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a b s t r a c t

Deformable models are widely used for image segmentation, most commonly to find single objects
within an image. Although several methods have been proposed to segment multiple objects using
deformable models, substantial limitations in their utility remain. This paper presents a multiple object
segmentation method using a novel and efficient object representation for both two and three dimen-
sions. The new framework guarantees object relationships and topology, prevents overlaps and gaps,
enables boundary-specific speeds, and has a computationally efficient evolution scheme that is largely
independent of the number of objects. Maintaining object relationships and straightforward use of
object-specific and boundary-specific smoothing and advection forces enables the segmentation of
objects with multiple compartments, a critical capability in the parcellation of organs in medical imaging.
Comparing the new framework with previous approaches shows its superior performance and scalability.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Image segmentation is one of the most fundamental problems
in computer vision, with applications in scene reconstruction,
motion tracking, content-based image retrieval, aerial imaging,
etc. (see Fig. 1). Medical image analysis in particular has a growing
need for the automatic segmentation of multiple organs and
complex sub-structures from increasingly large data sets of
multi-dimensional images [1–3]. The segmentation step often di-
rectly affects subsequent processing tasks such as quantification,
registration, and visualization. In many cases, the segmentation
of multiple objects should provide a complete parcellation of the
image into components without overlaps and gaps between the
segmented regions. When multiple regions meet, the boundary
around a region often becomes heterogeneous in nature, e.g.,
where the image data provides little information, boundaries
may need to be inferred based on a prior model, while image infor-
mation can be relied upon elsewhere [2,4]. Prior knowledge may
also extend to the overall organization of the structures of interest
and their spatial or topological relationships [1,5,6]. Finally,
segmentation problems can easily involve large numbers of
components or objects [7,8], and the complexity of the applied
methods must be taken into account for practical reasons.

Parametric deformable models (PDMs) – i.e., active contours
implemented by explicitly tracking points – have been widely used
in computer vision to perform image segmentation [9]. An
ll rights reserved.

by Nikos Paragios.
important property of this representation is its capability to repre-
sent boundaries at a sub-grid resolution as it is essential in the seg-
mentation of thin structures (e.g., cortical sulci). Image-based
‘‘external forces’’ drive the contour toward desired features while
contour-dependent ‘‘internal forces’’ regularize and smooth the
boundary. Geometric deformable models (GDMs) – i.e., active con-
tours implemented with level sets [10,11] – permit flexible topo-
logical changes and yield contours with no self-intersections. In
the GDM framework, ‘‘speed’’ functions describe the local move-
ment of the contour and are analogs to the forces used in PDMs.
With a single level set function, GDMs permit the segmentation
of multiple isolated regions; but in their most basic implementa-
tion, they do not control the number of objects or their topology.
Topology-preserving extensions [12–14] permit control of single
object topology, but do not address topological relationships
between objects or permit one to model boundaries between
multiple objects at once.

A number of multiple object segmentation methods based on
the level set framework have been proposed [15–24]. Most of these
approaches use N level set functions to segment N objects and rely
on coupling terms to avoid overlaps and gaps [18–20,23,25]. These
methods have the advantage that each object can be independently
specified in both its own topology and its internal and external
speeds. However, coupling terms do not forbid certain object inter-
actions, so these approaches can still produce overlaps and gaps in
practice. As well, most are not formulated to consider the relation-
ships between objects, and memory requirements become daunt-
ing as the number of objects to be segmented grows.

