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Abstract—Image labeling and parcellation (i.e., assigning struc-
ture to a collection of voxels) are critical tasks for the assessment
of volumetric and morphometric features in medical imaging data.
The process of image labeling is inherently error prone as images
are corrupted by noise and artifacts. Even expert interpretations
are subject to subjectivity and the precision of the individual raters.
Hence, all labels must be considered imperfect with some degree
of inherent variability. One may seek multiple independent assess-
ments to both reduce this variability and quantify the degree of un-
certainty. Existing techniques have exploited maximum a posteriori
statistics to combine data from multiple raters and simultaneously
estimate rater reliabilities. Although quite successful, wide-scale
application has been hampered by unstable estimation with prac-
tical datasets, for example, with label sets with small or thin objects
to be labeled or with partial or limited datasets. As well, these ap-
proaches have required each rater to generate a complete dataset,
which is often impossible given both human foibles and the typ-
ical turnover rate of raters in a research or clinical environment.
Herein, we propose a robust approach to improve estimation per-
formance with small anatomical structures, allow for missing data,
account for repeated label sets, and utilize training/catch trial data.
With this approach, numerous raters can label small, overlapping
portions of a large dataset, and rater heterogeneity can be robustly
controlled while simultaneously estimating a single, reliable label
set and characterizing uncertainty. The proposed approach en-
ables many individuals to collaborate in the construction of large
datasets for labeling tasks (e.g., human parallel processing) and re-
duces the otherwise detrimental impact of rater unavailability.

Index Terms—Data fusion, delineation, labeling, parcellation,
simultaneous truth and performance level estimation (STAPLE),
statistical analysis.

I. INTRODUCTION

N UMEROUS clinically relevant conditions (e.g., degen-
eration, inflammation, vascular pathology, traumatic

injury, cancer, etc.) correlate with volumetric or morphometric
features as observed on magnetic resonance imaging (MRI).
Quantification and characterization as well as potential clinical
use of these correlations requires the labeling or delineation
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of structures of interest. The established gold standard for
identifying class memberships is manual voxel-by-voxel la-
beling by a neuroanatomist, which can be exceptionally time
and resource intensive. Furthermore, different human experts
often have differing interpretations of ambiguous voxels (e.g.,
5%–15% coefficient of variation for multiple sclerosis lesions
[1] or 10%–17% by volume for tumor volumes [2]). Therefore,
pursuit of manual approaches is typically limited to either 1)
validating automated or semi-automated methods or 2) the
study of structures for which no automated method exists. An
often understood objective in manual labeling is for each rater
to produce the most accurate and reproducible labels possible.
Yet this is not the only possible technique for achieving reliable
results. Kearns and Valiant first posed the question whether a
collection of “weak learners” (raters that are just better than
chance) could be boosted (“combined”) to form a “strong
learner” (a rater with arbitrarily high accuracy) [3]. The first
affirmative response to this challenge was proven one year later
[4] and, with the advent of AdaBoost [5], boosting became
widely practical and is now in widespread use.

Statistical boosting methods have been previously proposed
to simultaneously estimate rater reliability and true labels
from complete datasets created by several different raters or
automated methods [6]–[9]. Typically, there are very few raters
available in brain imaging research, and raters are generally
considered to be superior to “weak learners.” Warfield et al.
presented a probabilistic algorithm to estimate the “ground
truth” segmentation from a group of expert segmentations
and simultaneously assess of the quality of each expert [6]. A
similar approach was presented by Rohlfing et al. [8]. These
maximum likelihood/maximum a posteriori methods (here-
after referred to as simultaneous truth and performance level
estimation (STAPLE) [7]) increase the accuracy of a single
labeling by combining information from multiple, potentially
less accurate raters (as long as the raters are independent and
collectively unbiased). The framework has been widely used in
multi-atlas segmentation [10]–[12] and has been extended to be
applicable to continuous (scalar or vector) images [13], [14].

For practical purposes and ultimately more widespread appli-
cation, the existing STAPLE framework has several limitations.
First, existing descriptions of STAPLE require that all raters de-
lineate all voxels within in a given region. In practice, it is often
difficult to achieve this requirement since different sets of raters
may delineate arbitrary subsets of a population of scans due to
limitations on rater availability or because of the large scale of
the study. Second, raters are often requested to label datasets
more than once in order to establish a measure of intrarater re-
liability; but STAPLE is not set up to use these multiple ratings
when estimating the true label set. It is possible to account for
multiple delineations by the same rater; however, the traditional
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Fig. 1. Characteristic STAPLE failure and success. For truth label models [one
slice shown in (A) and (D)], fusion of multiple sets of reasonable quality random
observations [such as in (B) and (E)] can lead to decreased performance [such
as in (C)] as seen through the dramatic label inversion problem. A collection of
50 raters of quality similar to the observation seen in (B) were used to generate
the estimate seen in (C). This catastrophic segmentation error occurred between
10% and 20% of the time the simulation was run. However, this behavior is
not ever present, even for models with small regions [as illustrated in the label
fusion in (F)]. Note (B) and (E) were observed with the same rater reliabilities
and (C) and (F) were each fused with three observations per voxel. (A) Brain
model. (B) Brain Obs. (C) STAPLE result. (D) Sm. labels. (E) Label Obs. (F)
STAPLE result.

