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Abstract
Diffusion tensor imaging (DTI) is widely used to characterize tissue micro-architecture and brain
connectivity. In regions of crossing fibers, however, the tensor model fails because it cannot
represent multiple, independent intra-voxel orientations. Most of the methods that have been
proposed to resolve this problem require diffusion magnetic resonance imaging (MRI) data that
comprise large numbers of angles and high b-values, making them problematic for routine clinical
imaging and many scientific studies. We present a technique based on compressed sensing that
can resolve crossing fibers using diffusion MRI data that can be rapidly and routinely acquired in
the clinic (30 directions, b-value equal to 700 s/mm2). The method assumes that the observed data
can be well fit using a sparse linear combination of tensors taken from a fixed collection of
possible tensors each having a different orientation. A fast algorithm for computing the best
orientations based on a hierarchical compressed sensing algorithm and a novel metric for
comparing estimated orientations are also proposed. The performance of this approach is
demonstrated using both simulations and in vivo images. The method is observed to resolve
crossing fibers using conventional data as well as a standard q-ball approach using much richer
data that requires considerably more image acquisition time.
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Introduction
Diffusion tensor imaging (DTI) provides non-invasive contrasts which are sensitive to in
vivo cellular organization as modeled by local diffusivity, anisotropy, and tissue orientation
(Basser and Jones, 2002; Le Bihan et al., 2001; Le Bihan and van Zijl, 2002). The tensor
model represents one independent, dominant direction per voxel, so that the estimated
orientation may be ambiguous or misleading in voxels with complex fiber structure (Wiegell
et al., 2000). Substantial efforts have been made to address this “crossing fiber” problem and
one fruitful approach has been to acquire more detailed information through additional
sensitized scans (e.g., diffusion spectrum (Wedeen et al., 2000), multi-tensor analysis (Tuch
et al., 2002), high angular resolution (Frank, 2002), q-ball (Tuch, 2004), and high b-value
(Tournier et al., 2004) imaging techniques). Scan time and hardware constraints limit
widespread adoption of these methods in clinical research, however. In this paper we
characterize tissue regions with potential crossing fibers using data acquired in conventional
DTI protocols (i.e., low b-value, moderate angular resolution with ~30 directions).

Recently, there have been several indications that it is possible to resolve crossing-fibers
from conventional DTI acquisitions provided that sufficient a priori information is
available. Independent component analysis can exploit spatial information to fit a prolate
tensor mixture (Kim et al., 2005), while cylindrically constrained two-tensor models have
been numerically amenable to fitting using regularization techniques (Peled et al., 2006;
Stamatios et al., 2008; Tuch et al., 2002). Direct deconvolution with a discrete tensor basis
set has also been used (Ramirez-Manzanares et al., 2007). A major obstacle confronting
these approaches is the complexity of representing heterogeneous intra-voxel structure.
Using restricted two-component models (Peled et al., 2006; Stamatios et al., 2008) greatly
reduces variability, but risks over- or under-fitting. Alternatively, substantial spatial
regularization and probability models have been suggested to stabilize a more general
approach (Ramirez-Manzanares et al., 2007). As these approaches are highly sensitive to
noise, the authors typically suggest limiting application to areas of known fiber crossing
(e.g., planar tensor estimates) to avoid erroneous detections.

To address the crossing fiber problem, we suggest that one is interested in a parsimonious
and reproducible explanation of the observed signals and these goals are best achieved using
a finite set of possible intra-voxel components. Although initially developed as an
alternative to Nyquist sampling, compressed sensing (Donoho, 2006) offers a simple and
elegant solution to the problem of regularized fitting of tensor models which does not
require explicit model selection. Compressed sensing is one variant of many popular
regularized regression methods (often referred to as least absolute shrinkage and selection
operator – LASSO - techniques) (Efron et al., 2003; Tibshirani, 1996b) and has been widely
used for signal reconstruction, denoising, and image reconstruction (Lustig et al., 2008).

Our approach, Crossing Fiber Angular Resolution of Intra-Voxel structure (CFARI)
(Landman et al., 2008; Landman et al., 2010a, b; Landman et al., 2010c), has been the first
systematic attempt to use compressed sensing to infer complex tissue micro-architecture
through estimation of the local diffusion characteristics. With CFARI, we posit a set of
canonical diffusion functions for representative tissue classes and potential orientations, and
estimate the representative mixture fraction for voxel using compressive sensing
optimization criteria. In this manuscript, we present the CFARI framework for estimating
diffusion inferred structure and demonstrate accurate and reliable quantification of intra-
voxel orientations using both simulated and in vivo data. We describe the advantages of
incorporating positivity constraints on the mixture model which forms the basis for our
compressed sensing reconstruction and demonstrate substantial runtime improvements
through a novel hierarchical approach to compressed sensing. Finally, we compare the
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estimated intra-voxel structure using CFARI with that which can be achieved using analytic
q-ball (Descoteaux et al., 2007). CFARI is implemented in the JIST (Java Image Science
Toolkit) framework and is available in open source (http://www.nitrc.org/projects/jist/)
(Lucas et al., 2010).