Vese and Chan [15] introduced the multiphase (MP) segmenta-
tion framework that represents N objects with log2(N) level sets
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Fig. 1. Various problems where images are to be segmented into multiple interacting objects: (a) an MRI of the abdomen, showing many organs; (b) fluorescent microscopy
imaging involving complex interactions of multiple cells; (c) a parcellation of the cortex into 78 gyral regions; (c) images and videos of sporting events where the different
players interact; (d) aerial images of crops and farmlands. These examples were obtained from computer vision and medical imaging databases [3,26,27] or our own work (c)
[28].
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based on combination rules. This model permits multiple object
boundaries, and guarantees no overlaps or gaps. As well, it sub-
stantially reduces the computational burden as the number of ob-
jects or compartments grows. However, this approach has three
key limitations. First, its image-based external speed term is not
easily generalized beyond the region-based model of Mumford
and Shah [29]. This fact excludes a rich collection of external
speeds that may be essential to solving many problems of practical
importance. Second, the internal speeds in the multiphase frame-
work – comprising a penalty on contour length – are applied to
the level set functions rather than to the objects themselves. Thus,
it is possible that while the lengths of the level set functions are
minimized, it may not be so for the boundaries of the objects them-
selves. Third, the evolution/optimization can ‘‘get stuck’’ in situa-
tions where a pixel needs to acquire a label that can be reached
only by changing two level set functions at the same time. The
existing evolution strategy cannot resolve these situations, which
are also more commonly found with an increasing number of ob-
jects. A remedy for this limitation involving a permutation of the
level set combination rule used to represent a given label was pro-
posed in [30]. As the number of level set functions increases, how-
ever, a greater number of permutations will need to be performed
to ensure that transitions between all labels are possible.

Pohl et al. [21] proposed a probabilistic embedding to avoid
overlaps and gaps by replacing the level set isocontours with a
labeling of regions according to their maximum probability. In this
case, however, the geometric properties of curvature associated
with level set isocontours are no longer relevant, and the method
still requires N � 1 level sets or N � 1 functions derived from level
sets.

Brox and Weickert [24] presented a coupled curve evolution
method where distinct objects are constrained through the cou-
pling of the evolution equations rather than by changing the en-
ergy functional. Their coupled curve evolution shows that a pixel
(or voxel) in one object competes with other objects, while addi-
tional terms help to discourage gaps. This approach deals with
multiple objects, but it does not guarantee there are no overlaps
or gaps, making relationships and other topology constraints diffi-
cult to enforce. The evolution requires N level set functions for N
objects, increasing computational and storage burden as more
objects are added.

Recent methods by Lie et al. [31] and Chung and Vese [32] for-
mulate a ‘‘multilayer’’ method that represents multiple objects
using a small number of nested level contours of a function. This
approach is efficient with memory, requiring just two functions
to represent triple junctions in 2D. However, it shares with the
multi-phase approach a limitation in the types of speeds that
may be applied, a lack of control of topology, and the interpretation
of its regularization terms as minimizing level set length rather
than object boundary length [15]. These representations also lose
some of the computational advantages of using signed distance
functions.

Much interesting work has gone into adapting the level set for-
malism for multiple object segmentation to account for prior shape
information. Tsai et al. [22] developed a framework that constrains
potential segmentation results using a parametric shape model
based on principal component analysis. Uzunbas et al. [33] em-
ployed a similar framework, but built a statistical shape model
using kernel techniques and furthermore modeled relative poses
between objects. These methods used N level sets to represent N
objects, and therefore, a heuristic approach was used in both to
prevent overlaps. Vazquez-Reina et al. [34] used a shape model
similar to [22], but used the MP level set representation of [15],
rather than N level sets. This prevents overlap and gaps, and im-
proves efficiency, but still suffers from some of the setbacks of
the multiphase representation. Fussenegger et al. [35] extended
[24] with a multi-object pose-invariant shape prior. These methods
have been important contributions in constraining multiple object
level set segmentation. However, none of these methods guarantee
that single object topology, or topological relationships are pre-
served. The storage of N (or log2(N)) level sets along with the shape
priors may become burdensome as the number of objects
increases.

