichtinger G. FTRAC—A robust
fluoroscope tracking fiducial. Medical physics. 2005; 32(10):3185. [PubMed: 16279072]

Kuo et al. Page 11

Med Eng Phys. Author manuscript; available in PMC 2013 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



10. Vikal S, Jain AK, Deguet A, Song D, Fichtinger G. TU-EE-A3-03: Automated Segmentation of
Radiographic Fiducials for C-Arm Tracking. Medical physics. 2006; 33(6):2208.

11. Vikal S, Jain AK, Deguet A, Song D, Fichtinger G. WE-C-330A-03: Seed Segmentation in C-Arm
Fluoroscopy for Brachytherapy Implant Reconstruction. Medical physics. 2006; 33(6):2229.

12. Tubic D, Zaccarin A, Pouliot J, Beaulieu L. Automated seed detection and three-dimensional
reconstruction. I. Seed localization from fluoroscopic images or radiographs. Medical physics.
2001; 28(11):2265. [PubMed: 11764031]

13. Su Y, Davis BJ, Herman MG, Robb RA. Prostate brachytherapy seed localization by analysis of
multiple projections: Identifying and addressing the seed overlap problem. Medical physics. 2004;
31(5):1277. [PubMed: 15191320]

14. Ji Q, Costa MS, Haralick RM, Shapiro LG. An Integrated Linear Technique for Pose Estimation
from Different Geometric Features. International Journal of Pattern Recognition and Artificial
Intelligence. 1999

15. Siddon RL, Barth NH. Stereotaxic localization of intracranial targets. International Journal of
Radiation Oncology, Biology, Physics. 1987; 13(8):1241–1246.

16. Haralick RM, Sternberg SR, Zhuang X. Image Analysis Using Mathematical Morphology. IEEE
Transactions on Pattern Analysis and Machine Intelligence. 1987; (4):532–550. PAMI-9.
[PubMed: 21869411]

17. Otsu N. A threshold selection method from gray-scale histogram. IEEE transactions on systems,
man and cybernetics. 1978; 8:62.

18. Haralick, RM.; Shapiro, LG. Reading, Mass. Addison-Wesley Pub. Co.; 1992. Computer and robot
vision.

19. Ballard DH. Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition.
1981; 13(2):111.

20. Canny J. A Computational Approach to Edge Detection. IEEE Transactions on Pattern Analysis
and Machine Intelligence. 1986; (6):679–698. PAMI-8. [PubMed: 21869365]

21. Fischler MA, Bolles RC. Random sample consensus: a paradigm for model fitting with
applications to image analysis and automated cartography. Communications of the ACM. 1981;
24(6):381–395.

22. Halir R, Flusser J. Numerically Stable Direct Least Squares Fitting of Ellipses. Proc. Int. Conf. in
Central Europe on Computer Graphics. 1998

23. Xie Y, Ohya J. Efficient detection of ellipses from an image by a guided modified RANSAC.
Proceedings of SPIE. 2009

24. Seber, GAF. Multivariate observations. Hoboken, N.J.: Wiley-Interscience; 2004.

25. Lee J, Labat C, Jain AK, Song DY, Burdette EC, Fichtinger G, Prince JL. REDMAPS: Reduced-
dimensionality matching for prostate brachytherapy seed reconstruction. IEEE Transactions on
Medical Imaging. 2011; 30(1):38–51. [PubMed: 20643600]

26. Kon RC, Kumar Jain A, Fichtinger G. Hidden seed reconstruction from C-arm images in
brachytherapy. 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro. 2006

27. Lee J, Liu X, Jain AK, Song DY, Burdette EC, Prince JL, Fichtinger G. Prostate Brachytherapy
Seed Reconstruction With Gaussian Blurring and Optimal Coverage Cost. IEEE Transactions on
Medical Imaging. 2009; 28(12):1955–1968. [PubMed: 19605321]

Kuo et al. Page 12

Med Eng Phys. Author manuscript; available in PMC 2013 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
Phantom setup of the FTRAC. (a) Lateral view of the FTRAC setup. (b) Setup with non-
isocentric mobile C-arm.
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Fig. 2.
(a) FTRAC attached to the mounting bridge. (b) FTRAC mounted on needle template. (c) X-
ray image of the FTRAC.
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Fig. 3.
Flowchart of segmentation algorithm.
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Fig. 4.
Sample phantom experiment segmentation. (a) Inputted original X-ray image. (b) Outputted
segmentation of FTRAC lines (green), BBs (red dots), and ellipses (blue) as well as single
(magenta dots) and overlapping (cyan circles) seeds overlaid on X-ray image.
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Fig. 5.
Grayscale examples of conditional dilation (using a 3×3 square structuring element) and
reconstruction. (a) marker image, fm. (b) mask image, f. (c) image after 50 conditional