STAPLE model forces these delineations to be treated as sep-
arate raters entirely. Third, raters are often divided into a class
of “experts” whose performances are previously characterized
and “novices” whose performances have yet to be established.
Yet STAPLE has no explicit way to incorporate prior perfor-
mance estimates within its estimation framework. We find that
the new formulae to address these concerns involve only small
changes to the summand subscripts appearing in the original al-
gorithm, which might be viewed as a relatively minor contri-
bution. The equations, however, remain optimal relative to the
maximum likelihood criterion of STAPLE, an important condi-
tion that neither heuristic nor ad hoc modification of the equa-
tions would guarantee. Thus, both the equations comprising the
new algorithm that can be implemented under these common
conditions and the fact of their optimality are important contri-
butions of this work.

Another criticism of the STAPLE framework is that it can
produce dramatically incorrect label estimates in some sce-
narios, particularly when raters are asked to delineate small or
thin structures and/or when there are too few raters or raters
with highly inaccurate segmentations. The cause of this type
of failure has been interpreted as an estimation instability
due to the presence of anatomical structures with small or
heterogeneous volumes [12]. For example, the top row of Fig. 1
illustrates a brain segmentation model (A) and a seemingly
reasonable observation (B); yet when several observations are
statistically combined (C), the result is worse than that from

an individual rater. These catastrophic errors are referred to
as the label inversion problem associated with STAPLE. The
result of the label inversion problem is that STAPLE converges
to a highly undesired local optimum due to the fact that the
raters are highly inaccurate. One of the major contributions
of this paper is the development of a technique to help alle-
viate the label inversion problem. Yet, as Fig. 1 also shows in
(D)–(F), this catastrophic label fusion behavior does not occur
using the same label fusion approach but similarly distributed
label models and rater reliabilities. Such varied performance
on similar problem types could explain both the successful
(e.g., [6], [7], [13]) and less-than-stellar (e.g., [12]) literature
reports regarding the utility of STAPLE. Nevertheless, there
has been contention about the comparison performed in [12] as
it compares STAPLE using a global prior to an algorithm that
is initialized in a spatially varying manner.

In this paper, we present and evaluate simultaneous truth
and performance level estimation with robust extensions (STA-
PLER) to enable use of data with missing labels (i.e., partial
label sets in which raters do not delineate all voxels), repeated
labels (i.e., labels sets in which raters may generate repeated
labels for some, or all, voxels), and training trials (i.e., label sets
in which some raters may have known reliabilities—or some
voxels have known true labels). The incorporation of training
data is equivalent to defining a data-driven a priori distribution
on rater reliability, which also may be generated using “catch
trials” against ground truth labels during routine labeling of
other data sets. We consider this information ancillary as it does
not specifically relate to the labels on structures of interest,
but rather to the variability of individual raters. We, therefore,
extend the STAPLE label fusion methodology to include ex-
plicit, exogenously defined priors, and this capability can be
used to successfully counter the irregular estimation behavior
described above.

STAPLER simultaneously incorporates all label sets from all
raters in order to estimate a maximum a posteriori estimate
of both rater reliability and true labels. In this paper, the im-
pacts of missing and training data are studied with simulations
based on two models of rater behavior. First, the performance
is studied using voxel-wise “random raters” whose behaviors
are described by confusion matrices (i.e., probabilities of in-
dicating each label given a true label). Second, we develop a
more realistic set of simulations in which raters make more mis-
takes along the boundaries between regions. Using these models
within a series of simulation studies, we demonstrate the ability
of a priori probability distributions (“priors”) on the rater re-
liabilities to stabilize the estimated label sets by conditioning
the rater reliability estimates. We present simulations to charac-
terize the occurrence of catastrophic failures of label fusion and
show that priors on rater reliabilities can rectify these problems.
The performance of STAPLER is characterized with these sim-
ulated rater models in simulations of cerebellar and brain par-
cellation.

For all presented experiments, we exclude consensus back-
ground regions as proposed in [15]; however, we are specifi-
cally considering minimally trained raters and large numbers
of participants, so there are essentially no voxels (0.61% for
the empirical data in Section I) for which there is consensus
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among all raters. For almost every slice, someone (sometimes
many people) executed the incorrect labeling task. Because of
the scenarios we consider, the use of specific consensus regions
within the target is impossible. Furthermore, there has been ex-
citing work using multi-atlas registration using residual intensi-
ties [16] and a plethora of voting methods using intensity in-
formation (reviewed in [17]). However, these approaches are
not appropriate for the problem under consideration because we
consider only manual raters in scenarios in which intensity in-
formation may or may not be relevant to their task.

Most closely related to this work, is the idea proposed by
Commowick et al. [18] in which a parametric prior on the per-
formance level parameters is examined. This approach oper-
ates under the assumption that the performance level parame-
ters are distributed as a Beta distribution and can be extended
to multi-label case in a straightforward iterative method. This
technique has been shown to provide a stabilizing influence on
STAPLE estimates. On the other hand, STAPLER provides an
explicit method of taking into account training data and provides
a nonparametric approach to the problem. Moreover, STAPLER
was developed with the intent of utilizing data contributed by
minimally trained raters and training data is essential in terms
of estimating accurate performance level parameters. The ap-
proach proposed by Commowick et al. is mainly aimed at easing
the duties of highly trained expert anatomists so that the burden
of segmenting all structures is dramatically lessened.