Markov random fields (MRFs) are graphical models that have
achieved great success in image segmentation. Classical algorithms
such as iterated conditional modes (ICM) [36] can provide approx-
imate solutions in the multiple label problem. Other methods have
been proposed that efficiently and accurately solve the Potts model
segmentation problem using advanced optimization techniques.
Zach et al. [37] presented a method that efficiently solves a contin-
uous relaxation of the Potts model. Lellmann et al. [38] solved a
similar formulation using an operator splitting optimization frame-
work. Bae et al. [39] performed optimization using a dual formula-
tion. While these methods all perform very well for a variety of
segmentation tasks, as presented they lack certain important capa-
bilities that aid in segmenting specific objects in images rather than
identifying image regions with similar features, (e.g., intensity). In
particular, these methods, as proposed, might segment ‘‘high inten-
sity’’ rather than ‘‘femur’’ in computed tomography. This specific
identification is important in medical imaging, for example, where
quantitative measurements of anatomy are often used for diagnosis
or research purposes. High level information such as object topol-
ogy, statistical priors, as well as partial volume functions have been
instrumental in advancing this area of image segmentation. Fur-
thermore, graph-based methods generally lack the sub-grid resolu-
tion offered by deformable models. The presentation of the above
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methods does not describe whether and how this information can
be integrated in their respective frameworks, and such extensions
appear far from trivial.

Another successful graphical model solver is the graph cuts
framework, which provides a fast computational algorithm that
is guaranteed to reach a global minimum for some categories of
problems [40]. This technique can segment multiple objects by
solving a sequence of binary segmentation problems [41], and a
topology-preserving extension exists for single objects [42,43].
However, the framework presently lacks the ability to model the
topological relationships of objects, sub-grid boundaries, and dif-
ferent optimality criteria on different parts of boundaries.

In this paper, we present a multiple object geometric deform-
able model (MGDM) segmentation framework that (1) guarantees
no overlaps or gaps, (2) evolves only a few level set-derived func-
tions independently of the number of regions, (3) can apply any
existing type of speed in the level set literature, (4) can enforce
relationships and topological constraints on any or all objects
and groups of objects if desired, and (5) can apply speeds that
are different according to the specific object-to-object boundary.
In this framework, the evolution of the level set functions repre-
senting any number of objects or compartments is recast into the
evolution of a fixed, small number of distance functions and an
equal number of corresponding label functions. Only two or three
distance functions are needed for two-dimensional (2D) or three-
dimensional (3D) problems, respectively. Since the number of
functions is fixed, the computational penalty for increasing the
number of objects is small.

MGDM is a multi-object extension to the conventional geomet-
ric level set formulation, and therefore one can apply all the con-
ventional speeds that are useful and familiar to the community
and can employ all the conventional fast computational methods
such as fast marching and the narrow band method. The problem
of object overlaps and gaps is automatically solved because the
evolving functions directly provide a partition of the image. Object
labels are specifically tracked within the evolution, enabling the
straightforward implementation object-dependent speeds, includ-
ing different speeds on different boundaries between specific ob-
jects or regions. The topology of objects and the relationships
between groups of objects are preserved by using a multi-object
simple point constraint directly on the new functions without hav-
ing to reconstruct the level set function of individual objects. The
description of MGDM we provide here is valid for both two-dimen-
sional (2D) and three-dimensional (3D) images, and is generaliz-
able to higher dimensions. Preliminary descriptions of 2D and 3D
MGDM were presented in two conference papers [44,45]. These
methods described ‘‘homeomorphic level sets’’ which preserve
the topology of each object as well as object relationships. The pre-
sentation here includes a complete mathematical framework
describing the MGDM object decomposition, a new computation-
ally efficient evolution strategy, a more complete description of
the potential for object-specific speed and topology flexibility,
comparisons with competing methods, new demonstration exper-
iments, and additional measures of performance.

