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Several popular classification algorithms used to segment magnetic resonance brain images assume that
the image intensities, or log-transformed intensities, satisfy a finite Gaussian mixture model. In these
methods, the parameters of the mixture model are estimated and the posterior probabilities for each tis-
sue class are used directly as soft segmentations or combined to form a hard segmentation. It is suggested
and shown in this paper that a Rician mixture model fits the observed data better than a Gaussian model.
Accordingly, a Rician mixture model is formulated and used within an expectation maximization (EM)
framework to yield a new tissue classification algorithm called Rician Classifier using EM (RiCE). It is
shown using both simulated and real data that RiCE yields comparable or better performance to that
of algorithms based on the finite Gaussian mixture model. As well, we show that RiCE yields more con-
sistent segmentation results when used on images of the same individual acquired with different T1-
weighted pulse sequences. Therefore, RiCE has the potential to stabilize segmentation results in brain
studies involving heterogeneous acquisition sources as is typically found in both multi-center and longi-
tudinal studies.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Various automated segmentation techniques have been pro-
posed to segment brain tissues—typically cerebrospinal fluid
(CSF), gray matter (GM) and white matter (WM)—in magnetic
resonance (MR) images. Accurate and reliable tissue segmentation
is extremely important to the neuroscience community because it
is a key step in nearly every image-based study of the brain in
health and disease (Resnick et al., 2003; Querbes et al., 2009; Raz
et al., 2003). Manual segmentation by experts is still considered
to be the gold standard in brain quantification though automated
or semi-automated segmentation is acceptable for large-scale
studies in which the image acquisition parameters are identical
and manual segmentation is impractical (Tu et al., 2007).

Fully automated brain tissue segmentation algorithms can be
sensitive to noise, partial volume effects, acquisition protocols,
scanner differences, and imaging artifacts such as intensity inho-
mogeneities, zippers, and ringing. Techniques have been proposed
to address all of these limitations and have been very successful
in large part. Most algorithms incorporate spatial smoothness to re-
duce isolated misclassification due to noise and local artifacts (cf. Li,
1995; Leemput et al., 1999). Intensity inhomogeneities are either
ll rights reserved.
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estimated in preprocessing (e.g. Sled et al., 1998; Chang and
Fitzpatrick, 1992; Vovk et al., 2004) or incorporated within the clas-
sification algorithm itself (e.g. Pham and Prince, 1999; Pham, 2001;
Styner et al., 2000). Incorporation of statistical atlases (cf. Woolrich
et al., 2009; Prastawa et al., 2004) and control of topology (Bazin
and Pham, 2007) have been used to reduce misclassification error
through incorporation of prior knowledge. The partial volume effect
is typically addressed by producing a soft classification, i.e. one that
provides membership functions or posterior densities associated
with each tissue class (Leemput et al., 2003; Choi et al., 1991; Noe
and Gee, 2002). The effect can also be addressed by super-
resolution methods (Rousseau, 2008; Souza and Senn, 2008),
probabilistic models, or topological methods (Bazin and Pham,
2007; Wua and Chung, 2009; Leemput et al., 2009).

Compensation for different acquisition protocols or scanner dif-
ferences has been particularly problematic for tissue segmentation
algorithms (Clark et al., 2006). Approaches to normalize histo-
grams to a common scale have been proposed (Nyul and Udupa,
1999; Han and Fischl, 2007; He et al., 2008), and most recent algo-
rithms use some kind of explicit or implicit intensity normalization
preprocessing in practice. Achieving true pulse sequence indepen-
dence, though, currently requires one to use special pulse se-
quences (Fischl et al., 2004) that permit computation of the
underlying tissue parameters to which a segmentation algorithm
can be applied (Prince et al., 1995). Though admirable in spirit
and quite effective, common practice precludes routine use of spe-
cial pulse sequences, and modern study designs have typically
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1 For interpretation of color in Figs. 1, and 2, the reader is referred to the web
version of this article..
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relied on the use of a multiple scanners or types of scanners or
multiple structural acquisition protocols with fixed parameters
(Shock et al., 1984; Mueller et al., 2005) in order to yield images
whose segmentations can be quantitatively compared within a
particular study (Wolz et al., 2010).

Two classes of tissue classification methods have emerged as
leading algorithms for MR brain image segmentation: methods
(Bezdek et al., 1993; Pham and Prince, 1999; Siyal and Yu, 2005)
based on fuzzy c-means (FCM) (Bezdek, 1980) and methods based
on a Bayesian framework using a finite Gaussian mixture model
assumption (Leemput et al., 2003; Hong et al., 2007; Woolrich
et al., 2009; Ashburner and Friston, 2005; Awate et al., 2006). Both
approaches have been augmented to account for spatial smooth-
ness (Pham, 2001; Held et al., 1997; Scherrer et al., 2008), most
commonly using a Markov Random Field (MRF) (Li, 1995). At this
time, the performances of these methods are very similar ‘‘across
the board’’ and the algorithms are widely used in large-scale stud-
ies. Yet experience shows that algorithm parameters must be
tuned in order to achieve satisfactory results when acquisition
parameters change. We suggest in this paper that both classes of
algorithms operate with a less accurate model of image intensity
and that improving the model can provide improved segmentation
and robustness to pulse sequence changes.

The FCM method is not based on an underlying intensity model,
though one can tease apart the variational formulation in order to
assert its basic assumptions. In its conventional formulation, FCM
is a clustering method that associates voxels to all classes in pro-
portion to the value of its computed membership functions. The
clusters are uniformly spread around each center intensity, which
is also estimated by the algorithm. The so-called ‘‘fuzziness param-
eter’’ in FCM, roughly speaking, determines how spread out the
clusters are from their centroids (Yu et al., 2004; Roy et al.,
2008). The basic formulation is not Bayesian, and there is no for-
mula relating the underlying tissue intensities to the observed
intensities and there is no explicit noise model. Accommodations
have been made to account for clusters that might not have the
same size (Cavalcanti and de Carvalho, 2005; Roy et al., 2008; Gus-
tafson and Kessel, 1979), but the added parameters must generally
be known in advance and tuned to any given pulse sequence.