II. THEORY

A. Problem Statement

Consider an image of voxels and the task of determining
the correct label for each voxel. Let be the number of voxels
for which the true label is known (i.e., training voxels), be
the number of voxels for which truth is unknown (i.e., testing
voxels) and these quantities are such that they sum to (i.e.,

. For notational purposes, let , and be
the sets of all voxels, training voxels and testing voxels, respec-
tively. The set of labels, , represents the set of possible values
that a rater can assign to all voxels. Also consider a collec-
tion of raters that observe a subset of , where it is permis-
sible for each rater to observe voxel more than once. The
scalar represents the th observation of voxel by rater ,
where . Note, if rater did not ob-
serve voxel for the th time then . Let be a vector of

elements that represents the hidden true segmentation, where
.

B. The STAPLER Algorithm

The STAPLER algorithm provides three basic extensions to
the traditional STAPLE algorithm. These extensions are 1) the
ability to take into account raters that did not observe all voxels,
2) the ability to take into account raters that observed certain
voxels more than once, and 3) the ability to take into account
training data (or catch-trials). The theory is presented along-
side the traditional STAPLE approach so that the extensions are
made clear.

As with [7], the algorithm is presented in an Expectation
Maximization (EM) framework, which breaks the computation

into the E-step, or the calculation of the conditional probability
of the true segmentation, and the M-step, or the calculation of
the rater performance parameters. In the E-step we calculate

which represents the probability that voxel has true label
on the th iteration of the algorithm. In the M-step we calculate

which represents the probability that rater observes label
when the true label is on the th iteration of the algorithm.

C. E-Step—Calculation of the Conditional Probability of the
True Segmentation

In the traditional STAPLE approach, it is guaranteed that all
raters delineated all voxels exactly once and the conditional
probability of the true segmentation is given by

(1)

where is the label decision by rater at voxel
is a prior on the label distribution, the denominator simply nor-
malizes the probability such that .

In the present (STAPLER) scenario, raters are allowed to ob-
serve all voxels any number of times (including zero). In this
case, it can be shown using a straightforward derivation that the
correct expression for this conditional probability is found by
simply adjusting the product terms to exclude unobserved data
points and adding an additional product term to account for mul-
tiple observations of the same voxel

(2)

where is the th observed label value by rater at voxel and
indicates that rater did not observe voxel for the th time.

The product over all makes it possible to take into account
raters that either did not observe voxel , or observed it multiple
times. Note that for both (1) and (2), only the values of
are iterated over as the true label value for is already
known. In other words, where is the
indicator function.

D. M-Step—Calculation of the Rater Performance Parameters

Next, we consider how the presence of incomplete, over-com-
plete and training data affect the calculation of the performance
level parameters. In [7], the update equation for parameter esti-
mates (for all raters observing all voxels and with no “known”
data) was shown to be

(3)

where the denominator simply normalizes the equation such that
. Additionally, it is important to note that this

implementation has no way of taking into account training data,
thus the summations are only iterated over .
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To extend in this framework to the STAPLER case, we per-
form three modifications. First, we only iterate over voxels that
were observed by the rater. Second, we iterate multiple times
over voxels that were observed more than once by the same
rater. Lastly, instead of iterating only over the testing data, we
iterate over all . The result of performing these modifica-
tions is shown to be

(4)

where the numerator iterates over all observations by rater
that were equal to label and the denominator is a normalizing
factor that iterates over all observed voxels by rater . Note that
the calculation includes both the training data and the testing
data. However, the true segmentation for the training data is as-
sumed to be known. Thus, it is straightforward to compute the
true rater performance for the training data and only iterate over
the testing data like the technique seen in (3)

(5)

where is the number of times rater observed label in
the training data, and is the observed performance param-
eters from the training data. Note, in situations where
(i.e., significantly more training data than testing data) then it
is unlikely that the testing data would dramatically change the
performance level estimates.

In (5), we consider what happens when training data is avail-
able that is, when the reliabilities of a rater have been sepa-
rately estimated in a previous experiment or when it is other-
wise reasonable to assume prior knowledge of a rater’s reliabil-
ities. Training data may be included in (5) as the introduction
of data that has been labeled by a rater of known reliability. If
the rater represents a gold standard, then the associated confu-
sion matrix is the identity matrix, but one can use a “less than
perfect” confusion matrix if the training data “solution set” has
imperfections i.e., if the experimental truth had been learned by
STAPLE (or STAPLER). The inclusion of training data in (5)
can be viewed as an empirical (i.e., nonparametric) prior on the
rater reliabilities. When no data is recorded for a rater, the em-
pirical distribution defines the rater’s reliability. As more data is
acquired, the impact of the empirical prior diminishes. We can
generalize the impact of empirical training data on the estima-
tion of rater reliability through incorporation of an exogenously
generated prior probability distribution. For example, training
data from a canonical, or representative, rater may be used in
place of explicit training data. Alternatively, an explicit prior
may be introduced by incorporation of data motivated by a the-
oretical characterization of raters for a given task.

It is important to address the fact that in realistic situations it
is unlikely that raters would exhibit temporally or spatially con-
stant performance. This idea has been addressed through im-
plementations that ignore consensus voxels [19] and a more re-
cently proposed idea in which spatial quality variations are taken
into account using multiple confusion matrices per rater [20].
STAPLER idealizes the situation by assuming that rater perfor-
mance is consistent enough such that the training data is an ac-
curate depiction of a given rater’s performance. From our ini-
tial experimentation, this assumption seems to be only slightly
violated on empirical data. Nevertheless, addressing spatial and
temporal rater consistency variation is a fascinating area of con-
tinuing research.