2. Notation and definitions

Consider an image I defined on a domain Xd where d = 2 for 2D
and d = 3 for 3D. We consider N objects (sets) O1,O2, . . . ,ON, each
containing points from the domain x 2Xd such that these objects
cover the whole domain with no overlaps or gaps. Formally, this
means that

SN
i¼1Oi ¼ Xd and Oi

T
Oj = ;, "i – j. In some applications,

one of these objects might be identified as the background on
which the other objects are segmented.

Object signed distance functions, denoted /i are commonly used
in the level set literature for their desirable numerical properties.
These functions are negative inside their respective objects, posi-
tive outside (cf. [11,10]), and give the distance to the object bound-
ary at every point x. Accordingly, /i(x) can be written as:

/iðxÞ ¼
�min

j
dxðOjÞ; x 2 Oi;

dxðOiÞ; x R Oi;

(
ð1Þ

where dx(Oi) is the distance from a point x to object Oi,

dxðOiÞ ¼min
y2Oi

kx� yk: ð2Þ

If x is in Oi, then the closest boundary of Oi is the distance to the
nearest other object Oj. Note that for a fixed x 2 Oi there must exist
at least one other object Oj such that /j(x) = �/i(x). In the following
sections, we describe how to take advantage of this relationship in
order to represent the collection of signed distances using a smaller
number of functions. Now, we briefly describe how a locally optimal
segmentation is found by evolving the objects’ signed distance
functions. For now, we think of each object as having its own sepa-
rate evolution; the efficient representation and computation strat-
egy of MGDM will be described in the next section.

For each signed distance function, we seek an evolution of the
level set functions according to speeds fi, which can be written in
the following general form [46]:

@/i

@t
¼ a1pjþ a2Vp þ a3~v �

r/i

jr/ij

� �
jr/ij ¼ fijr/ij; ð3Þ

where

fi ¼ a1pjþ a2Vp þ a3~v �
r/i

jr/ij
: ð4Þ

This formulation includes spatially-varying potential functions p
which can be used to drive the boundaries toward edges [47], a pen-
alty on contour length j which produces smoother curves [11,10],
conventional region-based balloon speeds Vp [48], and spatially-
varying advection forces ~v such as gradient vector flow [49]. The
relative contributions of these terms can be controlled by the
weights given by the a’s. Any additional types of speeds that are for-
mulated for conventional geometric deformable models, such as
prior shape [50,51], can be readily added if needed.

Although it is preferred for numerical reasons that the functions
{/i} are signed distance functions (cf. [10]), they need only be level
set functions – i.e., Lipschitz continuous, negative inside, and posi-
tive outside. In order to keep this distinction clear, we denote the
more general level set functions, which are not necessarily signed
distance functions with a ‘‘hat’’, e.g., f/̂ig. We now describe how a
decomposition of object level sets can be used to efficiently repre-
sent boundaries rather than objects.

3. Theory and algorithm

3.1. Decomposition of multiple level sets

We define the set of label functions that describes the local con-
figuration of neighboring objects at x as follows:

Definition 3.1 (Label function).

8x; L0ðxÞ ¼ i iff /iðxÞ < 0;
L1ðxÞ ¼ arg min

j–L0ðxÞ
/jðxÞ;

L2ðxÞ ¼ arg min
j–fL0ðxÞ;L1ðxÞg

/jðxÞ;

..

.

LN�1ðxÞ ¼ arg min
j–fLkðxÞgk¼0;...;N�2

/jðxÞ:
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The label functions L0,L1, . . . ,LN�1 give a detailed description of
the configuration of the objects. In particular, L0 is the current seg-
mentation and the first-level label L1 identifies the closest neigh-
boring object at each point. The /j function gives the distance to
the boundary of Oj, and hence, minimizing over j yields the nearest
object. More generally, Lk(x) = i, 1 6 k 6 N � 1, if and only if Oi is the
kth closest neighbor to x. In the event of a tie, we assume a fixed
ordering of the objects so that there is always a unique label for
Lk(x) at each point x. The effects of this choice are discussed in
Section 6.

