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Abstract

In segmentation of magnetic resonance brain images, it
is important to maintain topology of the segmented struc-
tures. In this work, we present a framework to segment mul-
tiple objects in a brain image while preserving the topology
of each object as given in an initial topological template.
The framework combines the advantages of digital topology
and several existing techniques in graph cuts segmentation.
The proposed technique can handle any given topology and
enforces object-level relationships with little constraint over
the geometry. We apply our algorithm to brain tissue seg-
mentation and demonstrate its accuracy and computational

efficiency.

1. Introduction

In neuroimaging, topology is particularly important for
the study of the cerebral cortex; with a few changes to the
anatomy, one can assume that the cortex has the topology
of a hollow sphere. From this assumption, the highly con-
voluted surface of the brain can be flattened into a plane, a
sphere or a partially flattened surface and structural or func-
tional information can be visualized and analyzed more eas-
ily. Topology is also an important issue for computational
anatomy based on diffeomorphisms, for statistical shape
models using parametric models, and for physical simula-
tions of flow or tissues.

Bazin and Pham proposed a technique, known as
topology-preserving anatomy-driven segmentation
(TOADS) [2], which respects the topology of struc-
tures during the segmentation of magnetic resonance brain
images. They further improved the method by incorporat-
ing topology of groups of objects and statistical atlases [3],
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to better segment subcortical structures with similar in-
tensities. Combining fast marching and intensity-based
clustering algorithms, the TOADS framework guarantees
strict topological equivalence between the segmented image
and an initial topological template, and is therefore more
robust to noise compared with other tissue classification
methods which only use intensity information. Although
TOADS is superior in many aspects, its computation
is relatively time consuming. More efficient topology
preserving segmentation method would be favorable.

Based on the max-flow/min-cut theory, graph cuts is an
efficient combinatorial energy minimization tool and has
become popular in the past decade to solve vision prob-
lems such as image restoration, stereo and segmentation [5].
For the segmentation of binary image (with only foreground
and background), it has the advantage of fast computation,
global optimization and low sensitivity to initialization.
Graph cuts was first introduced by Greig et al. [ 12], and was
enhanced when Boykov and Kolmogorov proposed an effi-
cient max-flow/min-cut algorithm [5] and further applied
to N-d image segmentation by Boykov and Funka-lea [4].
Since one drawback of graph cuts is its inherent binary opti-
mization, many works have focused on applying graph cuts
to multi-label problems, e.g., in [11, 14, 18]. Among them
the most influential two are « expansion and o — (3 swap,
which are two fast approximation algorithms of global en-
ergy optimum, proposed by Boykov et al. [6]. To take topol-
ogy constraints into consideration, Zeng et al. proposed a
topology preserving segmentation algorithm [19] for binary
images called topology cuts, based on the aforementioned
Boykov-Kolmogorov algorithm. The technique was further
simplified and validated by Danek and Maska [10]. Hower
et al. is the first to apply graph cuts to 3-D brain image seg-
mentation [14], however, they did not address topological



issues.

In this work, we developed a framework to segment mul-
tiple objects in an image while preserving the topology of
each object as given in an initial topological template. The
framework combines o« — (3 swap to treat the multi-label
problem and topology cuts to keep topological constraints.
Although the framework is general enough for any N-d im-
age segmentation, we focus on tissue classification of 3-D
brain images. Utilizing TOADS’ topological template, we
validated our algorithm with simulated images generated
from the Brainweb phantom [8] and compared the results
with TOADS. Segmentation results indicate our graph cuts
approach improves running time compared with TOADS,
with similar or better segmentations.