E. Modification of the Prior Label Probabilities

There are several possible ways one could model the uncondi-
tional label probabilities (i.e., the label priors as opposed to the
rater priors, described above). If the relative sizes of the struc-
tures of interest are known, a fixed probability distribution could
be used. Alternatively, one could employ a random field model
to identify probable points of confusion (as in [7]). The simpler
models have the potential for introducing unwanted bias while
field based models may suffer from slow convergence. Here,
we use an adaptive mean label frequency to update the uncon-
ditional label probabilities

(6)

This simple prior avoids introducing substantial label volume
bias, as would occur with a fixed (nonadaptive) or equal proba-
bility prior. By introducing this prior (2) is now modified to be

(7)

where the a priori distribution is modified at each iteration.
While we believe it is unlikely to occur in practice, it is pos-

sible in principle that using this iterative global prior may pre-
vent STAPLER from converging. This would occur if the esti-
mation was constantly oscillating between conflicting estima-
tions for the performance levels and the true segmentation. We
have seen more accurate estimations of the true segmentation
occur using this prior; however, if convergence issues occur we
suggest using the traditional global prior described in [7].

III. METHODS AND RESULTS

A. Terminology

In the following, we investigate the performance of STAPLE
and STAPLER when used with label observations from different
categories of possible underlying “true” distributions and from
different classes of raters. We use several levels of randomiza-
tion in order to model and evaluate the different scenarios, and
proper interpretation of our results requires a common and con-
sistent terminology throughout.

• A label is an integer valued category assigned to an
anatomical location (e.g., pixel or voxel).
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• A label set is a collection of labels that correspond to a set
of locations in a dataset (typically, associated via spatial
extent—e.g., an image).

• A truth model for a label set defines the true labels for each
anatomical location.

• A generative label model is a definition for the probability
of observing a particular label set.

• A family of generative label models defines a series of re-
lated generative label models.

• A rater is an entity (typically a person or simulated person)
who reports (observes) labels.

• A rater model characterizes the stochastic manner in which
a rater will report a label given a true value of a label for a
particular location.

Since we are considering STAPLE and STAPLER approaches
without the use of spatial regularization, the relative order of a
label within a label set—i.e., its particular spatial arrangement or
location—does not impact statistical fusion. Therefore, the label
size, volume, or area is simply the number of pixels or voxels,
and this number also directly corresponds to label probability.

B. Data

Imaging data were acquired from two healthy volunteers who
provided informed written consent prior to the study. A high res-
olution MPRAGE (magnetization prepared rapid acquired gra-
dient echo) sequence was acquired axially with full head cov-
erage (149 81 39 voxels, 0.82 0.82 1.5 mm resolution).
In order to generate realistic simulated label sets, ground truth
labels were established by an experienced human rater who la-
beled the cerebellum from each dataset with 12 divisions of the
cerebellar hemispheres [see Fig. 3(B) and Fig. 4(A)] [21], [22].
For additional experiments the a topological brain atlas with 12
topologically correct brain, cerebellar, and brainstem labels was
used as a truth model [23].

Simulated label sets were derived from simulated raters using
a Monte Carlo framework. Two distinct models of raters (de-
scribed below) were evaluated as illustrated in Fig. 2 and de-
scribed below.

In the first model [“voxel-wise random rater,” see Fig. 2(A)],
each rater was assigned a confusion matrix such that the th
element indicates the probability that the rater would assign the
th label when the th label is correct. Label errors are equally

likely to occur throughout the image domain and exhibit no spa-
tial dependence. The background region is considered a labeled
region. This is the same model of rater performance as employed
by the STAPLE (or STAPLER) statistical framework. To gen-
erate each pseudo-random rater, a matrix with each entry cor-
responding to a uniform random number between 0 and 1 was
created. The confusion matrix was generated by adding a scaled
identity matrix to the randomly generated matrix and normal-
izing column sums to one such that the mean probability of true
labels was 0.93 (e.g., the mean diagonal element was 0.93). Ten
Monte Carlo iterations were used for each simulation.

In the second model [“boundary random raters,” see
Fig. 2(B)], errors occurred at the boundaries of labels rather
than uniformly throughout the image domain. Three parameters
describe rater performance: , and . The scalar is the rater’s
global true positive fraction. The boundary probability vector

Fig. 2. Random rater models. In a voxel-wise model (A), the distribution of
label probabilities depends on the underlying true label, but does not depend on
the local neighborhood or spatial position. In a boundary random rater model
(B), errors are uniformly distributed on the boundaries between regions. Sam-
pling of boundary errors is done iteratively with replacement and model up-
dating so that it is possible for cumulative errors to shift the boundary by mul-
tiple voxels in any location. The “For B Events” panel indicates that the proce-
dure is performed for all boundary voxels. Boundary surfaces are stored at voxel
resolution on a Cartesian grid.

encodes the probability, given an error occurred, that it was at
the th boundary. Finally the vector describes the error bias
at every boundary which denotes the probability of shifting a
boundary toward either bounding label. For an unbiased rater,

. Twenty-five Monte Carlo iterations were used
for each simulation. To generate a pseudo-random rater, the
boundary probability vector was initialized to a vector with
uniform random coefficients and normalized to sum to 1. To
generate a simulated random dataset with a given boundary
rater, the voxel-wise mask of truth labels was first converted
into a set of boundary surfaces. Then, the following procedure
was repeated for iterations (where B is the set of all
boundary voxels).

• A boundary surface (a pair of two labels) was chosen ac-
cording to the distribution. If the boundary did not exist
in the current dataset, a new boundary surface was chosen
until it did exist.