Materials and Methods
Theoretical Framework

The proposed approach models each voxel as a discontinuous (i.e., non-exchanging)
collection of tissue compartments wherein each compartment describes a particular tissue
type at a particular orientation. It is assumed that there are a finite number of tissue types,
each being modeled by a particular diffusion model (Cory and Garroway, 1990), and that
there are a finite number of fixed and known orientations to which these compartments can
be aligned (see Figure 1). The overall objective of the CFARI approach is to determine the
fractional contributions (mixture fractions) of the compartments such that when they are
combined via an imaging equation, the measurements are optimally predicted. Importantly,
the number of compartments that are determined to contribute to the predictor should be
minimal, so that the final description of each voxel consists of a small collection of tissue
compartments, each corresponding to a tissue type with a particular orientation. In the case
of two crossing fibers, for example, only two among hundreds of possible mixture fraction
coefficients are (ideally) non-zero. The novelty of this overall approach is its exclusive focus
on the parsimonious estimation of mixture fractions, which is made possible by providing a
fixed, finite basis of possible tissue compartments.

Although the above framework is quite general and there are many possible alternative
models to explore, in this initial presentation we focus on a fairly restricted model that
works quite well in practice and is intuitive and straightforward to explain. In particular, we
use a multi-compartment model in which each component is a traditional tensor model of
diffusion (Kim et al., 2005; Peled et al., 2006; Ramirez-Manzanares et al., 2007; Stamatios
et al., 2008). We also assume that the diffusion measurements are made with a fixed
diffusion sensitization strength (b-value) over an assortment of different diffusion gradient
directions. Accordingly, the observed signal intensity Sk at a voxel is a finite mixture of
signals, each one of which is described by the Stejskal-Tanner tensor formulation (Stejskal
and Tanner, 1965) as follows

(1)

Here, gk is the diffusion gradient direction, b is the diffusion sensitization strength, S0 is a
noise-free reference signal in the absence of diffusion weighting (the so-called b0 image), N
is the number of possible compartments (tensors) within each voxel, fi is the (unknown)
mixture fraction for each compartment, Di is the tensor associated with the ith compartment,
and η is a noise term that follows a signal-dependent, Rician distribution. While magnitude
noise in MRI is Rician distribution, Rician distributions are approximately Gaussian above
an SNR of approximately 5:1 (Gudbjartsson and Patz, 1995). In the following framework,
we pursue a regularized least-squares approach which does not explicitly account for the
differences between Rician and Gaussian noise structure.

In compressed sensing terminology, we identify the sensing basis as the set of diffusion
measurements that are observed and the reconstruction basis as the set of N compartmental
models that are to be used in linear combination to best fit these observations. These
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concepts and how they fit within the overall CFARI framework are illustrated in Figure 1. In
the simulations and experiments considered in this paper, we use a fixed b-value and acquire
images using K different gradient orientations spread over the sphere. This sensing basis is
general enough to include conventional DTI acquisition strategies like the Jones-30 protocol
(Jones et al., 1999; Skare et al., 2000) as well as HARDI and q-ball protocols. According to
Eq. (1), the reconstruction basis is determined by our choice of N tensors Di, i = 1,…N.
Even within this already restricted (multi-tensor) model, we could choose to include a large
collection of tensors having different shapes (e.g., sphere, prolate, and planar), different
values of fractional anisotropy (FA) and mean diffusivity, and different orientations. To
focus on models representative of single fiber populations, we have chosen prolate tensors
(also known as linear) such that λ2 = λ3 = 0.5 × 10−3 mm2/s and with λ1 selected to yield a
fixed FA for all tensors in the reconstruction basis. We have found that FA approximately
equal to 0.7 generally yields good results for white matter imaging in the brain and that the
tensors included in the reconstruction basis should comprise hundreds of orientations—i.e.,
the principal eigenvectors of these tensors—over the unit sphere (see Figure 1). Effects of
various tradeoffs in these choices are revealed in our simulation experiments (below). For
compressed sensing optimality (e.g., least number of observations required for exact
reconstruction), the forward projection of any sparse representation in the reconstruction
basis should be incoherent with the sensing basis (i.e., the representation of any signal in the
two basis sets should be minimally related). Randomized construction of a sampling basis is
optimal; however, in practice, arbitrary or pseudo-random construction yields sufficiently
low coherence for functions of interest such that compressed sensing methods are
reasonably efficient. Herein, we rely on regular sampling of orientations with the underlying
tissue assumed to be randomly oriented with respect to the sampling basis.

Compressed Sensing Algorithm: CFARI
Given the framework outlined above, we can now present the optimization problem to be
solved and its solution. We define the vector y to be the K attenuation observations each
scaled by the b0 image—i.e., yk = Sk / S0. From Eq. (1), we see that the observations can be
written in matrix form as

(2)

where the K × N matrix S comprises a set of attenuation terms for each element of the
reconstruction basis and each diffusion weighted experiment, f is the N × 1 vector of mixing
coefficients, and η̃ is a K × 1 vector of scaled noise terms. Given the model in Eq. (2), we
may write a compressed sensing criterion for the estimation of f as follows

(3)

This formulation seeks mixing coefficients that are non-negative and minimize a criterion
that simultaneously tries to match the data (first term in (3)) with as few non-zero
coefficients as possible (second term in (3)). This formulation has many variants and goes
by many names—e.g., l1-regularized logistic regression (Koh et al., 2007), LASSO
(Tibshirani, 1996a) and its variants (Kim et al., 2006; Tibshirani et al., 2005), L2-L1 or least
mixed-norm minimization (Fu et al., 2006), and many other areas in machine learning and
signal processing (Candes et al., 2006a; Candes et al., 2006b; Chen et al., 2001). In our
formulation, the elements of f are required to be strictly non-negative so that when
normalized to sum to unity, they can be interpreted as mixture fractions. Non-negativity is
somewhat unusual in the compressed sensing literature, but has been investigated in image

Landman et al. Page 4

Neuroimage. Author manuscript; available in PMC 2013 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



processing applications, for example, to satisfy image intensity non-negativity assumptions
(Fu et al., 2006).