2. Preliminaries
2.1. Graph cuts

The two-terminal (s — ¢) graph construction in a con-
ventional graph cut scenario is as the following. Each pixel
(voxel) in a 2-D (3-D) image is represented by a node in the
graph. Other than these regular nodes, there are two spe-
cial nodes called terminals. One terminal is the source (s),
usually standing for foreground, and the other terminal is
the sink () representing background. Each regular node is
connected to the two terminals via two edges respectively,
which are referred to as ¢-link. Neighboring regular nodes
are connected by edges called n-link according to certain
connectivity. Each edge is assigned a nonnegative weight,
representing the flow capacity through this edge. The graph
can be divided into two parts by deleting a set of edges so
that each part contains one of the terminals. The cost of a
cut is defined to be the sum of edge weights in the removed
set.

Let P be the set of all non-terminal nodes. The labeling
f corresponding to a cut naturally defines a Markov Ran-
dom Fields (MRF) type of energy

E(f)=> Dplfp)+ Y. Veulfofs) (D)

pEP (p,.a)EN

where f,, is the label for node p and V is the local neigh-
borhood, e.g., 8-neighborhood for 2-D images and 26-
neighborhood for 3-D. Function D,, refers to the data term,
which reflects the penalty of assigning node p to label f,.
The more likely that p has label f,, the smaller the penalty
should be. Function V), , is the smooth term that penalizes
discontinuities between neighboring nodes. Thus, the min-
imum of energy (1) corresponds naturally with the global
optimum of a segmentation.

According to the max-flow/min-cut theory, the minimum
cutin a s — t graph equals the maximum flow from s to ¢.
There are many algorithms to find the max flow. Boykov
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and Kolmogorov proposed an efficient augmenting paths al-
gorithm [5] based on searching two trees (rooted at s and ¢
respectively) dynamically. In their algorithm, each node can
have three states: active, passive or free. The active nodes
are the outer boundary of the tree and therefore can grow.
The passive nodes are blocked by nodes in the same tree.
The algorithm iteratively performs the following processes:
growth: grow two trees from S and T through non-
saturated edges until they touch giving a s — ¢ path.
augmentation: augment the path with the maximum pos-
sible flow, the saturated edges break and trees turn into
forests.

adoption: the isolated parts are connected to their origi-
nal trees through non-saturated edges if possible; if not, set
them to be free.

The algorithm ends when there is no active nodes and the
segmentation is determined by the tree membership.

2.2. Digital topology

Now we discuss some basic definitions in digital topol-
ogy for binary images. When considering topology on a
pixel or voxel grid, one important concept is the connectiv-
ity, e.g., the commonly used connectivity for a 2-D image is
4 or 8 connectivity, and for the 3-D case the 6, 18 or 26 con-
nectivity. The connectivity of an object and its complement
cannot be arbitrary, and the valid foreground/background
(or vice versa) pairs are (4,8) for 2-D and (6,18), (6,26) for
3-D.

Although the topology is a global property, topology
changes of an evolving object only take place at the non-
simple points on the boundary [9]. A simple point is a
point whose change of labels does not change the number of
connected components for both foreground and background
in a local neighborhood system. Therefore, allowing label
changes only for simple points will preserve the topology
of an object. This simple point criterion has been used in
levelset evolution [13], topology cuts, and TOADS.

2.3. Topology preserving max-flow

Here we briefly describe the topology preserving max-
flow algorithm in [10], which is based on the Boykov-
Kolmogorov algorithm [5]. Instead of two trees S and T,
Danek and Maska used four trees: Sg, Sg, Tr and Tg. F
and B are labels representing foreground and background
initialized from the topological interface. The idea of using
F/ B was first introduced by Zeng et al. [19].

The four trees are maintained dynamically as follows. A
free node is recruited by a tree if it has the same F/ B label
or it is simple; If two trees with the same terminal (S or
T) meet, points of Sp (Tr) will be recruited by S (I'g) if
they are simple; If two trees with different terminals meet,
a s — t path is found and augmented as in the Boykov-
Kolmogorov algorithm, followed by the adoption process



within each (sub) tree.

The segmentation result is determined not by the tree
membership but by the F'//B labeling. Notice that label
changes only occur at the boundary between foreground and
background. To ensure homogeneous propagation, Danek
and Maska store nodes according to a distance map so that
active nodes closest to the frontier will be considered first.
The distance map is updated whenever there is a node label
change.