Given the set of label functions, we define the related distance
functions as follows:
Definition 3.2 (Distance function).
8x; u0ðxÞ ¼ /L1
ðxÞ;

u1ðxÞ ¼ /L2
ðxÞ � /L1

ðxÞ;
u2ðxÞ ¼ /L3

ðxÞ � /L2
ðxÞ;

..

.

uN�2ðxÞ ¼ /LN�1
ðxÞ � /LN�2

ðxÞ:
Here, the particular level set functions that are used in the right

hand side of this decomposition are determined by the labels L1-

,L2, . . . ,LN�1 which are also functions of x, but we have dropped
the argument for brevity and simplicity of notation. These distance
functions specify the additional distances one must travel to reach
the succession of next-closest neighbors. For example, u0 is the
distance from x to its first neighbor and u1 is the additional dis-
tance that must be traveled to get to the second neighbor, and so
on. According to this definition, uk(x) P 0, "x,k since
/Li
ðxÞ 6 /Lj

ðxÞ;8i < j.

Fig. 2 shows an example of this label-distance decomposition on
a parcellated cerebellum for the first three label functions and their
corresponding distance functions. An additional example of this
decomposition can be found in a Supplemental Movie published
with the electronic version of this manuscript.

3.1.1. Recovery of signed distance functions
Given all the label and distance functions at a point x, the signed

distance function of object i can be recovered as follows:
Fig. 2. Illustration of a three-level label-distance decomposition of a parcellated cerebellu
for the distance functions have been compressed to the range [0, 15] to focus contrast arou
pixels are more distant, and red are most distant. (For interpretation of the references to
/iðxÞ ¼

�u0ðxÞ; i ¼ L0ðxÞ;
u0ðxÞ; i ¼ L1ðxÞ;
u0ðxÞ þu1ðxÞ; i ¼ L2ðxÞ;
u0ðxÞ þu1ðxÞ þu2ðxÞ; i ¼ L3ðxÞ;
..
. ..

.

XN�2

j¼0

ujðxÞ; i ¼ LN�1ðxÞ:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð5Þ

We see that in order to recover all the signed distance functions, we
require all the label and distance functions. Therefore, as it stands
so far, there is apparently no advantage to the proposed decompo-
sition, as it does not appear to lead to a compact representation or
lower complexity.

The key to realizing the advantages of the label-distance
decomposition is to observe that only signed distance values near
object boundaries are required to accurately carry out the geomet-
ric level set computations. In fact, speeds at x should derive from
the object L0 to which x is assigned and the object L1 that is closest
to x – i.e., across the nearest boundary. Therefore, we do not need
to keep the higher-order terms in this decomposition in order to
carry out geometric deformable model computations. Accordingly,
we can simply drop the ‘‘higher order’’ terms in (5) to get the fol-
lowing approximate signed distance functions:

2D:
/̂iðxÞ ¼
�u0ðxÞ; i ¼ L0ðxÞ;
u0ðxÞ; i ¼ L1ðxÞ;
u0ðxÞ þu1ðxÞ; i – L0;1ðxÞ:

8><
>: ð6Þ

3D:

/̂iðxÞ ¼

�u0ðxÞ; i ¼ L0ðxÞ;
u0ðxÞ; i ¼ L1ðxÞ;
u0ðxÞ þu1ðxÞ; i ¼ L2ðxÞ;
u0ðxÞ þu1ðxÞ þu2ðxÞ; i – L0;1;2ðxÞ;

8>>><
>>>:

ð7Þ

where the notation i – L0,1(x) means i – L0(x) and i – L1(x) while
i – L0,1,2(x) means i – L0(x) and i – L1(x) and i – L2(x). The functions
/̂iðxÞ resulting from this truncated decomposition are negative
m: The color used for each object’s label is identical for L0, L1, and L2. The color scale
nd the boundaries. Here, blue pixels indicate points very close to a boundary, yellow
color in this figure legend, the reader is referred to the web version of this article.)
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inside and positive outside each object and are Lipschitz continu-
ous. They are therefore legitimate level set functions despite being
only approximations to the true signed distance functions.