The most common Bayesian formulations are based on a finite
Gaussian mixture model, in which the conditional probability of
the image intensity for a particular tissue type is Gaussian (Leem-
put et al., 1999). The parameters of the underlying Gaussian condi-
tional probabilities (and often the mixture coefficients that
proportionally weight these densities) are typically estimated
using the expectation maximization (EM) algorithm (Dempster
et al., 1977). If image smoothness is maintained through the use
of an MRF, then the EM algorithm solves a maximum likelihood
estimation problem and optimal estimates of both the mixture
parameters and the posterior densities are found. The model choice
together with the estimation procedure automatically accommo-
dates for clusters that might be of different sizes and relative pro-
portions (if the mixture coefficients are also estimated). It is logical
to assume that the additional flexibility of this model together with
the Bayesian optimality would lead to a better result than FCM.
However, there are numerous papers that support the contrary
opinion.

We are led to question the underlying assumption of a Gaussian
model of the intensities in the current Bayesian methods. In con-
ventional MR imaging, the acquired raw data is the underlying sig-
nal in ‘‘real’’ (in-phase) and ‘‘imaginary’’ (quadrature phase)
channels, each of which is corrupted by additive zero-mean i.i.d.
Gaussian noise. The complex image intensities are obtained using
the Fourier transform, which preserves the Gaussian nature of
the noise in the real and imaginary components of the image inten-
sities (Bernstein et al., 1989). Since the observed image intensities
are formed by taking the complex modulus of the real and imagi-
nary parts of the complex image, each image voxel becomes a Ri-
cian random variable (Gudbjartsson and Patz, 1995; Henkelman,
1985). See Section 2 for more details.

The underlying signal values are generally different at each vox-
el because of biological variability. Therefore, the probability distri-
bution that describes the collection of all voxels taken together is a
Rician mixture model in which there is a different conditional Ri-
cian probability density function for each underlying signal value.
By noting that within each tissue class the underlying signal inten-
sities are close in value, this rich mixture model can be approxi-
mated by one that has only three conditional Rician probability
densities, one for each tissue class. When the underlying signal val-
ues are large relative to the noise, it is known that a Rician distri-
bution can be approximated by a Gaussian distribution (Sijbers
et al., 1998). But since this approximation becomes less accurate
with smaller underlying signal values, we can expect the greatest
impact of using this Rician mixture model versus a Gaussian mix-
ture model to be in the tissue classes having the smallest underly-
ing signal values.

To illustrate this point, in Fig. 1a we show the smoothed histo-
gram of intensities in an inhomogeneity corrected (Sled et al.,
1998) Magnetization Prepared Rapid Gradient Echo (MPRAGE) im-
age together with two fitted histograms, one using a mixture of
Gaussians (blue1) and one using a mixture of Ricians (red). It is ob-
served that the Rician fit is better, an observation that can be quan-
titatively verified by noting that the Kullback–Leibler (KL)
distances (Kullback and Leibler, 1951) between the image histo-
gram and the Gaussian fit is 0.0418 and between the image histo-
gram and the Rician fit is 0.0097. In Fig. 1b, the fits of the individual
class conditional probabilities derived from the Gaussian (blue)
and Rician (red) fitting process. It is observed that the CSF densities
show the most difference, which is to be expected since these
intensities are the lowest. The WM densities are most similar,
which makes sense since these tissues have the highest intensities
in this T1-weighted pulse sequence, and are likely to be well
approximated by a Gaussian as a result.

In this paper, we propose a brain image tissue segmentation algo-
rithm based on an underlying finite Rician mixture model, which we
call Rician Classifier using EM (RiCE). We primarily focus on the dif-
ference between Rician and Gaussian models of the tissue intensi-
ties. Consequently, we do not include any bias-field correction in
our method, instead, we pre-process all the data using a non-para-
metric inhomogeneity correction method (N3) (Sled et al., 1998).
Although the inhomogeneities in different MR sequences can de-
pend on the sequence itself, N3 has been shown to work well on dif-
ferent sequences (Manjon et al., 2007; Mangin, 2000). In order to
include smoothness on the resulting segmentation, the algorithm
includes an MRF model. This fully automatic algorithm does not re-
quire parameter choices, relying instead on the assumption that
cluster intensity distributions will be Rician regardless of the pulse
sequence. The main contribution of this work is to improve segmen-
tation consistency between different pulse sequences having T1-
weighted (T1w) contrast. We compare our method with a Gaussian
intensity model approach, SPM (spm_segment function) (Ashburner
and Friston, 2000, 2005; Chard et al., 2002), a Gaussian model ap-
proach on log-transformed intensities, FAST (Woolrich et al., 2009)
and two FCM based approaches, Freesurfer (Dale et al., 1999)
(mri_ms_EM function) and FANTASM (Pham, 2001).

We outline our assumptions on noise models and EM are ex-
plained in Section 2 and the algorithm is described in Section 3.
Validations on simulated and real data are presented in Sections



Fig. 1. (a) The histogram (solid black) of an inhomogeneity corrected (Sled et al., 1998) MPRAGE image (shown inset), overlapped with a Gaussian (dotted blue) and Rician
(dashed dot) fitting. The KL distance (Kullback and Leibler, 1951) between the histogram and Gaussian fit is 0.0418, while it is 0.0097 between the histogram and the Rician
fit. (b) CSF, GM, WM distributions as obtained from the Rician (dot) and Gaussian (solid colored) fit. The histograms are smoothed with a Gaussian kernel of standard
deviation of 3.0.
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4.1 and 4.2, respectively. Then we show the improvement in seg-
mentation consistency of the Rician model over a comparable
Gaussian model in Section 5 and the comparison of our method
with other state of the art methods in Section 6.
2. Background