• A boundary point within the chosen surface was selected
uniformly at random for all boundary points between the
two label sets.

• A random direction was chosen Bernoulli to determine
if the boundary surface would move toward the label with
the lower index or the label with the high index.

• The set of boundary voxels was updated to reflect the
change in boundary position. With the change in labels,
the set of boundary label boundary pairs was also updated.

In this study, the mean rater performance was set to 0.8 and the
bias term was set to 0.5. These settings were chosen as we felt it
was a realistic model of unbiased rater performance. Note that
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Fig. 3. Simulations with voxel-wise random raters. Coronal sections of the three-dimensional volume show the high resolution MRI image (A), manually drawn
truth model (B), an example delineation from one random voxel-wise rater (C), and the results of a STAPLE recombination of three label sets (D). STAPLER
fuses partial label sets, but performance degrades with decreasing overlap (E). With training data (F), STAPLER performance is consistent even with each rater
labeling only a small portion of the dataset. Box plots in (E) and (F) show mean, quartiles, range up to ����, and outliers. The highlighted plot in (E) indicates the
simulation for which STAPLER was equivalent to STAPLE—i.e., all raters provide a complete set of labels. (A) Cerebellar MPRAGE. (B) Truth model labels. (C)
Labels from one rater, (D) STAPLE labels with three raters. (E) STAPLER reliability without training data. (F) STAPLER reliability with training data.

the boundary probability vector, , was randomly initialized for
each rater, which helps ensure that each rater is still unique in
the manner in which they observe each voxel.

C. Implementation and Evaluation

STAPLER was implemented in Matlab (Mathworks, Natick,
MA). The implementations of STAPLE and STAPLER pre-
sented in this manuscript are fully available via the “MASI
Label Fusion” project on the Neuroimaging Informatics Tools
and Resources Clearinghouse (NITRC ). The random rater
framework and analysis tools were implemented in the Java
Image Science Toolkit (JIST [24], [25]). All studies were
run on a 64 bit 2.5 GHz notebook with 4 GB of RAM. As
in [7], simultaneous parameter and truth level estimation was
performed with iterative expectation maximization.

Simulation experiments with random raters were performed
with a known, true ground truth model. The accuracy of each
label set for Simulations 1 and 2 was assessed relative to the
truth model with the Jaccard similarity index [26], [27] for each
labeled region

(8)

where is either an individual or reconstructed label set and
is the true label set. Bars indicate set cardinality. For Simulation
3 the dice similarity coefficient (DSC) [28] is used to analyze the
accuracy of each label set

(9)

where and are defined in the same manner as (8). The Jac-
card index and DSC range from 0 (indicating no overlap be-
tween label sets) to 1 (indicating no disagreement between label
sets). Multiple label accuracy assessment techniques were used
to diversify the presentation of our analysis.

1http://www.nitrc.org/projects/masi-fusion
2http://www.nitrc.org/projects/jist/

D. Simulations 1 and 2: Fusion of Incomplete and
Over-Complete Datasets

Simulated label sets were generated according to the charac-
teristic label sets and randomized rater distributions. For each
rater model (voxel-wise random raters and boundary random
raters), the following set of experiments was carried out. Tra-
ditional STAPLE was first evaluated by combining labels from
3 random raters [(1) and (3)]. Each of the three synthetic raters
was modeled as having labeled one complete dataset. STAPLER
was evaluated by labels from three complete coverages where

total raters were randomly chosen to perform each coverage
[(2) and (5)]. Each rater delineated approximately 1/ th (i.e.,
each rater labels between 50% and 4% of slices with the total
amount of data held constant), where is the number of raters
used to observe each coverage. Note that all simulations were
designed such that each voxel was labeled exactly three times;
only the identity of the simulated rater who contributed these
labels randomly varied.

Next, the advantages of incorporating training data were
studied for both rater models by repeating the STAPLER anal-
ysis with all raters also fully labeling a second, independent
test data set with known true labels [(2) and (5)]. Note, when

(i.e., each rater labeled the whole brain) and no training
data is used STAPLER is equivalent to STAPLE. In these simu-
lations, explicit rater priors (e.g., priors not implied by training
data) were not used. The procedure was repeated either 10 or
25 times (as indicated) and the mean and standard deviation of
overlap indices were reported for each analysis method. As in
the first experiment, all simulations were designed such that
each voxel was labeled exactly three times; only the identity of
the simulated rater who contributed these labels varied.

E. Simulation 1 Results: Incomplete Label Fusion With
Voxel-Wise Random Raters

For a single voxel-wise random rater, the Jaccard index
was [mean standard error across all regions
over simulated datasets, one label set is shown in Fig. 3(C)].
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Fig. 4. Simulations with boundary random raters. Axial sections of the three-dimensional volume show the manually drawn truth model (A) and sample labeling
from a single simulated rater (B) alongside STAPLER fused results from 3, 36, and 72 raters producing a total of three complete labeled datasets without training
data (E)–(G) and with training data (H)–(J). Note that boundary errors are generated in three-dimensions, so errors may appear distant from the boundaries in
cross-sections. Boundary errors [e.g., arrow in (F)] increased with decreasing rater overlap. Label inversions [e.g., arrow in (G)] resulted in very high error with
minimal overlap. As with the voxel-wise rater model (Fig. 3), STAPLER fuses partial label sets, but performance degrades with decreasing overlap (C). With the
addition of training data (D), STAPLER sustains performance even with each rater labeling only a small portion of the dataset. (A) Truth labels. (B) Single rater
label set. (C) STAPLER reliability without training data. (D) STAPLER reliability with training data. (E) 3 raters (100% slices). (F) 36 raters (13% slices). (G) 72
raters (4% slices). (H) 3 raters (100% slices). (I) 36 raters (13% slices). (J) 72 raters (4% slices).