In Eq. (3), β is a sparsity regularization parameter controlling the tradeoff between the
precision of model fitting (the L2 norm) and the sparsity requirement (L1 norm). As β
approaches zero, the estimate tends toward unregularized least-squares regression. As β
increases, the sparsity term dominates. The specific choice of regularization parameter β can
dramatically affect the behavior of the compressed sensing estimator, however. At some
large β, for example, the differential penalty for any non-zero fi will outweigh the model-
mismatch penalty and the best estimate will be f ̂ = 0, an obviously undesirable result. The
lowest β at which this occurs is denoted β* and is called the breakdown point. The
magnitude of β that is required to achieve a particular tradeoff between the L2 and L1 norms
depends on the scale-dependent factors including the units of S, the number of observations,
and the number of basis functions, and β* represents a consistent point for determining a
specific behavior. As has been previously advocated (Kim et al., 2007), we characterize and
optimize the numeric value of β relative to the empirically determined β* so that our
findings are robust to choice of units and the particular model representation.

Performance Optimization
Computational complexity is a major limitation of compressed sensing techniques for
diffusion-inferred intra-voxel structure. Efficient numerical techniques are available for the
nonlinear optimization problem in compressed sensing; however, these techniques are still
far more involved than linear tensor estimation or the common Levenberg-Marquardt
nonlinear tensor fitting methods. To allow CFARI to be computationally competitive with
tensor-based analysis, we propose a technique for accelerated compressed sensing of
diffusion-inferred intra-voxel structure utilizing adaptive refinement of a multi-resolution
basis set.

There are efficient numerical methods to address optimization problems of the form of Eq.
(3); in this work, we use the interior point method of Kim et al. (Kim et al., 2007) which
includes the ability to enforce positivity constraints. The computational complexity of this
L2-L1 optimization routine is approximately proportional to the square of the size of the
reconstruction basis, which is therefore a key limiting factor in algorithm speed. In order to
provide sufficient directional resolution, we define the orientations in our reconstruction
basis π0 by the vertices of a sixth order tessellation of a dodecahedron, yielding 376 unique
orientations distributed over the halfsphere. In order to reduce computation time, our
adaptive approach uses two passes, each designed to focus on a small set of possible
orientations from π0. The first pass applies CFARI using a small basis set π1 comprising
only 55 of these orientations (distributed uniformly over the halfsphere), producing a coarse
estimate of the intra-voxel structure. Voxels having all estimated mixture coefficients below
a threshold ε (herein, 0.1) are interpreted as isotropic and are not reprocessed.

A second pass is performed on the remaining voxels using a modified basis set π2 derived by
combining orientations from π1 with selected additional orientations from π0. In particular,
for each direction in π1 that produces a mixture fraction greater than ε in the first pass, all
directions in π0 within 12 degrees of that direction are added to the basis set. This process is
carried out on a per-voxel basis, so while π0 and π1 are static basis sets, π2 is unique to each
voxel. As an added precaution, if the number of directions that exceed ε is greater than a set
threshold (herein, 5), then that voxel is reprocessed using the full π0. In the experiments that
we have carried out, this procedure adds an average of seven extra directions for each
direction in π1 with a mixture fraction that exceeds ε. With appropriate choices of π0, π1, and
the various thresholds we find that our adaptive CFARI algorithm yields similar accuracy to
the full CFARI with a tenfold reduction in computational complexity.
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To increase empirical efficiency, we further reduce the number of voxels to be analyzed
using intensity driven masking to exclude background and non-brain tissues (e.g., by using
an automated brain extraction technique (Carass et al., Submitted 2010; Smith, 2002)). It
may be possible to perform model selection based on characterization of the diffusion
weighted MRI signal in manner of (Alexander et al., 2002). However, CFARI is premised
on resolving structure within voxels that could be isotropic as perceived with tensor
analysis, so we are cautious with these approaches and have hitherto erred on the side
additional computation.

Assessment of Error
Rather than estimating a tensor and its implied direction through an eigenanalysis as in
conventional DTI, CFARI estimates a set of directions and their mixture fractions at each
voxel. In order to assess the performance of CFARI, we must specify a meaningful metric
for these particular estimated parameters, and this turns out to be harder than it would seem
at first glance. Traditional mean squared error on the partial fraction estimates alone does
not work well because their “correctness” relative to the problem as a whole depends
critically on the discrete angular structure of the reconstruction basis. Instead, a more logical
starting point is the average angular error between the detected directions and the closest
true directions in the model framework as we have used in preliminary reports on CFARI:

(4)

Here, f̂i is the estimated model fraction for the ith indexed direction vi in the reconstruction
basis, and wj is the jth indexed direction of the true component model. For completeness, let
tj be the true fraction associated with true basis element wj. ErrFP can be interpreted as the
false positive (“FP”) angular error rate — e.g., the average directional error between a
detected direction and a corresponding true direction.