2.1. Noise estimation

Magnitude images are most commonly used in MRI. They are ac-
quired in two steps. Complex data is acquired in separate in-phase
and quadrature phase channels. We assume that each channel is cor-
rupted with uncorrelated additive Gaussian noise, having zero mean
and the same variances (Gudbjartsson and Patz, 1995; Bernstein
et al., 1989; Henkelman, 1985). Then real and imaginary images
are reconstructed from the complex data by inverse Fourier trans-
form. The inverse Fourier transform, being linear and orthogonal,
preserves the Gaussian nature of the noise and the noise between
the real and imaginary images remain zero mean and uncorrelated.
Define AR and AI to be the true noise-free real and imaginary recon-
structed images. They are corrupted by additive zero-mean indepen-
dent Gaussian noise with the same variance r2. Thus the intensity
image y is the magnitude of the complex image AR + jAI, and can be
shown to have the following Rician distribution (Rice, 1954):

fRðyjv;rÞ ¼
y
r2 e

� y2þv2

2r2

� �
I0

yv
r2

� �
; y P 0; r > 0; ð1Þ

where v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

R þ A2
I

q
and Ip is the modified pth order Bessel function

of the first kind.
Fig. 2. (a) Rician distribution of y (Section 2.1) for different values of v (Wikipedia, 201
SNR = 2. Clearly, Gaussian approximation of the actual Rician PDF is biased.
Fig. 2a shows that the Rician PDF is quite different from a
Gaussian for low SNR, where SNR is defined as v

r. For higher SNR
(>2), it can be shown that the Rician distribution asymptotically
approaches a Gaussian distribution with mean

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ r2
p

and vari-
ance r2 (Sijbers et al., 1998). Fig. 2b shows a Rician PDF with
SNR = 2, with the corresponding asymptotic Gaussian meanffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2 þ r2
p

and variance r2. Clearly, the Gaussian PDF is biased for
high SNR (=2) and any estimator based on a Gaussian assumption
will also be biased. For example, the CSF having a low SNR follows
the Rician more closely than a Gaussian (Fig. 1a). Thus a Gaussian
approximation of the PDF will lead to a biased segmentation and a
Rician estimation of the PDF will be more appropriate. We describe
in the next section how such a Rician estimation approach can be
formulated and carried out using the EM algorithm.

2.2. Expectation maximization

We want to classify a brain MR image into three major tissue
classes, CSF, GM, and WM. Given a voxel intensity yj, j 2X, X being
the image domain, define zjk as the indicator function of the jth
voxel belonging to the kth class, k = 1, . . . ,K. In our case, K = 3, for
the three classes. Thus, zjk is equivalent to the hidden underlying
true segmentation of the tissues. Also define the Rician parameters
for the kth class to be {vk,rk}.

Let the unknown prior probabilities of observing yj from the kth
class be pjk. Now a finite mixture model representation of the like-
lihood of observing yj is given by

f ðyj; zjjHÞ ¼
YK

k¼1

½pjkfRðyjjHÞ�
zjk ; ð2Þ
1). (b) Rician PDF (red) overlapped with the corresponding Gaussian one (blue) for
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where zj = [zj1,zj2, . . . ,zjk] is a 1 � K vector of indicator functions. The
parameter collection H can be defined as

H ¼
[
j2X

[K
k¼1

fvk;rk;pjkg: ð3Þ

Here, the pjks can be treated as unknown parameters, but the num-
ber of such parameters is still large (K � jXj). Later, we will para-
metrize pjk using an MRF approach and redefine H so that the
number of unknown parameters is smaller.

The segmentation problem now becomes an estimation prob-
lem, where the estimates of the underlying segmentation zjs are
calculated from the observed intensities yj. The segmentation can
be computed if H is known, while H is known only when zjks
are known. This naturally leads to the use of the EM algorithm to
find the maximum likelihood (ML) estimate of the parameters –

bH ¼ arg maxH

X
j2X

X
zj

log f ðyj; zjjHÞ: ð4Þ

The EM algorithm iteratively estimates the underlying true segmen-
tation zjk based on the current estimate of H, and then updates H
based on the estimate of zjk. This can be described as a two step
process:

� E step: To find new update H(m+1) at the mth iteration, we
compute,
QðHðmþ1ÞjHðmÞÞ ¼ E½log f ðZjHðmþ1ÞÞjy;HðmÞ�
� M step: Find new estimation H(m+1) based on the previous esti-
mation of parameters H(m) using the following equation:
Hðmþ1Þ ¼ arg maxHðmþ1ÞQðHðmþ1ÞjHðmÞÞ;

where Z ¼ fzjk : j 2 X; k ¼ 1 . . . Kg is the true underlying segmen-
tation of the whole image.

The algorithm terminates if the difference between log-likeli-
hoods of successive iterations drops below a certain threshold. It
has been shown that the EM algorithm is guaranteed to increase
the likelihood, but the final convergence depends heavily upon
its initialization. If the algorithm is not initialized near the true
maximum, it may find a local optimum, so the EM is often initial-
ized using some prior information about H.
3. Method

3.1. A finite mixture model using Ricians

We now develop an EM classification algorithm for the Rician
mixture model. The log-likelihood of Eq. (2) is extended to include
random noise removal by introducing an MRF on the underlying
segmentation zjk. The total log-likelihood after these modifications
is given by,

f ðyj; zjjHÞ ¼
YK

k¼1

½fMRFðzjkjzNj
;HÞfRðyjjHÞ�

zjk ð5Þ

The unknown prior probabilities pjk in Eq. (2) are replaced by a
spatially varying function fMRFðzjkjzNj

;HÞ following the model de-
scribed in (Nikou et al., 2007). In the following sections, we will
explain each of the terms and modifications added in Eq. (5). So
far, it is evident that {vk,rk} should be estimated, so they are in-
cluded in H. We will add more parameters to H as we explain fMRF

in Section 3.2.
3.2. MRF on the underlying segmentation

Biologically, the underlying segmentation Z should be locally
smooth. The local smoothness is often captured by introducing
an MRF on the segmentation (Leemput et al., 2003; Li, 1995), which
is essentially a smoothness criteria on the prior probabilities pjk.
No spatial relationship was imposed on them in Eq. (2) and they
are assumed to be unknown parameters. Under the MRF assump-
tion, these probabilities depend on the segmentation of the neigh-
borhood voxels. Defining zNj

as the underlying segmentation of a
neighborhood Nj of the jth voxel, pjk in Eq. (2) is changed to a spa-
tially varying prior fMRFðzjkjzNj