The traditional STAPLE approach with three raters visually
improved the consistency of the results [one label set is shown
in Fig. 3(D)], and the average Jaccard index increased to

[first column of Fig. 3(E)]. In the remaining
experiments, the traditional STAPLE algorithm cannot be used
in a volumetric manner; although each voxel is labeled exactly
three times, the number of raters from which each label is
selected is greater than 3, and therefore STAPLER must be
used. As shown in Fig. 3(E), STAPLER consistently resulted
in Jaccard indexes above 0.9, even when each individual rater
labeled only 10% of the dataset. Additionally, the STAPLER
performance where each rater only observed a third of the
dataset [third column Fig. 3(E)] resulted in an equivalent per-
formance (in terms of Jaccard index) to the STAPLE approach
[first column Fig. 3(E)]. As the fraction of the data observed
decreased beyond a third, the STAPLER performance saw a
slowly degraded performance. For all STAPLER simulations,
use of multiple raters improved the label reliability over that
which was achievable with a single rater [Fig. 3(E)].

As shown in Fig. 3(F), use of training trials greatly improved
the accuracy of label estimation when many raters each label a
small portion of the data set [Fig. 3(E)]. No appreciable differ-
ences were seen when the number of raters providing the same
quantity of total data were varied (as indicated by the consistent
performance across labeling fraction).

Lastly, it is important to note that, as with [12], a large number
of observations by raters were fused (e.g., more than 35). Theo-
retically, it is possible for dramatic numerical instability issues
to occur using double precision arithmetic with this many raters.
However, the authors of this paper did not see any evidence of
mathematical instability during the writing of this manuscript.

F. Simulation 2 Results: Incomplete Label Fusion With
Boundary Random Raters

For a single boundary random rater, the Jaccard index was
[representative label set shown in Fig. 4(B)]. Using

three raters in a traditional STAPLE approach increased the av-
erage Jaccard index to [one label set shown in
Fig. 4(E)]. As shown in Fig. 4(C), the STAPLER approach led to
consistently high Jaccard indexes with as low as 25% of the total
dataset labeled by each rater. However, with individual raters
generating very limited data sets % , STAPLER yielded
Jaccard indexes lower than that of a single rater—clear evidence
that use of multiple raters can be quite detrimental if there is in-
sufficient information upon which to learn their reliabilities. In
a further analysis of this scenario, we found that the off-diag-
onal elements of the estimated confusion matrices become large
and result in “label switching” [seen in Fig. 4(C) and (E)–(G)].
This behavior was not routinely observed in the first experiment,
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but is one factor that led toward increased variability of Jac-
card index in the second experiment [see outlier data points in
Fig. 3(E)].

As shown in Fig. 4(D) and (H)–(J), use of data from training
trials alleviates this problem by ensuring that sufficient data
on each label from each rater is available. The Jaccard index
showed no appreciable differences when raters labeled between
4% and 100% of the dataset. We also observed that the artifac-
tual, large off-diagonal confusion matrix coefficients were not
present when training data were used. This is strong evidence
that use of training data stabilizes the reliability matrix estima-
tion process and can be a key factor in label estimation when
using large numbers of “limited” raters.

G. Simulation 3: Relationship Between Positive Predictive
Value and Fusion Accuracy

In this simulation, we investigate the causes of the major fail-
ures of STAPLE and attempt to relate it back to a single metric.
We propose that the positive predictive value (PPV) associated
with the raters for each label could serve as a predictor for the
quality relationship between STAPLE, Majority Vote and STA-
PLER. We define the positive predictive value for rater as the
probability that a given voxel has true label , given that the rater
observed label . Note, this is closely related (Bayes rule) to the
values of the performance level parameters (confusion matrices)
where each element represents the probably that rater observes
labels given that the true label is .

In order to assess this relationship, we apply STAPLE, STA-
PLER and Majority Vote to simulated label sets corresponding
to a model in which there is one large label (80% of the total
volume) and eight small labels (each corresponding to 2.5%
of the total volume). The total volume was 100 100 25
voxels. A collection of five raters were used for all experiments.
All raters observed each voxel exactly once. In a series of 20
experiments, PPV was linearly varied between 0.2 and 0.9. For
each experiment, 10 Monte Carlo iterations were used with
raters constructed such that simulated confusion matrices were
randomly constructed with the specified PPV. All raters were
equally likely to miss at all voxels (i.e., the STAPLE model
of rater behavior). The implementation of STAPLER used a
collection of training data that was the same size as the testing
data. Thus, when calculating the STAPLER performance level
parameters, the training estimate provided an approximately
50% bias to final performance level estimates on the testing
data. Matlab code to perform the construction of random rater
construction is included in the indicated repository.