The number of functions kept in the approximation is different
for 2D and 3D because the functions encode the structure of the
boundary between objects. In 2D, any boundary between neigh-
boring objects is either a curve segment (between two objects)
or a point (where three or more objects meet). In 3D, the bound-
aries are made of surface patches (between two objects), curve seg-
ments (between at least three objects), and points (between at
least four objects). Therefore, in order to describe all the possible
boundaries, we need to be able to describe these particular struc-
tures in their respective spaces. The curves are defined with one le-
vel set function in 2D, and the points joining them require two
functions. Similarly, surfaces in 3D require one function, curves
are defined as the intersection of at least two surfaces, and points
require three surfaces. Nevertheless, as the truncated reconstruc-
tion is an approximation of the true signed distances, errors appear
for objects that are not among those stored as neighbors (see Sec-
tion 6 for details). The decomposition by its nature puts certain
limitations on the evolution (see Section 3.2).

3.1.2. Alternate distance for topology control
In applications where the topology and relationships of seg-

mented objects must be preserved, the above definitions can be
modified to reflect the fact that objects that are not in contact will
never meet at a boundary. Conversely, it means that the set of pos-
sible neighbors for a given object is restricted to the subset of the
labels in contact with the object. This restriction can be enforced
on the distance definition by setting dx(Oj) to +1 where it is unde-
fined because the object Oj is not and should not be in contact with
the object at x. If x 2 Oi, this can be summarized as:

d0xðOjÞ ¼
dxðOjÞ; if Oi and Oj are allowed to come in contact;
þ1; otherwise:

�
ð8Þ

This alternate definition ensures the correctness of algorithm evolu-
tion when topology constraints are required (see Section 3.3).

3.1.3. Computing the level set decomposition and reinitialization
Like conventional level set methods, MGDM requires an initial-

ization of the labels to be segmented in order to compute the trun-
cated MGDM decomposition. The initialization often takes the
form of a voxel-wise segmentation (equivalent to L0 in our nota-
tion), but can also make use of sub-grid information if level set
functions of each object are provided.

In order to build the label and distance functions, the simplest
approach consists of computing the signed distance functions for
all N objects using fast marching, and then using Eqs. (3.1) and
(3.2) to obtain Lk and uk for all k. We do not use this computation-
ally intensive approach in practice and instead take advantage of
the following efficient joint fast marching method: starting from
the current segmentation L0 (or boundary locations according to
object level set functions), all the boundaries are set to march out-
ward from each object. The first boundary to reach a voxel x gives
the first neighbor L1(x) and the distance function u0ðxÞ ¼ dxðOL1 Þ.
When the second boundary reaches x, we get L2(x) and
u1ðxÞ ¼ dxðOL2 Þ �u0ðxÞ. The marching is stopped in the voxels
where u1 and L2(x) have been set, and so the joint fast marching
method needs only to go through the entire image twice in 2D,
or three times in 3D (once for each u).

The computational complexity of this re-initialization scheme is
lower than that of both the N level set method and the multiphase
level set method, and it is not dependent on the number of objects.
As we will see in Section 3.2, our algorithm requires periodic
re-initialization of the distance functions during evolution for rea-
sons similar to classical level set methods. Efficient computation of
the decomposition is particularly important as this re-initialization
involves the entire image rather than just the narrow band.