;HÞ, which depends on the segmenta-
tion zNj

of the neighborhood Nj.
The exact structure of fMRF depends on the smoothness assump-

tions of Z. The Hammersley–Clifford theorem (Besag, 1974) states
that for the function fMRF to be a Markov Random Field, it must be
of the form,

fMRFðZjHÞ ¼
1
M

expf�UðZjHÞg; ð6Þ

where U(�jH), called the Gibbs potential, is usually a sum of func-
tions of the neighborhoods of each voxel and M is a normalizing
constant. The Ising model and the Potts model (Potts, 1952) are
two common examples of the Gibbs Potential, which have been suc-
cessfully used in previous brain tissue segmentation methods
(Leemput et al., 1999; Zhang et al., 2001). Usually the most general
representations of these models contain a few ‘‘interaction coeffi-
cients’’ (Li, 2001) that are difficult to estimate. A computationally
simpler enhancement to these models has been suggested in (Nikou
et al., 2007), where U is taken as a sum of Gaussian functions (San-
jay-Gopal and Herbert, 1998). We follow this idea and define the
MRF as,

UðZjHÞ ¼
X
j2X

UðzjjzNj
;HÞ ¼

X
j2X

XK

k¼1

‘jk

X
i2Nj

ðzjk � zikÞ2; ð7Þ

where ‘jk is a weighing function. From this Gibbs potential, a natural
choice of fMRFðzjkjzNj

;HÞ is

fMRFðzjkjzNj
;HÞ ¼ 1ffiffiffiffiffiffiffi

2p
p

bkjNjjL
exp �

P
i2Nj
ðzjk � zikÞ2

2b2
k

( )
: ð8Þ

L is a normalizing constant so as to make
P

k fMRFðzjkjzNj
;HÞ ¼ 1. The

assumption behind such an MRF is that without any prior knowl-
edge on the smoothness of the underlying segmentations Z; zjk is
assumed to be Gaussian distributed with mean 1

jNj j
P

i2Nj
zik and var-

iance b2
k . This formulation assures that the spatial prior fMRF is high

if and only if segmentation of the jth voxel is the same as the seg-
mentation of its neighborhood. It is also possible to estimate the
variances b2

k by EM. Thus the parameter collection H becomes,

H ¼
[K
k¼1

fvk;rk; bkg: ð9Þ

Now that we have defined H and fMRF from Eq. (5), the maxi-
mum likelihood estimate of H is described in the next section.

3.3. Classification algorithm

To estimate the parameters given in Eq. (9), we use the EM algo-
rithm to maximize the log-likelihood from Eq. (5). The E step re-
quires computation of E(zjkjyj,H). Using the fact that zjk is a
binary variable with zjk 2 {0,1}, it can be shown that
P(zjk = 1jyj,H) = E(zjkjyj,H). Thus the conditional probability is also
the conditional expectation. Define wðmÞjk ¼ Eðzjkjyj;H

ðmÞÞ as the con-
ditional expectation at the mth iteration of the EM algorithm. Then
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using the mean-field approach (Zhang, 1992; Li, 1995) to approxi-
mate the true conditional MRF by its estimate, we obtain,

f̂ MRF zjkjzNj
;HðmÞ

� �
� 1ffiffiffiffiffiffiffi

2p
p

bðmÞk jNjjLðmÞ

� exp �
P

i2Nj
wðmÞjk �wðmÞik

� �2

2bðmÞk

2

8><>:
9>=>;; ð10Þ

wðmþ1Þ
jk �

f̂ MRFðzjkjzNj
;HðmÞÞfRðyjjHðmÞÞPK

k¼1 f̂ MRFðzjkjzNj
;HðmÞÞfRðyjjHðmÞÞ

; ð11Þ

where zjk is replaced by its current conditional expectation wðmÞjk .
The M step requires estimation of H given the current segmen-

tation wðmÞjk . The update equations are given by,

v ðmþ1Þ
k ¼

P
j2XwðmÞjk yjc

ðmþ1Þ
jkP

j2XwðmÞjk

; ð12Þ

rðmþ1Þ
k

2
¼
P

iw
ðmÞ
jk y2

j þ v ðmþ1Þ
k

2
� 2yjv

ðmþ1Þ
k cðmþ1Þ

jk

� �
2
P

iw
ðmÞ
jk

; ð13Þ

bðmþ1Þ
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j2X

P
i02Nj

wðmÞjk �wðmÞik

� �2
� �

N

vuuut
: ð14Þ

Here, N is the number of voxels in the image domain and,

cðmÞjk ¼
I1 fðmÞjk

� �
I0 fðmÞjk

� � where fðmÞjk ¼
yjv

ðmÞ
k

rðmÞk

2 :

Eqs. (12)–(14) are solved by a coordinate descent method to find
each of v ðmþ1Þ

k ; rðmþ1Þ
k and bðmþ1Þ

k . We continue iterating through
the EM algorithm until the increases in log-likelihood of successive
iterations are below a threshold. The derivations of Eqs. (11)–(14)
are provided in Appendix A.

The algorithm is executed in the following way. The parameters
{vk,rk,bk} are first initialized by a k-means algorithm, then the esti-
mates are fed to a Gaussian mixture model (GMM). The output of
the GMM is used as the initialization of RiCE. Other clustering algo-
rithms can also be used for initialization, but empirically, we have
found that a good solution is reached quickly and the log-likeli-
hood increases rapidly this way. This is in accordance with previ-
ous findings (Diplaros et al., 2007), although the theoretical
evidence, to the best of our knowledge, is still lacking (Neal and
Hinton, 1999).
Fig. 3. Brainweb phantom validation: comparison of RiCE (2nd row) with ground truth (
phantom with 3% noise.
We evaluate Eqs. (10)–(14) to get the parameters H(m) and the
posteriors wðmÞjk . The final values of the wðmÞjk s are the expectations
for the jth voxel to be included in the kth class, referred to as the
‘‘soft classification’’. The hard segmentation for the jth voxel is gi-
ven by maxk{wjk}.