Although highly intuitive, ErrFP is not ideal because it does not properly characterize the
effect of errors in the mixture fractions nor does it account for the absence of directions in
the estimated dataset. As an example of this failing, consider a true basis set that has some
contribution from every component in the reconstruction basis (as one would use to model
an “isotropic” component of diffusion in our chosen reconstruction basis). In this case, the
error would be zero regardless of the estimated mixture fractions because the angle between
the estimated direction and the nearest true direction is always zero. In the following, we
present a more balanced error metric that considers both false positive (FP) and false
negative directions along with the errors in mixture fractions.

Consider the relationship between two sets of directions and weightings, E: {fi, vi} and M:
{tj, wj}, as illustrated in Fig. 2. The sets of directions could be the same (as could be the case
in assessing reproducibility), or they could be different (as could be the case for assessing
error relative to a truth model). In analogy with the method used to assess of fiber
reproducibility in (Jones, 2003), we will define a cone of uncertainty that characterizes an
overall mismatch between the multiple orientations existing in the two sets while also
considering the differences in their respective partial fractions. We start by recognizing that,
unlike the definition of ErrFP, a proper metric should consider all directions in the model set
M and ask whether the estimated directions in set E have correctly approximated each model
direction wj. But we only care about the estimated directions up to the true partial fraction tj
of the model direction. Therefore, the fundamental cone that we consider is that defined by
the collection of estimated directions closest to a particular model direction whose total
estimated partial fractions do not exceed the true model fraction of the model direction.
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Accordingly, consider a reordering of the estimated directions such that vi
k,j is the kth closest

estimated vector to model vector wj. Then we find the maximum integer Kj such that the

estimated mixture fractions satisfy , as illustrated in Figure 2A. In order to
achieve equality, we add one more estimated direction, but reduce its estimated partial

fraction: . The average angular distance between the model vector and this
collection of estimated directions can therefore be defined as

(5)

With Eq. (5), we have a set of “cones of uncertainty” defined for each model direction wj.
We could simply define a metric as the sum of these angles; but this neglects the fact that
some angles are more important than others. In particular, the model directions whose partial
fractions are larger are more important, and getting those directions “wrong” should weigh
more heavily in the error metric. Based on this logic, we can write the following metric:

(6)

which can be qualitatively interpreted as the mean cone of uncertainty between the estimated
directions in E and the model directions in M.

Our experiments reveal that Eq. (6) is still lacking in a few ways. First, we note that ε is not
symmetric and in particular may not consider the error associated directions that are found
in E but do not exist in the model M. Therefore, we should “symmetrize” this definition.
Second, we find that the linear weighting by both the estimated and true mixture fractions
puts too much weight on directions having small mixture fractions. For example, consider a
discrete model basis set of 241 directions in which there are three true directions with equal
partial fraction. If the directions are estimated accurately but there is 1% noise on the
mixture fractions, then the resulting average angular error is more than 16°, which seems
unreasonable. However, if we weight by the square of the estimated mixture fractions, this
error reduces to less than a degree, which is more consistent with visual interpretation. Even
with this change, the same 1% noise on mixture fraction on one of two basis sets results in
greater than 14% error in ε, which implies that the linear weighting by the true mixture
fractions should also be modified. This problem is illustrated in Figure 2C.

All three of these problems are addressed by defining a symmetric metric of the following
form:

(7)

where
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(8)

Here ζ1 (x, u) is a scalar valued function of a similarity vector x and vector u of mixture
fractions and ζ2 (y, z, u) is a vector valued function of a similarity vector y, and two vectors z
and u containing mixture fractions. Note that the similarity measure x corresponds to same
basis set as the mixture fraction vector u, and the similarity measure y corresponds to same
basis set as the mixture fraction vector z. ζ1 is an importance weighting for the errors
computed in the reference frame of the first basis set, while ζ2 is an importance weighting
for calculation of the cone of uncertainty.

At present, we are choosing the two importance weighting functions empirically—i.e., by
what works well in practice. In the case of ζ1, we find that squaring the mixture fractions
while normalizing to a unit weighting across all directions works well in practice:

(9)

where x is a vector indexed by m. We define the importance weighting ζ2 based on the
proportion of partial fraction quantity explained by vectors at a larger separation:

(10)

Here zk,j is defined as the kth closest element of the basis set for z to the jth element
corresponding to u, and Z0 is defined as the maximal indexed direction for the cone of
uncertainty between the two direction sets (as K0 is above). The result of ζ2 is a vector of
similarity measures of the same size as the basis set u (note zk,j indexed by j). Both ζ1 and ζ2
preserve the intuitive interpretation that a moderate rotation from one set to the other set
results an error equal to the degree of rotation times the partial fraction of that vector.