dilations, . (d) image after 100 conditional dilations, . (e) image after 150

conditional dilations, . (f) reconstructed image, rB(fm|f).
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Fig. 6.
Grayscale examples of top-hat and top-hat by reconstruction (using a 50×50 square
structuring element). (a) original image, f. (b) image after opening, ψδ(ψε(f)). (c) image
after top-hat, f − ψδ(ψε(f)). (d) reconstructed image of opening, rB(ψδ(ψε(f))|f) (e) image
after top-hat by reconstruction, f − rB(ψδ(ψε(f))|f).
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Fig. 7.
Sample phantom experiment FTRAC lines and BBs segmentation. (a) Binary BB image
after applying Otsu’s threshold. (b) Binary BB image after binary image processing. (c)
FTRAC lines (green) selected from among roughly vertical Hough transform lines (yellow).
(d) FTRAC lines better resolved by least squares fitting of detected vertical line edges.
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Fig. 8.
Sample phantom experiment FTRAC ellipses segmentation. (a) Binary ellipse edges image
after applying Otsu’s threshold. (b) Binary ellipse edges image after binary image
processing.
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Fig. 9.
Sample phantom experiment seeds segmentation. (a) Binary seeds image after applying
Otsu’s threshold. (b) Binary seeds image after removing FTRAC. (c) Magnified
complemented top-hat by reconstruction used to calculate metric for seed classification. (d)
Magnified image of seeds with an example of overlapping seeds in rectangle. (e) Gaussian-
like intensity distribution of overlapped seeds in rectangle of (d). (f) Magnified image of
final seed segmentation.
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Fig. 10.
Sample clinical study segmentation. (a) Inputted original X-ray image. (b) Outputted
segmentation of FTRAC lines (green), BBs (red dots), and ellipses (blue) as well as single
(magenta dots) and overlapping (cyan circles) seeds overlaid on X-ray image.
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Fig. 11.
Sample clinical study FTRAC lines and BBs segmentation. (a) Binary BB image after
applying Otsu’s threshold. (b) Binary BB image after binary image processing. (c) FTRAC
lines (green) selected from among roughly vertical Hough transform lines (yellow). (d)
FTRAC lines better resolved by least squares fitting of detected vertical line edges.
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Fig. 12.
Sample clinical study FTRAC ellipses segmentation. (a) Binary ellipse edges image after
applying Otsu’s threshold. (b) Binary ellipse edges image after binary image processing.
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Fig. 13.
Sample clinical study seeds segmentation. (a) Binary seeds image after applying Otsu’s
threshold. (b) Binary seeds image after removing FTRAC. (c) Magnified complemented top-
hat by reconstruction used to calculate metric for seed classification. (d) Magnified image of
seeds with an example of overlapping seeds in rectangle. (e) Gaussian-like intensity
distribution of overlapped seeds in rectangle of (d). (f) Magnified image of final seed
segmentation.
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Table 1

BB segmentation differences [root mean square (mm)].

BB # Phantom Clinical

1 0.2699 0.2431

2 0.3000 0.2464

3 0.2658 0.2405

4 0.2650 0.2635

5 0.2356 0.2332

6 0.2496 0.2616

7 0.1965 0.2759

8 0.1905 0.3038

9 0.1625 0.2481
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Table 2

Line segmentation differences (mean ± std).

Data Line # Distance (mm) Angle (degrees)

Phantom

1 0.3252 ± 0.2194 0.1314 ± 0.1114

2 0.4521 ± 0.5130 0.2464 ± 0.2431

3 0.6321 ± 0.4625 0.2304 ± 0.2077

Clinical

1 0.4260 ± 0.3798 0.2436 ± 0.2002

2 0.4037 ± 0.3428 0.2566 ± 0.1928

3 0.5269 ± 0.4018 0.2916 ± 0.2221
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Table 4

Pose estimation differences (mean ± std).

Data Rotation angle (degrees) x (mm) y (mm) z (mm)

Phantom 0.3362 ± 0.2277 0.0698 ± 0.0481 0.0623 ± 0.0551 1.6546 ± 0.9500

Clinical 0.3965 ± 0.3228 0.0904 ± 0.0674 0.0925 ± 0.1316 2.1118 ± 2.7820
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Table 5

Seed segmentation results.

Data Patient Number of
Seeds

Detection Rate False Positive Rate

Phantom
Phantom

20 98.1% 0.6%

40 97.8% 0.3%

60 97.3% 0.2%

80 95.5% 0.0%

100 94.9% 0.0%

120 95.4% 0.3%

Phantom Overall - 95.9% 0.2%

Clinical

1

22 95.4% 3.7%

44 99.3% 2.3%

65 98.6% 2.7%

66 98.9% 2.0%

2

39 99.4% 2.0%

82 98.9% 3.0%

84 97.6% 2.9%

3

33 99.6% 5.0%

67 98.8% 3.0%

70 99.0% 4.7%

4

35 99.2% 4.1%

68 99.7% 3.3%

77 98.7% 1.6%

5

24 100.0% 0.8%

48 98.3% 1.7%

53 99.0% 1.3%

6

33 98.5% 0.8%

61 99.8% 0.7%

66 99.1% 0.9%

7 81 99.5% 3.6%

Clinical Overall - 98.9% 2.6%
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