4. Validation

4.1. Brainweb phantom validation

We first validate RiCE on the Brainweb phantom (Cocosco et al.,
1997) and compare it with SPM (Ashburner and Friston, 2000),
FAST (Zhang et al., 2001), FANTASM (Pham, 2001) and a FCM based
segmentation from Freesurfer (Dale et al., 1999), (mri_ms_EM
function). SPM uses a Gaussian intensity model and it tries to re-
cover the non-Gaussianity of the intensity PDF by modeling it with
multiple Gaussians. FAST uses a Gaussian model on the log trans-
formed intensities. Freesurfer and FANTASM use different varia-
tions of FCM. Thus, RiCE is directly comparable to SPM, while we
compare it with the other methods to show the advantages of
using a Rician model.

The phantom data comprises 15 phantoms, with five different
noise levels (0–9%) and three different inhomogeneity levels (0%,
20%, 40%). Both the soft classification and the hard segmentation
of the three tissues are shown in Fig. 3. The ground truth and the
fuzzy memberships, from which the phantoms are generated, are
also available and shown in the top row of Fig. 3. We use the true
hard segmentation to find Dice coefficients of the three tissue clas-
ses for each of the methods.

Table 1 presents Dice coefficients for each of the noise levels
averaged over three inhomogeneity levels. RiCE is comparable to
the other methods, ranking in the top two in 16 out of 20 cases.
As the phantoms are corrupted by Rician noise (Cocosco et al.,
1997), RiCE gives better CSF segmentation than the Gaussian based
method (SPM) on low noise levels, with a slightly reduced perfor-
mance on high noise levels (7–9%), where it becomes comparable
to both FAST and SPM. FAST, Freesurfer, SPM and RiCE do not per-
form as well as FANTASM on low noise data. We believe the reason
for this is the small standard deviation of the PDF of the tissue clas-
ses, for which the EM iterations become unstable and may not con-
verge to the true minima.

4.2. IBSR validation

The next validation experiment was conducted on 18 normal
healthy subjects from the Internet Brain Segmentation Repository
(IBSR) (Center for Morphometric Analysis (CMA), 1995). The MR
brain data sets and their manual segmentations were provided
1st row) on true hard segmentation and fuzzy membership functions of a Brainweb



Table 1
Experiment on 15 Brainweb phantoms with five different noise levels, each at three
different inhomogeneity levels (0%, 20%, 40%). The Dice coefficients between ground
truth and hard segmentations of each tissue class, averaged over three inhomogeneity
levels, are shown at each noise level. ‘‘Mean’’ is a weighted Dice, weighted by the
volumes of each tissue class generated from the corresponding algorithm. The
segmentation from Freesurfer is denoted as SURFER.

Noise level

0% 3% 5% 7% 9%

CSF
FAST 0.9312 0.9170 0.9295 0.9236 0.9255
SURFER 0.8560 0.8598 0.8561 0.8341 0.8014
FANTASM 0.9520 0.9456 0.9350 0.9176 0.8978
SPM 0.9700 0.9547 0.9400 0.9266 0.9010
RiCE 0.9561 0.9500 0.9411 0.9301 0.9266

GM
FAST 0.8394 0.9347 0.9337 0.9251 0.9123
SURFER 0.8496 0.8969 0.8611 0.8064 0.7474
FANTASM 0.9682 0.9582 0.9429 0.9179 0.8881
SPM 0.8997 0.9590 0.9426 0.9248 0.8952
RiCE 0.9465 0.9580 0.9444 0.9250 0.9100

WM
FAST 0.7448 0.9628 0.9545 0.9416 0.9292
SURFER 0.8691 0.9602 0.9230 0.8733 0.8231
FANTASM 0.9734 0.9647 0.9511 0.9304 0.9020
SPM 0.8483 0.9541 0.9575 0.9355 0.9014
RiCE 0.9718 0.9710 0.9654 0.9332 0.9322

Mean
FAST 0.8318 0.9405 0.9401 0.9324 0.9209
SURFER 0.8569 0.9105 0.8819 0.8362 0.7861
FANTASM 0.9670 0.9581 0.9443 0.9231 0.8949
SPM 0.8977 0.9518 0.9471 0.9308 0.9033
RiCE 0.9609 0.9589 0.9548 0.9262 0.9294

Table 2
Experiment with 18 normal IBSR subjects: mean and standard deviations of Dice
coefficients of GM, WM, and a volume weighted average (WA) between manual
segmentations and hard segmentations obtained by FAST, FANTASM (FN), Freesurfer
FCM based segmentation (SURF), SPM and RiCE are shown.

FAST FN SURF SPM RiCE

GM
Mean 0.9271 0.9186 0.9340 0.9131 0.9366
Std. 0.0109 0.0099 0.0076 0.0217 0.0077

WM
Mean 0.8685 0.8685 0.8660 0.8558 0.8652
Std. 0.0105 0.184 0.0151 0.0283 0.0169

WA
Mean 0.9071 0.9100 0.9128 0.9030 0.9127
Std. 0.0106 0.0132 0.0095 0.0251 0.0121
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by the Center for Morphometric Analysis at Massachusetts General
Hospital. The T1-w coronal data is acquired on a 1.5T scanner. The
manual whole head segmentations are used as a ground truth.
Fig. 4 shows a slice of an image, with the manual and automatic
segmentations from the five methods. As the manual segmentation
does not include cortical CSF as a class, we combine CSF and GM as
one class to compute Dice between the manual segmentation and
the automatic segmentations. Table 2 shows the Dice coefficients
of hard segmentation from each algorithm.

RiCE holds a higher score than FAST, SPM and FANTASM for GM
segmentation, yielding a statistically significant improvement in
these two cases (p-values of 0.012, 0.00002, 0.34 and 0.0004 for
a pairwise t-test with FAST, FANTASM, Freesurfer and SPM, respec-
tively). For the WM segmentation, the performance of RiCE is not
significantly different from the others. This experiment thus indi-
cates that making the more rigorous Rician assumption does not
Fig. 4. Comparison of hard segmentations of normal IBSR subject, (a) A T1 SPGR acqu
segmentation by FANTASM, (e) FCM based segmentation by Freesurfer, (f) segmentation
deteriorate the performance of WM and GM segmentation and
the segmentations from RiCE are comparable to those from the
current available methods on WM and GM.