Tractography
Tractography is not the primary focus of this paper, but since fiber visualization is a useful
qualitative outcome of a diffusion imaging experiment, we implemented a straightforward
approach which is loosely based on FACT (Mori and van Zijl, 2002) and whose results can
be visualized in DTIStudio (Johns Hopkins University, Baltimore, MD). Our approach,
called INtravoxel Fiber Assignment by Continuous Tractography (INFACT), initializes fiber
tracking at every voxel in the dominant direction determined by the largest mixture
coefficient fi. Tracking proceeds in both directions by continuous piecewise linear
assignment as in FACT. At each step, the orientation was selected as the dominant direction
with the nearest neighbor voxel that minimized the following importance weighting, wi = fi|
vi · vlast|γ where vi is the principle eigenvector of tensor Di, vlast is the unit vector
representing the last step in tracking, and γ is a regularization parameter that emphasizes
continuity of the tracked fibers. Ad hoc experiments showed that γ = 4 yielded reasonable
results.
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Experiments and Results
The CFARI formulation is not dependent on the specific form of the diffusion weighted data
to be analyzed—the data could be from a low b-value DTI study, from a high angular
resolution diffusion imaging (HARDI) study, or from a multi-b-value, multi-shell diffusion
spectrum imaging study. In this paper, however, we are primarily interested in the
estimation of multiple intra-voxel directions using fairly standard clinical and research DTI
scans. To explore this potential we carried out both simulations and experiments using
acquired data, as described next.

Simulations
Simulation of Crossing Fibers—Two fiber tracts comprising tensors having FA=0.7
(λ1=2×10−3 mm2/s, λ2 = λ3 =0.5×10−3 mm2/s) were simulated so that they cross at 90
degrees, as shown in Figure 3. The tracts each have a maximum partial fraction along a
diagonal of the image and are “blended” with an isotropic component moving away from the
diagonal such that the tract cross-section has a Gaussian profile. The two tracts were
combined and scaled so that the partial fractions at each voxel add to unity. A typical
clinical DTI sequence with the following parameters was simulated: 30 diffusion weighting
directions, b-value of 700 s/mm2, five b0 images, and Rician noise. The SNR of the
simulations was defined as the ratio of the (noise-free) unweighted signal intensity to the
noise standard deviation on the complex signal. Complete simulations were performed at
SNRs of 15:1 and 25:1. The finest grain reconstruction basis of CFARI was made from
identical prolate tensors each having FA=0.7 oriented toward the 376 vertices of a sixth
order tessellation of a dodecahedron, as previously described. The compressed sensing
regularization coefficient was defined as β = 10−1 β*, where β*is the breakdown point
computed independently at each voxel. The minimum angle between a true direction and
any direction in the basis set was 1.63°. The maximum minimum angle between any vector
in the basis set and its nearest neighbor was 8.69°.

Figure 3 shows the results of this simulation. The results of standard tensor computations on
the simulated data are shown in Figures 3A and 3C. Here it is evident that tensors are
representative of the underlying truth only in areas for which the fibers are not substantially
overlapping. The higher SNR present in the measurements leading to Figure 3C does not
lead to a better result in the crossing region over that of Figure 3A. The results in Figures 3B
and 3D demonstrate the ability of CFARI to capture the crossing fiber information that is
reflected in the data. As well, it is evident by visual comparison of Figures 3B and 3D that
increasing the SNR improves the quality of the CFARI estimate.

Dependence on β and reconstruction basis—Simulations were carried out to
explore the interdependence of the CFARI estimation parameters: β, the reconstruction
basis, and the ground truth. At an SNR of 25:1, 1024 Monte Carlo simulations were
performed with an equal mixture of crossing fibers having three true FA’s: FA=0.55 (λ1
=1.3×10−3 mm2/s), FA=0.71 (λ1 =2×10−3 mm2/s), and FA=0.81 (λ1 =3×10−3 mm2/s). For
each simulation set, a CFARI basis was constructed for each of 50 linearly spaced axial
diffusivities from 0.5×10−3 (FA=0) to 3×10−3 (FA=0.81) and β was swept in 50 logarithmic
steps from 10−4 β* to β*.

Note that this experiment involved 7,680,000 simulations, the results of which are presented
in terms of the mean error for each combination of parameters: 3 Model FA’s (subplot in
Fig. 4) × 50 True FA (rows in Fig. 4) × 50 choices of β / β* (columns in Fig 4) × 1024
Monte Carlo iterations. Increasing β improved accuracy, especially with moderate (Figure
4B) and high model anisotropy (Figure 4C); yet reduced reliability at high β was apparent
near β* for all simulations. Achievable error generally decreased with higher model

Landman et al. Page 9

Neuroimage. Author manuscript; available in PMC 2013 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



anisotropies, but the error increased when the model anisotropy was lower than the true,
underlying anisotropy.

Impact of Reconstruction Resolution—The impact on the directional resolution of
basis set was examined by CFARI fitting of an equal partial fraction crossing fiber model (as
in Fig. 3) with 1000 Monte Carlo iterations, but replacing the directional of the basis set a
minimum potential energy distribution (Skare et al., 2000) with between 50 and 1000 unique
directions (corresponding to an angular separation of between 19.45° and 3.6°, respectively)
with all other parameters held constant. Larger reconstruction basis sets resulted in reduced
error (Figure 5A). However, the marginal improvement was negligible (well less than a
degree) once at least 400 directions were included in the reconstruction basis (e.g., a mean
separation between the basis and true vector of 3.4°).

Impact of Fiber Crossing Angle—The effects of crossing fiber angle on estimation
accuracy were evaluated by randomly generated 100 directional pairs of tensors with FA 0.7
(as above) for each of 90 linear separations ranging from 1° to 90°. For each pair, one
direction was selected uniformly on the sphere and a second direction was selected
uniformly at random on the circle at a particular radius. For both simulations, CFARI was
performed with the same parameters as in the initial crossing fiber simulation.