2.4. o — [ swap

Boykov et al. [6] proposed two large moves: o expansion
and o — 3 swap to fast approximate global energy minimum
of (1) in case of multiple objects. Although « expansion
is considered more accurate and efficient, we still choose
«a — 3 swap mainly based on two reasons. First, checking
simple points is computationally expensive. Since o expan-
sion considers all the labels in one graph cut, which means
for even one node label change, it requires checking simple
point criterion for all the objects to maintain their topol-
ogy. On the other hand, o — 3 swap always checks simple
points for only two labels, which is more straightforward.
Although this may not be a major issue in this work, where
a brain is classified into only three tissue classes, however,
it will become critical if we extend our algorithm to classify
more sub-structures of the brain. Second, compared with
« expansion, & — (3 swap can be applied to more general
energy functions and this may benefit us if we want to add
shape priors into the energy function.

The key idea of a«— 3 swap is to iteratively perform graph
cuts between all pairs of labels with specific graph construc-
tion. In the graph cut of (say) o and ( labeled objects, the
nodes of all other labels are kept fixed. Please refer to [6]
for details. In our implementation, we adopt a more efficient
graph setup for the o — (3 swap according to Kolmogorov
and Zabih [15].

3. Proposed Algorithm

We use TOADS’ topological template for initialization,
and propose an iterative algorithm based on the o« — 3 swap
idea. In each iteration, graph cuts are performed for each
pair of labels by calculating topology preserving max-flow.
Special care is taken to guarantee that each object has the
same topology as in the atlas. In our model, the data term in
(1) is a function of intensity centroid, which is first learned
from the initial template, and then updated after each itera-
tion.

3.1. Initialization

The topology template we use is shown in Figure 1. It
was created from combining a digital version of the Ta-
lairach atlas and the MNI/ICBM atlas [1], and editing it
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Figure 1. Topology template for the brain: axial, sagittal, and coro-
nal views. White corresponds to white matter, light gray to gray
matter, dark gray to CSE. Each tissue type includes several dis-
connected regions, e.g., CSF includes sulcal CSF and ventricles.
Regions have the topology specified in Table 1.

through semiautomatic processing until reaching the de-
sired topology for each structure. Although the template
looks like an actual brain, the regions are very coarsely de-
fined, since it is not expected to directly affect the geom-
etry of the final segmentation. In this work, we are inter-
ested in segmenting brain images into three tissue classes:
cerebrospinal fluid (CSF), grey matter, and white matter.
Table | summarizes topology properties of the three struc-
tures. Similar to TOADS, we first register the template to
the original image via rigid transformation, so that the tem-
plate and image will overlap at the beginning phase.

For binary images, graph cuts has the advantage of low
sensitivity to initialization, since it can minimize energy (1)
globally as long as the energy is regular [15]. However,
with topological constraints and multiple labels, the global
optimum is not guaranteed. Moreover, as will be discussed
next, we model the data function in terms of intensity cen-
troid, which is learned from the initial interface. Therefore,
the initialization is crucial to our problem. In this work, we
run one iteration of TOADS from the registered template to
ensure a better initialization. This process adds only a small
overhead to the run-time of the whole algorithm.

3.2. Graph construction

Recall the energy function (1). Let £ be the set of all
labels and P( f,) the set of points having label f,,. We define
the data term to be

ZDp(fp) = Z Z wp(fp) ()
peP fr€L PEP(fp)
where
wy(fp) = A |e(fp) — 1l 3)

The coefficient A > 0 specifies a relative importance of the
data term versus the smooth term. ¢(f,) is the intensity cen-
troid for label f, and is defined as 3° cp(; ) Ip/4P(fp),
where §P(f,) is the number of voxels in P(f,) and I, is
the intensity value at voxel p. The function in (3) is reason-
able since voxel p is more likely to be assigned with label