In the following sections, we will show the efficacy of using the
Rician model over a comparable Gaussian one, by showing the
improvement in segmentation consistency, both in terms of tissue
classes as well as cortical surfaces.

5. Comparison with a Gaussian model

5.1. Segmentation consistency

We carry out a consistency performance experiment on a set of
3T data from the Baltimore Longitudinal Study of Aging (BLSA)
(Shock et al., 1984; Resnick et al., 2003), comprised of T1w axial
MPRAGE and SPGR acquisitions (256 � 256 � 124 volumes having
the resolution of 0.9375 � 0.9375 � 1.5 mm) of 14 normal subjects,
ages in the range of 69–92. The SPGR acquisitions are registered to
their corresponding MPRAGE acquisition using a rigid registration
(Jenkinson and Smith, 2001) and stripped using a hybrid registra-
tion based skull-stripping algorithm (Carass et al., 2007, 2011).
Then each of the images is bias-corrected using N3.

Ideally, we expect to be able to generate identical segmenta-
tions of each subject from the different acquisitions. Then we
modify Eq. (5) keeping the smoothness fMRF, while changing the
Rician PDF fR(yjv,r) from Eq. (1) to a Gaussian one fGðyjv ;rÞ ¼

1ffiffiffiffi
2p
p

r exp � ðy�vÞ2
2r2

n o
, thereby modifying Eqs. (10)–(14) accordingly.

Average Dice coefficients between the hard segmentations
obtained from SPGR and MPRAGE acquisitions of the same subject
are reported in Table 3. The consistency improves significantly on
CSF segmentation, which is expected because the Rician distribution
isition, (b) manual segmentation of WM and GM, (c) segmentation by FAST, (d)
by SPM, (g) segmentation by RiCE.



Table 3
Dice comparison of Rician and Gaussian mixture models on BLSA data: Segmentation consistency of the Rician model is compared with a similar method having a Gaussian
model, keeping the smoothness assumption the same. Dice coefficients between the segmentations of bias-corrected (Sled et al., 1998) SPGR and MPRAGE acquisitions of the
same subject are shown for CSF, GM, WM and a weighted average (WA), weighted by the individual volumes of the tissues. Mean and standard deviations (Std.) are calculated
based on 14 normal subjects. The p-value for a null hypothesis, that the CSF Dice coefficient for Rician model is smaller than that of the Gaussian model, is 0.0001. The p-values for
a similar hypothesis on the GM, WM and WA Dice coefficients are 0.022, 0.001, 0.011, respectively.

CSF GM WM WA

Mean Std. Mean Std. Mean Std. Mean Std.

Gaussian 0.6872 0.0429 0.6700 0.0544 0.8205 0.0367 0.7376 0.0423
Rician 0.7589 0.0386 0.7289 0.0384 0.8535 0.0200 0.7924 0.0249

Fig. 5. Rician and Gaussian fitting of histograms: (a) SPGR acquisition, (b) MPRAGE acquisition, (c) the best fit of the SPGR histogram and (d) the best fit of the MPRAGE
histogram by a Gaussian and a Rician mixture model are also shown. The KL distances between the histogram and the Rician and Gaussian fitting are 0.0129 and 0.0342 for
MPRAGE, and 0.0876 and 0.1012 for SPGR, respectively.

Fig. 6. Outer surface delineation, comparison between the Rician model and a Gaussian one: (a) an MPRAGE image, (b) its zoomed in view, (c) outer surface generated by
CRUISE (Han et al., 2004) using the soft classification obtained using a Gaussian model (Section 5), (d) outer surface generated by the Rician model, (e) overlaid version of the
two outer surfaces.
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Fig. 7. Comparison of the consistency in inner cortical surface between the Rician model and a Gaussian one: (a) MPRAGE and (b) SPGR acquisition of the same subject, inner
surfaces of the MPRAGE image obtained using (c) Gaussian and (d) Rician model, inner surfaces of the SPGR image obtained using (e) Gaussian and (f) Rician model, overlaid
(on the MPRAGE) version of the surfaces obtained using (g) Gaussian and (h) Rician model.

Table 4
Surface Differences between Gaussian and Rician models: Cortical surfaces are
generated by CRUISE (Han et al., 2004) from soft classifications generated by RiCE and
a comparable Gaussian model on 14 BLSA subjects. The experiment is described in
Section 5. The mean difference (mm) between inner (and outer) surfaces, generated
from SPGR and MPRAGE images, are given. Using a null hypothesis that the surface
differences arising from RiCE are smaller than that of the corresponding Gaussian
model, the p-values obtained from a t-test are 0.00001 and 0.022 for inner and outer
surfaces, respectively.

Inner surface Outer surface

Mean Std. Mean Std.

Gaussian 1.2276 0.1807 0.7869 0.1497
Rician 0.7022 0.0987 0.6001 0.0901

Fig. 8. Segmentation consistency: (a) SPGR acquisition, (b) MPRAGE acquisition, (c) FAS
hard segmentation of the SPGR image, (h) FAST, (i) FANTASM, (j) Freesurfer, (k) Freesur
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models the CSF intensity regime better than a Gaussian one, as seen
by the fitting of the histograms of the SPGR and MPRAGE images,
shown in Fig. 5c and d. The KL distance between the actual histogram
and the Rician and Gaussian fitting is 0.0129 and 0.0342, respec-
tively, for MPRAGE, and 0.0876 and 0.1012 for SPGR. Thus, better fit-
ting of the histograms provide more accurate delineation between
the tissue classes. There is a large variability in the GM segmentation
for both the Rician and the Gaussian models, which can be explained
by the variability of the intensities of the sub-cortical structures,
which is not explicitly modeled in this scenario.

5.2. Cortical surface consistency

Cortical thickness is an important measure for the neuroscience
community (Querbes et al., 2009; Evans et al., 2005). As a
T, (d) FANTASM, (e) Freesurfer (mri_ms_EM), (f) SPM (spm_segment) and (g) RiCE
fer and (l) RiCE hard segmentation of the MPRAGE image.