For all fiber crossing angles, the median error was less than 15° (Figure 5B) at an SNR of
25:1. Error peaked at a separation of around 30° (estimation error of ±13°) and improved
with increasing separation (to ±7° error at a separation of 90°).

Impact of SNR—The impact of SNR on CFARI estimation was evaluated for simulated
tracts corresponding to a single tensor, two tensors whose tracts crossing at 90° and three
tensors crossing at 60°. For these simulations, true FA was equivalent to reconstruction FA
(i.e., 0.7). For each model, 1000 observations were simulated for 25 linearly spaced SNRs
from 5:1 to 50:1.

Single tensor models could be estimated reliably at the resolution of the basis set (±3°) at an
SNR of 15:1 and higher, while two and three tensor crossing could also be resolved, but
with higher error (Figure 5C). At an SNR of 25:1, the mean estimation errors were 3° for a
single tensor, 7° for two tensors, and 16° for three tensors. For qualitative comparison,
Figure 5D illustrates representative estimates from a three tensor model for three error
levels.

Impact of Partial Volume Effects—The impact of CSF partial volume effects on
CFARI estimation were evaluated for single tensors and two tensors whose tracts crossing at
90°. For these simulations, true FA was equivalent to reconstruction FA (i.e., 0.7). For each
model, 50 observations were simulated at an SNR of 25:1 for 21 linearly spaced CSF partial
fraction components from 0% to 95%. A reconstruction basis consisting of a 7th order
tessellated icosahedrons augmented with isotropic tensor component (246 unique tensors)
was used with the same simulated acquisition sequence as above.

Estimation of both single tensor (Figure 6A) and two tensor (Figure 6B) models was robust
to CSF contamination of up to 50%. Error rapidly increased after 60% CSF partial fraction.
Notably, the maximum partial fraction estimated for the CSF component was less than 10−6

for any simulation. Hence, the current framework is not a surrogate to directly estimating
free water fraction (such as the “ball and stick” model (Behrens et al., 2003)), but the
directional estimates are robust to partial fraction contamination.
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Impact of b-Value—The impacts of b-value on CFARI estimation were evaluated for
single tensors and two tensors whose tracts crossing at 90°. For these simulations, true FA
was equivalent to reconstruction FA (i.e., 0.7). For each model, 500 observations were
simulated at an SNR of 25:1 (defined on the b=0 s/mm2 data) for b-values from 300 s/mm2

to 3100 s/mm2. A reconstruction basis consisting of a 7th order tessellated icosahedrons
augmented with isotropic tensor component (246 unique tensors) was used with the same
simulated acquisition sequence as above. Estimation of single tensor components was
remarkably stable across b-values, while error in two tensor models was stable from 700 s/
mm2 to 1700 s/mm2 (Figure 7). For the two tensor model, the observed minimum error was
at 1300 s/mm2 (5.3 ° versus 7.3 ° at 700 s/mm2, significantly different with two-sided t-test
at p<0.001). At very high b-value, more outliers were observed with the single tensor model
and errors were extreme with the two tensor model.

Isolating the Effects of FA—The interaction between CFARI model FA and true tensor
FA (illustrated in Figure 4) explored in additional detail for single tensors and two tensors
whose tracts crossing at 90°. For these simulations, true FA for prolate tensors was varied
between 0 and 0.999 in 21 steps while reconstruction FA was either 0.4 or 0.7. In both cases,
maximum diffusivities were 2×10−3 s/mm2. For pair of true FA and model FA, 50
observations were simulated at an SNR of 25:1 (defined on the b=0 s/mm2 data) for a b-
value of 700 s/mm2. A reconstruction basis consisting of a 7th order tessellated icosahedrons
augmented with isotropic tensor component (246 unique tensors) was used with the same
simulated acquisition sequence as above. As Figure 8 illustrates, when the true FA is higher
than the model FA, errors are low and nearly constant for varying FA. With decreasing true
FA below the model FA, error rates increase.

Empirical Data
Data—A healthy volunteer (M/20 years old) with no history of neurological conditions was
recruited. Local institutional review board approval and written informed consent were
obtained prior to examination. All data were acquired using a 3T MR scanner (Achieva,
Philips Medical Systems, Best, The Netherlands) with body coil excitation and an eight
channel phased array SENSitivity Encoding (SENSE (Pruessmann et al., 1999)) head-coil
for reception. In a single scan session, a full repetition of a DTI and q-ball dataset was
acquired. The dataset consisted of two DTI datasets acquired with a multi-slice, single-shot,
echo-planar imaging (EPI), spin echo sequence (TR/TE = 6410/69 ms, SENSE factor = 2.5).
Sixty-five transverse slices were acquired parallel to the line connecting the anterior
commissure-posterior commissure (AC-PC) with no slice gap and 2.2 mm nominal isotropic
resolution (FOV = 212 × 212, data matrix = 96 × 96, reconstructed to 256 × 256). Fat
suppression as performed with Spectral Presaturation with Inversion Recovery (SPIR) and
the phase encoding direction was anterior-posterior. Diffusion weighting was applied along
30 directions (Jones30; other vendor specific parameters were set to achieve maximum
gradient magnitudes: gradient overplus = no, gradient mode = enhanced) with a b-value of
700 s/mm2. For each DTI dataset, five minimally weighted images (5 b0’s) (b ≈ 33 s/mm2)
were acquired and averaged on the scanner. The total scan time to acquire one DTI dataset
was 4 min 4s. No cardiac or respiratory gating was employed. A standard q-ball sequence at
a b-value of 3000 s/mm2 and 99 diffusion directions with the same resolution and coverage
as the DTI dataset was acquired (TR/TE = 15348/77 ms, SENSE factor = 2.5). Three sets of
five scanner averaged reference scans were acquired. Total scan time for the q-ball dataset
was 31 min 27 s.