Tissue Euler
Characteristic
CSF 4
Grey Matter 6
Whiter Matter -8

Connected | Internal | Topological
Components | Cavities Handles
3 1 2
4 0 1
1 2 7

Table 1. Topological properties of the brain template.

fp if the intensity difference is small. The centroid c(f,) is

learned from the initial topology interface and updated iter-

atively during the algorithm. The choice of using L1 norm

instead of the L2 norm is based on experimental results.
The smooth term in (1) is defined as

Z Voua(fps fa) = Z Wipg) - 6(fps fa) (D)
(P ) EN (p,9)EN
where .
st ={ o bl
and )
oo =ow () i ©

The delta function (5) makes the smooth function only ac-
count for discontinuities, i.e., when the labels of two neigh-
boring nodes are different. o is a parameter and function (6)
penalizes a lot when |, — I,| < o, indicating that it will be
unlikely to cut an edge between two nodes having similar
intensities. ||p — ¢|| is the Euclidean distance between two
voxels in a 26-neighborhood system.

In each iteration of our algorithm, we perform one graph
cut for each pair of labels, and the graph is constructed using
the method in [15]. @—link cost i§ set to be w(,, 4), and ¢-link
cost is set to be wy(f,), where f,, is the opposite label of f,
(for each pair, there is only two labels, i.e., 0 and 1).

3.3. Topological issues

As mentioned in Section 2.2, the connectivity of fore-
ground and background must be compatible. However, in
the case of multiple labels, the connectivity must be kept the
same for each label. This is because one object may be the
foreground in a graph cut of a particular pair of labels, but
be set as background for the graph cut of another pair. Dif-
ferent connectivity will create isolated parts which violates
the topological constraints. In this work, we set the connec-
tivity to be 6 for all objects in the image. Higher connectiv-
ity 18 or 26 may increase segmentation accuracy, however,
it may cause the problem of mutual intersection, a situation
where two objects connect through the same point (for in-
stance, the black and white squares of a checkerboard would
all mutually intersect in 18 or 26 connectivity). Please refer
to [2] for a detailed discussion on the topological issues for
multiple objects.
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Recall that in Section 2.3, Danek and Maska used a
distance map to keep track of the boundary between fore-
ground and background. Here we use two distance maps
instead of one. Consider our multi-label problem, when per-
forming an o — 3 swap for two labels, say /1 and l2, we are
actually dealing with three objects: Oy, , Oy, and Oy, where
b is the union of all labels other than [, and [5. Although
label of nodes in O, are fixed, when checking simple points
on the boundary of Oy, or Oy, the nodes in Oy, close to the
frontier will get involved, since they are in the neighbor-
hood of some other points inside O;, or O,,. Hence, we use
two distance maps. One map sets Oy, to be foreground and
nodes of all other labels to be background, vice versa for
the other map. The two maps are updated whenever there
is a label change. The simple point criterion on both maps
should be satisfied to determine whether a point is simple.
To check the simple point criterion for 3-D connectivity, we
use the technique in [16].

3.4. Algorithm

The complete algorithm is summarized as follows:

1. Register the topological template to the image.

Perform one iteration of TOADS based on the regis-
tered template, set initial labeling f according to the
resulting segmentation.

Calculate intensity centroids.

For each pair of labels («, 5) € L, perform one oo — (3
swap with topology preserving max-flow.

If the convergence criterion is not satisfied, loop to step
3.

6. Return f.

The convergence criterion is the relative change of in-
tensity centroid for each label being less than 1%. The al-
gorithm is implemented using C++ with a MATLAB inter-
face, based on a graph cut library created by the Center for
Biomedical Analysis (http://cbia.fi.muni.cz/projects/graph-
cut-library.html).