Table 5
Dice comparison of the consistency experiment: 14 subjects with both T1 SPGR and
T1 MPRAGE acquisitions are processed with RiCE, FAST, FANTASM (FN), Freesurfer
(SURF) and SPM segmentation. Dice coefficients between their hard segmentations
are shown for CSF, GM, WM and a weighted average (WA), weighted by the individual
volumes of the tissues, obtained from each of the algorithms. The p-values for a null
hypothesis, that CSF Dice coefficient for RiCE is smaller than that of FAST/FANTASM/
Freesurfer/SPM are 0.0016, 0.00001, 0.0002, 0.0046 respectively. The p-values for a
similar hypothesis on the GM, WM and mean Dice coefficients (WA) are [0.0128,
0.009,0.003, 0.25], [0.1258,0.00001, 0.0002,0.24] and [0.425,0.0007, 0.0041, 0.07],
respectively, where each quadruplet denotes the comparison of RiCE with FAST/
FANTASM/Freesurfer/SPM.

FAST FN SURF SPM RiCE

CSF
Mean 0.6758 0.6317 0.6829 0.7207 0.7589
Std. 0.0431 0.0504 0.0401 0.0264 0.0386

GM
Mean 0.6889 0.6697 0.6381 0.7201 0.7289
Std. 0.0621 0.0549 0.0690 0.0280 0.0384

WM
Mean 0.8288 0.7960 0.8141 0.8589 0.8535
Std. 0.0329 0.0274 0.0352 0.0195 0.0200

WA
Mean 0.7392 0.7151 0.7309 0.7785 0.7924
Std. 0.0407 0.0358 0.0376 0.0220 0.0249

Table 6
Surface differences of the consistency experiment: cortical surfaces are generated by
CRUISE (Han et al., 2004) from soft classifications generated by FAST, FANTASM (FN),
Freesurfer (SURF), SPM and RiCE. The mean surface difference in mm, averaged over
14 normal subjects, between surfaces (shown in Fig. 10) generated from SPGR and
MPRAGE images are reported. The experiment is described in Section 6. Using a null
hypothesis that the inner surface differences arising from FAST/FN/SURF/SPM are
smaller than that of RiCE, the p-values obtained from a t-test are 0.0004, 0.000006,
0.0003 and 0.0421, respectively. A similar hypothesis on the outer surfaces give the
following p-values 0.0032, 0.000001 and 0.000001 and 0.00005 for FAST/FN/SURF/
SPM, respectively.

Inner surface Outer surface

Mean Std. Mean Std.

FAST 0.8852 0.1996 0.7607 0.1376
FN 1.2375 0.1997 0.9234 0.0891
SURF 1.0356 0.1551 0.9446 0.2042
SPM 0.7829 0.0949 0.8213 0.0917
RiCE 0.7106 0.1017 0.6114 0.1001
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consequence, robust and accurate delineation of cortical surfaces
are of importance. We study the Rician model on the consistent
delineation of the cortical surfaces. We use a Cortical Reconstruc-
tion Using Implicit Surface Evolution (CRUISE) (Han et al., 2004) to
generate inner and outer surfaces from the soft classification. As
the Rician model is most effective in modeling the CSF intensities
(see Fig. 5), we expect the CSF delineation to be more accurate,
which is shown in Fig. 6. The CSF distribution in the image histo-
gram is poorly fitted by a Gaussian in Fig. 5d, which results in a
under-estimation of the CSF–GM boundary, shown in Fig. 6c, while
a Rician model fits the histogram better and results in a more
accurate estimate of the outer surface (Fig. 6d).

To show the improved consistency, we compare the cortical
surfaces generated from the SPGR and MPRAGE acquisitions of
the same subject. This is also shown in Fig. 7, where the inner sur-
faces generated using the Rician model are closer in these two
acquisitions. The Gaussian model does not lead to accurate estima-
tion of the inner surface on the SPGR image due to the poor GM–
WM contrast and the heavy partial volume effect (Fig. 7e), while
a Rician model is better in this scenario (Fig. 7f). Quantitative
Fig. 9. Cortical surfaces from two different acquisitions: Inner (green) and outer (yell
(mri_ms_EM), (d) SPM (spm_segment) and (e) RiCE. Inner (red) and outer (blue) surface
distance between these surfaces are reported in Table 4. The sur-
face distance is the mean of the distances between one surface
and the other, while the distance from a point on the surface is
the shortest distance to the other surface.. The results are averaged
on a pool of 14 normal subjects. A significantly large improvement
in average inner surface difference is observed with the Rician
model.
6. Comparison with other methods

In this section, we compare the overall performance of our
method with other methods. Fig. 8 shows the comparison of the
hard segmentations using the five algorithms. The Dice coefficients
of the three classes and their volume weighted ‘‘average’’ Dice are
shown in Table 5, which shows that both the CSF and GM segmen-
tation are more similar in the case of RiCE. t-Tests comparing the
overlap of CSF and GM show a significant improvement in consis-
tency over the other four methods. This experiment also shows
that the Rician model does not do worse than a Gaussian model
on WM segmentation. Thus the Rician model is significantly more
consistent in a Gaussian model on low SNR regime.

Fig. 9 shows a visual comparison of the surfaces using the soft
classification from FAST, FANTASM, Freesurfer, SPM and RiCE.
The difference (in mm) between the inner (and outer) surfaces
generated from SPGR and MPRAGE acquisitions are given in Table
6 and a visual comparison of the difference is shown in Fig. 10. The
ow) surfaces of the MPRAGE processed by (a) FAST, (b) FANTASM, (c) Freesurfer
s of SPGR processed by (f) FAST, (g) FANTASM, (h) Freesurfer, (i) SPM and (j) RiCE.