Analysis—Motion compensation and eddy current distortion correction were performed
prior to analysis with JIST-CATNAP (Landman et al., 2007). Both CFARI and q-ball
analysis were performed independently for each repetition of the pairs of 30 direction
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datasets and for the high b-value 99 direction datasets. For q-ball analysis, a regularized 6th
order spherical harmonic fit was estimated with analytical q-Ball using Laplace–Beltrami
regularization with the recommended regularization term of 0.006 (Descoteaux et al., 2007).
Intra-voxel orientations were estimated as the local maxima of the spherical harmonic model
projected onto a discrete basis set of 289 directions as described in (Descoteaux et al., 2007).
CFARI analysis was performed with an adaptive basis set (55 directions in the initial pass
and 376 directions in the larger set) with a canonical tensor with FA of 0.71, as described
above. As in the simulation experiment, the compressed sensing regularization coefficient
was defined as β = 10−1 β*, where β* is the breakdown point computed independently at
each voxel.

Results—Figures 9 and 10 show the results of the human subject experiments. No ground
truth is available with real data, so we emphasize a qualitative comparison of CFARI and q-
ball. With only 30 directions at low b-value, CFARI maps structure that is consistent with
the crossing of the internal capsule and corpus callosum (Figure 9B). This estimate visually
improves with multiple repetitions and at higher b-values (Figure 9C,E). The maximal
directions from analytic q-ball were qualitatively reasonable when applied to the intended
sequence (Figure 9F). Figure 9D illustrates that INFACT tractography is capable of tracking
through the region of crossing fibers illustrated in this figure. Figure 10 presents a detailed
view of CFARI on two representative slices. Although applying CFARI on the q-ball
acquisition produces excellent results, it is qualitatively apparent that the results are largely
the same when only 30 directions and low b-values are used.

Discussion
CFARI provides a robust framework for estimating intra-voxel structure from conventional
diffusion-weighted acquisitions and shows great promise in helping to resolve the crossing
fiber problem. The multiple intravoxel directions could be used for probabilistic or
deterministic fiber tracking in place of multi-orientation structures inferred by other
methods. Because CFARI is driven only by information from individual voxels, one could
exploit spatial regularization either in the subsequent fiber tracking or through direct
incorporation of smoothing (e.g., (Assemlal et al., 2007)). Calculation of generalized
contrast measures, such as generalized fractional anisotropy (GFA) (Tuch, 2004), is also
straightforward.

CFARI is sensitive to the choice of reconstruction basis. Figure 4 illustrates that error for
high FA tensors decreases with a higher reconstruction basis FA. However, when the true
FA is lower than the reconstruction FA, the error rapidly decreases (compare the slow
darkening of blue right A–C of Figure 4 to the rapid intensity change across the horizontal
point in each plot where reconstruction FA equals true FA). Hence, choice of a
reconstruction basis is an important design criterion and must be tuned to the types of tissues
one is interested in querying. Herein we have chosen an FA of 0.7, which appears to be a
conservative FA for representing fibers in the spinal cord columns or corpus callosum white
matter. Intersections of extensions of these structures have historically been of primary
interest for resolving crossing fibers. Basis set optimization based on physiological criteria
would be a fascinating area of continuing investigation. The compressed sensing
regularization criterion is empirically found to offset the typical curses of dimensionality
when using large reconstruction basis sets. However, computation time scales super-linearly
with the size of the basis set. Hence, for efficiency reasons, the marginal improvement in
estimation accuracy with increasing basis set must be weighed against the feasibility of
achieving these results. Note that we did not evaluate very large basis sets (>104) so
additional stability concerns may arise.
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The single voxel simulations demonstrate that the resulting angular resolution is comparable
to previously reported findings for both q-ball peak detection and deconvolution approaches
(e.g., 10–20 degrees precision). We note that CFARI makes no attempt to model the full
richness of the orientation distribution functions possible with q-ball analysis; rather CFARI
directly extracts “dominant” orientation contributions and is able to do so with far less
information. The q-ball error metrics are disconcertingly high, yet are consistent with the
12–16° error reported in Table 5 of [4] for a biological phantom. Visually, q-ball contains
additional information than local maxima and it seems possible to use the representation to
find other definitions of mixture components, yet, as shown herein, this information is not
well-captured by local maxima. In summary, CFARI enables evaluation of intra-voxel
structure (e.g., for advanced fiber tracking and tissue classification) in studies that have
hitherto been limited to tensor analysis due to scan time availability or others limitations on
acquiring a full q-ball dataset. Here we have shown that estimated mixture directions can be
determined with approximately the same accuracy as traditional q-ball analysis using only
13% of the scan time.