H. Simulation 3 Results: Exploring Rater Priors and
STAPLE’s Modes of Failure

The results (in terms of fraction voxels correct) for Majority
Vote, STAPLE, and STAPLER with respect to the PPV are pre-
sented in Fig. 5. STAPLER outperforms both STAPLE and Ma-
jority Vote for all presented PPV’s. Interestingly, for PPV’s less
than 0.7 Majority Vote consistently outperforms STAPLE. Two-
sided t-tests were performed to assess differences between ex-
periments. The reason for this is mainly attributed to the fact that
STAPLE is unable to converge to an accurate estimate of the per-
formance level parameters. However, by utilizing the training

Fig. 5. Relationship between the accuracy of fusion algorithms and PPV. The
accuracy of STAPLE, STAPLER, and Majority Vote were assessed with respect
to the PPV. The PPV presented is the same for all five raters in each exper-
iment with 10 Monte Carlo iterations per PPV. The confusion matrices were
constructed as to maintain the PPV for each rater. Each rater was equally likely
to make a mistake at all voxels (i.e., the STAPLE model of rater behavior holds).
The results of a two-sided t-test can be seen next to each of the data points,
where red corresponds to the test between STAPLER and Majority Vote, and
blue corresponds to the test between STAPLER and STAPLE. Note, ** indi-
cates � � �����,* indicates � � ����, and NS indicates that the results were
not significant. The results indicate that for PPV’s less than 0.7 Majority Vote
consistently outperforms STAPLE despite the fact that the expected STAPLE of
model of rater behavior holds. STAPLER outperforms the other algorithms for
all PPV’s. The inlay shows that for PPV’s between 0.7 and 0.9 (generally con-
sidered the normally operating range) STAPLE is nearly as good as STAPLER
and outperforms Majority Vote.

data STAPLER is able to provide a much more accurate esti-
mate of the true segmentation. Unfortunately, for low PPV’s the
performance of all three algorithms is quite poor.

The results seen in the inlay on Fig. 5 are in line with the tra-
ditionally presented results when comparing STAPLE and Ma-
jority Vote. As expected, for higher PPV’s STAPLE begins to
outperform majority and is able to improve the quality of the
performance level estimates used to estimate the true segmen-
tation. STAPLER is consistently equal or better quality than
STAPLE. The prior for both STAPLE and STAPLER was set
based upon the empirically observed frequencies because the
true prior would not be available in practice. This small simu-
lation is consistent with more complete characterizations com-
paring STAPLE with voting approaches (see review in [17]).
The additional use of training data in STAPLER enables more
accurate determination of the prior and yields more consistent
results.

I. Empirical Example of STAPLER

Finally, quantitative differences between STAPLE and STA-
PLER were assessed in the practical setting of collaborative
labeling of the cerebellum with a high resolution MPRAGE
(magnetization prepared rapid acquired gradient echo) se-
quence. Whole-brain scans of two healthy individuals (after in-
formed written consent prior) were acquired (182 218 182
voxels), and each slice was cropped to isolate the posterior



520 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 31, NO. 2, FEBRUARY 2012

Fig. 6. Empirical experiment using axial cross section of cerebellar data to assess the performance of STAPLE (on a slice-by-slice basis) and STAPLER (volumetric
fusion). The representative slices shown in (A)–(C) present an example truth model, and observations by minimally trained undergraduate students, respectively.
The slices seen in (D) and (E) are the estimated labels by STAPLE and STAPLER, respectively. The plot on the top of (F) shows the accuracy on a per slice basis
of the observations (box plots) STAPLER (green), STAPLE (blue), and Majority Vote (red). The histogram on the bottom of (F) shows the number of observations
per slice. Lastly, the plot seen in (G) shows the difference in DSC between STAPLER, STAPLE, and Majority Vote on a per label basis. The legend for these label
numbers can be seen at the bottom of (G). (A) Truth labels. (B) Example observation 1. (C) Example observation 2. (D) STAPLE labels. (E) STAPLER labels. (F)
Accuracy per slice comparison. (G) Accuracy per label comparison.

fossa. Both datasets were manually labeled by a neuroanatom-
ical expert in a labor intensive process (approximately 20 h
each). One dataset was designated for training and one for
testing. The training data was implemented as catch-trials so
the raters were unaware when they were performing training or
testing data. Axial cross sections were created and presented
for labeling for both data sets. Thirty-eight undergraduate
students were recruited as raters. For the axial set, raters labeled
between 5 and 75 slices (training: 521 total) and between 10
and 100 slices (testing: 545 total). The raters participated at
will for various lengths of time and labeled randomized image
sections. As such, overlap of slice contributions between raters
was sparse and STAPLE could not be used to simultaneously
statistically fuse all data. To compensate, STAPLE was applied
on a slice-by-slice basis while STAPLER was applied simul-
taneously to all data. For comparison, Majority Vote was also
performed.

J. Empirical Example Results

Fig. 6(A)–(C) present representative slices from the truth
model and example observations of that slice from the min-
imally trained undergraduate students, respectively. We are
specifically considering collaborative labeling by minimally
(poorly) trained raters, so individual observations vary dra-
matically. Fig. 6(D)–(E) present representative STAPLE and
STAPLER estimates, respectively. The top portion of Fig. 6(F)
presents the accuracy of the estimation (in terms of fraction
voxels correct) for STAPLE, STAPLER and the individual

observations. It is important to note, however, that STAPLER
is consistently as good as or better than the upper quartile of
the observations and also outperforms STAPLE for all slices.
The bottom part of Fig. 6(F) presents a histogram indicating the
number of observations per slice. On average there were about
fifteen observations per slice. As with Fig. 5, Majority Vote
lies largely between the STAPLER and STAPLE approaches.
Lastly, Fig. 6(G) represents the accuracy of the algorithms on
a per label basis (excluding background) in terms of the DSC.
STAPLER significantly outperforms STAPLE on all labels
(two-sided t-test), and is significantly better than Majority Vote
on all labels except the vermis. This is mainly because of the
fact that STAPLER is able to construct a significantly more
accurate estimate of the performance level parameters because
of the ability to take into account incomplete, over-complete
and training data all at once.