Fig. 10. Surface difference between The cortical surfaces generated from the SPGR and MPRAGE are shown on the MPRAGE image. Inner surface of the MPRAGE (green) and
SPGR (red) processed by (a) FAST, (b) FANTASM, (c) Freesurfer (mri_ms_EM), (d) SPM (spm_segment) and (e) RiCE are shown on the MPRAGE. Outer surface of the MPRAGE
(yellow) and SPGR (blue) processed by (f) FAST, (g) FANTASM, (h) Freesurfer, (i) SPM and (j) RiCE are shown on the SPGR image. A color map of the absolute difference
between the inner surfaces of SPGR and MPRAGEs, obtained from the five algorithms, are shown in (k–o). Similarly, the color map of the difference between the outer surfaces
of SPGR and MPRAGEs are shown in (p–t). RiCE gives overall smaller surface difference (see Table 6).
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statistical tests, reported in Table 6, also confirm that RiCE pro-
duces more consistent cortical surface delineation.

7. Summary and conclusion

This paper proposes a Rician PDF based brain MR segmentation
technique. We have concentrated on consistent segmentation of
three primary tissues, cerebrospinal fluid, gray matter and white
matter, from T1-weighted MR images acquired with two different
pulse sequences, MPRAGE and SPGR. The underlying acquisition
parameters, like repetition time, inversion time or flip angle, are
usually different from one sequence to another, which gives rise
to the variability of the tissue contrast. With exact knowledge of
the acquisition parameters and the imaging sequences, consistent
tissue segmentations can be obtained (Fischl et al., 2004), but for
most studies, either the parameters are not available or the imag-
ing sequences are difficult to model accurately. Hence, most statis-
tical segmentation algorithms rely on probabilistic modeling of the
intensities only. It is difficult to remove inconsistencies in the seg-
mentations between images from different pulse sequences with-
out the exact knowledge of the acquisition process, which is the
primary source of the variability in the contrast.

Both SPGR and MPRAGE sequences are often used to obtain T1-
w MR images. They are gradient-echo sequences, but have widely
variable tissue contrast due to the difference in acquisition pro-
cesses and the imaging parameters. Nevertheless, the MR image
intensity at each voxel follows Rician distribution for both these
pulse sequences, although most of the current statistical model
based segmentation techniques assume an underlying Gaussian
distribution. Specifically, it can be seen that CSF and GM, having
low SNR in T1w images, are not modeled correctly by Gaussians
(Fig. 1). As a result, the segmentations of T1w images with different
pulse sequences become inconsistent. We have shown that intro-
ducing a Rician PDF produces more consistent segmentation be-
tween SPGR and MPRAGEs, both in terms of hard segmentation
of tissues and delineation of cortical surfaces. The use of the Rician
distribution to replace Gaussian distributions is shown to be prom-
ising, unfortunately the modeling of tissue classes in this manner is
far from a satisfactory solution. Modeling tissue classes in this
mono-model manner ignores the true complexity of tissue struc-
tures and the local variation that is possible within a tissue. This
topic, in light of this advancement in the correct tissue model, is
a rich area for future work.

Our algorithm is fully automatic and no training data is required.
We correct the image inhomogeneities by a non-parametric model
and use Markov Random Field to introduce segmentation consis-
tency. We have validated the algorithm on the Brainweb phantom
and IBSR 20 normal subjects. The improvement in segmentation
consistency is demonstrated on 14 BLSA subjects having both SPGR
and MPRAGE scans. The algorithm takes approximately 10 min on a
3 GHz Intel processor on a Linux workstation. Future work will fo-
cus on incorporating a priori information via statistical atlases.
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Appendix A

A brief derivation of Eqs. (11)–(14) are given in this appendix.
To do the E-step, we find the wðmÞjk as

wðmþ1Þ
jk ¼ Eðzjkjyj;H

ðmÞÞ

¼ 1:Pðzjk ¼ 1jyj;H
ðmÞÞ þ 0:Pðzjk ¼ 0jyj;H

ðmÞÞ;
¼ Pðzjk ¼ 1jyj;H

ðmÞÞ;

¼
Pðyjjzjk ¼ 1;HðmÞÞPðzjk ¼ 1jHðmÞÞPK

k¼1Pðyj; zjk ¼ 1jHðmÞÞ
;

¼
fMRFðzjkjzNj

;HðmÞÞfRðyjjHðmÞÞPK
k¼1fMRFðzjkjzNj

;HðmÞÞfRðyjjHðmÞÞ
;

where fMRFðzjkjzNj
;HðmÞÞ is given by Eq. (8). Using mean-field approx-

imation (Zhang, 1992) to replace zjk by the current estimate of its
expectation wðmÞij , we obtain Eq. (11).

The M-step provides the estimation of H from Eq. (9).
Q(H(m+1)jH(m)) becomes,

E½log f ðZjHðmþ1ÞÞjy;HðmÞ�

¼
X
j2X

XK

k¼1

wðmÞjk log fMRF wðmÞjk jw
ðmÞ
Nj
;Hðmþ1Þ

� �
fRðyjjHðmþ1ÞÞ

n o
;

¼
X
j2X

XK

k¼1

wðmÞjk log fMRF wðmÞjk jw
ðmÞ
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;Hðmþ1Þ
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þ
X
j2X

XK

k¼1

wðmÞjk logffRðyjjHðmþ1ÞÞg:

We note that the 1st term of E½log f ðZjHðmþ1ÞÞjy;HðmÞ� is explicitly
independent of v ðmþ1Þ

k and rðmþ1Þ
k and the 2nd term is explicitly inde-

pendent of bðmþ1Þ
k . So E½log f ðZjHðmþ1ÞÞjy;HðmÞ� is maximized w.r.t.

v ðmþ1Þ
k , by setting the partial derivative of the 2nd term w.r.t. v ðmþ1Þ
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Simplifying this equation and also using the fact that d
dx I0ðxÞ ¼

I1ðxÞ, a coordinate descent equation for v ðmþ1Þ
k is obtained in Eq. (12).

Similarly, Eq. (13) is obtained by setting the partial derivative of
the 2nd term w.r.t. rðmþ1Þ

k to zero.
As the 2nd term of E½log f ðZjHðmþ1ÞÞjy;HðmÞ� is explicitly inde-

pendent of bðmþ1Þ
k , we equate the partial derivative of

P
j;kwðmÞjk log½
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375 ¼ 0;

to get update equation (Eq. (14)).
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