CSF

G

nas

ne

L]

nas

nE

Dice index
Dice indeax

L]

nr

sl
*

Dice index

L)

oy

L]
[53

nEs

e 1% I

i

Noise

&%

e J% e

Moise

%

Figure 2. Dice index for the segmentation of Brainweb phantom images, red dashed asterisk line for TOADS and black solid square line

for graph cuts.
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Figure 3. Segmentation example of TOADS and graph cuts. (a): original image from Brainweb phantom without noise; (b): ground truth
segmentation; (c): Registered brain template followed by one iteration of TOAD, used as the initialization of the graph cuts algorithm; (d):
TOADS segmentation; (e): segmentation using the graph cuts method.

4. Experiments

We perform several validation experiments to compare
our results with TOADS using simulated images generated
from the Brainweb phantom [8]. The images are created as
Imm T1 images, with 181 x 217181 voxels and increasing
levels of noise from 0% to 9%. TOADS can be downloaded
from (http://www.nitrc.org/projects/toads-cruise/), and was
run using default parameters. We use 26-neighborhood sys-
tem in our graph cuts algorithm with a unique set of param-
eters for all images. Both TOADS and the graph cuts al-
gorithm use a topological template with four objects: back-
ground, cerebro-spinal fluid (CSF), grey matter (GM) and
white matter (WM). The images were first processed to re-
move extra-cerebral tissues using SPECTRE [7], a skull
stripping technique.

The overlap between the segmentations and the Brain-
web ground truth was computed using the Dice overlap co-
efficient (D(X,Y) = 2|XNY|/(]X|+]Y)) for white mat-
ter, gray matter and CSF respectively, which are shown in
Figure 2. The Brainweb ground truth has arbitrary topology
and therefore TOADS and our results will always deviate
from it because the latter two are constrained to preserve
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Figure 4. Running time for the segmentation of Brainweb phantom
images, red dashed asterisk line for TOADS and black solid square
line for graph cuts.

topology as in Table 1. Figure 2 indicates that our segmen-
tation is more accurate when the noise level is low (less than
5%), and TOADS does better for higher noise levels (for
CSF and GM). An example of TOADS and our segmenta-
tion for an image without noise is given in Figure 3.



The Brainweb image serving as ground truth is a anatom-
ical model consisting of a set of 9 “fuzz”tissue membership
volumes, including white matter, grey matter, cerebrospinal
fluid and others. Figure 3 (b) shows a view of the ground
truth image after the skull stripping pre-process, which is
used in our Dice calculation. There is clearly other labels,
e.g., skull and skin (on the outer boundary of CSF) and glial
matter (on the boundary of the ventricles). The remaining
skull and skin tissues reflect errors in the skull stripping and
therefore cause the Dice results for TOADS and our algo-
rithm to be low for CSF (Figure 2). The reason why we
keep all other labels in the ground truth is because it is a
scenario more similar to practical cases, where one may not
expect perfect skull stripping.

Since one of our motivations to use graph cuts is its com-
putational efficiency, we compare running time of the two
algorithms, which is shown in Figure 4. All experiments
are performed on a AMD Opteron 2.73Ghz PC. The results
show that our algorithm is more efficient and independent
of the amount of noise in the image, whereas TOADS con-
verges more slowly for larger noise levels.

5. Conclusions

In this paper, we proposed a multi-label image segmen-
tation framework which respects topology. The framework
originates from another topology preserving segmentation
technique (TOADS), and incorporates advantages of graph
cuts, a method which has proven to be efficient for a variety
of segmentation problems in computer vision. The frame-
work is validated by extracting cerebro-spinal fluid, grey
matter and white matter from simulated brain magnetic res-
onance images. The results show that our algorithm is about
three times more efficient on average than TOADS, with
similar or better segmentations.

In the future, topological constraints of groups of ob-
jects [3] can be embedded into our graph cuts framework.
We may also consider including statistical atlases by in-
troducing shape priors to the graph construction, e.g., as
in [17]. These attempts will enable our framework to seg-
ment subcortical structures with similar intensities, such as
the hippocampus and amygdala.
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