IV. DISCUSSION

STAPLER extends the applicability of the STAPLE technique
to common research situations with missing, partial, and re-
peated data, and facilitates use of training data and reliability
priors to improve accuracy. These ancillary data are commonly
available and may either consist of exact known labels or raters
with known reliability. A typical scenario would involve a pe-
riod of rater training followed by their carrying out a complete
labeling on the training set. Alternatively, a model (parametric
or empirical) of a typical rater could be used to stabilize rater re-
liability estimates. Only then would they carry out independent
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labeling of test data. STAPLER was successful both when simu-
lated error matched modeled errors (i.e., the voxel-wise model)
and with more realistic, boundary errors, which is promising
for future application to work involving efforts of large num-
bers of human raters. STAPLER extensions are independent of
the manifold of the underlying data. These methods are equally
applicable to fusion of volumetric labels [29]–[31], labeled sur-
faces [32], [33], or other point-wise structures.

With the newly presented STAPLER technique, numerous
raters can label small, overlapping portions of a large dataset,
which can be recombined into a single, reliable label estimate,
and the time commitment from any individual rater can be min-
imized. This enables parallel processing of manual labeling and
reduces detrimental impacts should a rater become unavailable
during a study. Hence, less well trained raters who may partic-
ipate on a part-time basis could contribute. As with STAPLE,
both the labels and degrees of confidence on those labels are
simultaneously estimated, so that subsequent processing could
make informed decisions regarding data quality. Such an ap-
proach could enable collaborative image labeling and be a vi-
able alternative to expert raters in neuroscience research.

Decreases in reliability with low overlap were observed with
STAPLER. This may arise because not all raters have observed
all labels with equal frequency. For smaller regions, some raters
may have observed very few (or no data points). During esti-
mation, the rater reliabilities for these “under seen” labels can
be very noisy and lead to unstable estimates, which can re-
sult in estimation of substantial off-diagonal components of the
confusion matrix (i.e., overestimated error probabilities). These
instabilities were to be resolved through inclusion of training
data; the use of training data effectively places a data-adaptive
prior on the confusion matrix. Since each rater provides a com-
plete dataset, each label category is observed by each rater for a
substantial quantity of voxels. Hence, the training data provide
evidence against artifactual, large off-diagonal confusion ma-
trix coefficients and improves estimation stability. Furthermore,
without missing categories, there are no undetermined confu-
sion matrix entries.

The inclusion of priors on rater reliability can be seen as
forming a seamless bridge between pure STAPLE approaches
(in which reliability is estimated) and weighted voting (which
use external information to establish relative weights). The
former can be considered optimal when raters are heteroge-
neous and sufficient data are available, while the latter are well
known to be stable. In the proposed approach, the reliability
priors have an impact inversely proportional to the amount of
data present for a particular label.

The characterization of STAPLE failure according to the pos-
itive predictive value (as opposed to simply region size) opens
significant opportunities for predicting when additional regular-
ization might be needed. Intuitively, positive predictive value is
a natural metric for assessing the likelihood of STAPLE failure.
With low positive predictive value, each label observation pro-
vides little information. For a constant overall true positive rate,
the average positive predictive value across voxels is constant;
however, the positive predictive value across labels can vary
substantially due to heterogeneous region volume, rater relia-
bility, or relative proportion of observations per label class. We

found that for five raters, low positive predictive values STAPLE
is generally outperformed by Majority Vote, while for moderate
positive predictive values (between 0.7 and 0.9—generally con-
sidered to be the expected operating range), STAPLE is shown
to outperform Majority Vote.

Evaluation of STAPLER with heterogeneous labeled datasets
is an active area of research. Improvements in Jaccard index in
the boundary rater model were less than that in the voxel-wise
random rater model (from 0.83 to 0.91 versus 0.67 to 0.98). In
the voxel-wise rater example, both the estimation and under-
lying error models were the same. In the boundary rater model,
the model used during estimation was only a loose approxima-
tion of the underlying mechanism. This result provides an indi-
cation that simple rater confusion models may still be effective
in practice (with human raters) when difficult to characterize in-
terdependencies that might exist between rater confusion char-
acteristics, the data, and temporal characteristics.

As with the original STAPLE algorithms, STAPLER can
readily be augmented by introducing spatially adaptive, uncon-
ditional label probabilities, such as with a Markov random field
(MRF). Yet, inclusion of spatially varying priors in statistical
fusion is widely discussed, but rarely used. Spatially varying
prior parameters were suggested for STAPLE in the initial
theoretical presentation by Warfield et al. [1]. However, almost
uniformly, literature reports using STAPLE have ignored spatial
variation and instead opted for a single global parameter (e.g.,
[1]–[10]). Hence, application of spatially varying priors re-
mains a tantalizing and important area of potential growth, but
it is beyond the scope of the present paper. This work provides
an important and necessary “stepping stone” in the direction
of spatially varying priors. When we and/or others provide a
more solid foundation for the incorporation of spatially varying
priors, the present paper will provide an existing approach in
scenarios where data are missing or redundant and for cases
where consensus data are unavailable due to either poorly
trained or large numbers of raters.
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