The multi-compartment framework hints at other possibilities for characterizing tissue
characteristics. It might be possible to associate specific basis component coefficients with
different biophysical basis (e.g., types of tissue). Currently, the CFARI basis components
vary only by orientation. In previous work, we saw that within this framework CFARI is
robust to model mismatch. Lowering the FA of the basis set to improve robustness increases
overall error. The CFARI numerical estimation framework readily supports a non-tensor
model for individual compartments, such as with the ball and stick diffusion model (Behrens
et al., 2003). It would be fascinating to use either simulated or empirical observations of
biological compartments of interests as a basis set. The utility of such an approach is, as yet,
unproven and will be an exciting area of future research.

In summary, the simulations demonstrate that the positivity constraints in CFARI lead to
stable and precise estimates of multiple intra-voxel compartmental directions. For the
majority of models and SNR’s explored, the additional constraint improved error over the
unconstrained estimates and lead to more computational efficient estimates.
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Figure 1.
Overview of the CFARI Method. A traditional DTI acquisition is used to acquire data. For
analysis, a mixture model consisting of a tensor model oriented along a large number of
directions is fit to the observed data using a regularized regression approach.
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Figure 2.
Illustration of error metric between a model vector sets (solid lines) and an estimated vector
(dashed). A cone of uncertainty (A) is calculated as the average angular distance between
the estimated the K0

th+1 closest directions (red dashed) to each vector j in the model set
which sum to the corresponding partial fraction tj. Other estimated directions (blue dotted)
are not considered. The importance weighting (ζ1,B) deemphasized direction with low
partial fraction that may have high error (as indicated by line width) as these are less
relevant to goodness of fit. Noise in the estimation process may introduce estimated
direction with low partial fraction and high angular error which are still within the sharp
cone of uncertainty and lead to unreasonable error measures. The fuzzy cone of uncertainty
(ζ2,C) weights the cone of uncertainty by the proportion of unexplained partial fraction
(indicated by line width) up to or less than each angle, which reduces the impact of small,
outlier contributions (such a the three small dashed vectors).
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Figure 3.
Simulation of crossing fibers at an SNR of 15:1 (A&B) and 25:1 (C&D). Tensor fits to a
DTI acquisition of a fiber crossing region (left: A&C) results in a zone of planar tensors
(enlarged for detail) where directional orientation is ambiguous. CFARI estimate (right:
B&D) are able to identify the underlying structure using the same simulated dataset. For
each voxel, the five CFARI directions with the highest partial fraction are shown weighted
by partial fraction. Tensors (A&C) are colored by principle eigenvector (red=horizontal,
green=vertical, blue=out of plane) and rendered with shading. Fiber orientation plots (B&D)
show a surface mesh where each point is colored by the normalized coordinate (red/green/
blue as with tensors; zero is at the origin of each glyph), and the distance from the origin is
proportional to the estimated partial fraction.
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Figure 4.
Selection of CFARI model basis and scale parameter. Increasing basis anisotropy reduced
the lowest possible error; however, increasing anisotropy increased error when the truth is of
lower anisotropy (compare A->B->C). Increasing β also resulted in lower error; yet as β
became very close to β*, error dramatically increased.
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Figure 5.
Fiber crossing simulations for true FA of 0.7. Error was reduced by increasing the
directional resolution of the basis set (A), but stabilized near 400 directions with an SNR of
25:1. Mean estimation error was sensitive to the angle between crossing fibers (B) and to the
SNR of the observed data (C). The box plot in (B) shows median (magenta center line),
quartiles (range of center blue boxes), two standard deviation interval (extent of dashed
vertical lines) and extreme values (magenta + symbols beyond the standard deviation lines)
of estimated error by simulated angular separation. For qualitative interpretation of the error
metric, (D) illustrates three examples in which CFARI achieved three different error levels
based on a ground truth, three compartment model.
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Figure 6.
Impacts of CSF partial fraction contamination on CFARI directional estimates. Single (A)
and two (B) tensor models were simulated with a CSF component representing from 0% to
95% of the partial fraction.
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Figure 7.
Impacts of b-value on CFARI directional estimates. Single (A) and two (B) tensor models
were simulated with a b-value ranging from 300 s/mm2 to 3100 s/mm2 with an SNR on the
b=0 s/mm2 image equal to 25:1.

Landman et al. Page 22

Neuroimage. Author manuscript; available in PMC 2013 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 8.
Interaction of true FA with reconstruction model FA. Single tensor (A,B) and two tensor
models (C,D) were simulated with varying true FA. Reconstruction was performed with
either a low FA (0.4) reconstruction basis (A,C) or a high FA reconstruction basis (B,D).
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Figure 9.
Qualitative inspection of intra-voxel orientations estimated with in vivo data show patterns
consistent with anatomy, which can be clearly appreciated in the region of the corpus
callosum and internal capsule (highlighted in A). CFARI directions are visually consistent
even with what one would expect from anatomical consideration while analytic q-ball (F)
show shows consistency using higher b-value data. Note that the maximal directions for q-
ball were extracted from the parameterized orientation distributions function (inlay of F).
Fiber tracking with the data in (D) show results that are visually consistent with the crossing
of major fiber tracts.
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Figure 10.
Comparison of DTI and HARDI direction estimates. Mean unweighted scans (A,E) and DTI
colormap images (B,F) are shown for two representative slices. Enlargements show
estimated diffusion tensors (C,G) alongside CFARI directions (D,H) based on two
repetitions of 30 directions at a b-value of 700 s/mm2 (with parameters corresponding to C
in Figure 9).
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