3.2. Evolution

We now describe the deformable model evolution equations for
the 2D case; analogous expressions are readily found for 3D and
higher dimensions. Our objective is to recast the evolution of any
individual level set function /i according to the overall speed fi of
Oi (i.e., @/i

@t ¼ fijr/ij, as presented in Eq. (3)) into an evolution of
u0, u1, L0, and L1. In general, the movement of the boundary be-
tween objects i and j depends on which region has a faster expand-
ing speed; therefore, the evolution of u0 is given by

@u0

@t
¼ 1

2
ðfL0 jr/̂L0 j � fL1 jr/̂L1 jÞ; ð9Þ

where fL0 is the speed of the object assigned to x and fL1 is the speed
of the closest neighboring object to x. The factor 1

2 is introduced to
preserve the overall scaling. Notice also that the evolution of the
MGDM distance functions ui depends on the object level set func-
tions /j. Since these are not stored during the evolution, the gradi-
ent of the object signed distance functions are computed using the
signed distance functions reconstructed (locally and only when
needed) using Eqs. (6) or (7).

The current segmentation at x is evolved by modifying the pri-
mary label function L0(x) = i, the first neighbor label function
L1(x) = j, and the first distance function u0(x). A label change is nec-
essary when the speeds would cause u0(x) to become negative
(since the ui(x) functions are all positive and a negative value indi-
cates that voxel x is no longer part of object Oi). This means that
L0(x) takes on the value of the former first neighbor, j, and the first
neighbor L1(x) takes the value of the former ‘‘current segmenta-
tion’’ label, i. Note that u0(x) remains positive since we have ex-
changed labels i and j and /i(x) = �/j(x), as noted in Section 2.

The above evolution equation describes how the first neighbor
can become the current label via motion of the appropriate bound-
ary, but this fact alone does not explain how arbitrary label
changes can occur. MGDM accomplishes this by simultaneously
moving all boundaries that are represented by the truncated
decomposition. In fact, this amounts to evolving u1(x) and the
higher-order distance functions which follow similar rules, i.e.,

@u1

@t
¼ 1

2
ðfL1 jr/̂L1 j � fL2 jr/̂L2 jÞ: ð10Þ

Let L2(x) = k. Accordingly, when u1 is required to become negative,
then the first neighbor L1(x) must switch from j to k, and L2(x) must
switch from k to j. Equivalently, this means that the (i,k) boundary
is now closer to x than the (i, j) boundary, or that object Ok is now
closer to x than object Oj. In principle, if two label functions are
stored, any object except i and j could be a candidate for L2(x).
We take advantage of the fact that in computing the K distance
functions, we automatically obtain K + 1 neighbor functions (see
Section 3.1.3). Therefore, the label k is stored as L2(x) during the
evolution so that the true second neighbor can take the place of
the first neighbor when u1 would become negative. To compute
the evolution of Eqs. (9) and (10), we follow a narrow band ap-
proach. The narrow band implementation produced an identical
segmentation to a full field update with a mean difference in the
u0 distance of 0.03 pixels for a 16 object experiment with reinitial-
ization of the MGDM distance functions at least every five itera-
tions. The mean difference in u0 was 0.00 pixels when
reinitialization was forced after every iteration.

The algorithm performs the following steps at each updated
point x at iteration t:
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1. Set K = 2 for 2D (or K = 3 for 3D)
2. Compute the speeds @uK ðxÞ

@t ¼ 1
2 ðfLK � fLKþ1 Þ for all x in the narrow

band
3. Set utþ1

K ðxÞ ¼ ut
KðxÞ þ

@uK ðxÞ
@t

4. If utþ1
K < 0, set
Ltþ1
K ðxÞ ¼ Lt

Kþ1ðxÞ; ðpromote the K þ 1 labelÞ
Ltþ1

Kþ1ðxÞ ¼ Lt
KðxÞ; ðdemote the K labelÞ

utþ1
K ðxÞ ¼ � ut

KðxÞ þ
@uKðxÞ
@t

� �
ðensure uK remains positiveÞ
5. Repeat steps 2–4 for K � 1 to 0
6. If Ltþ1

Kþ1ðxÞ ¼ Lt
0ðxÞ, reinitialize (see Section 3.1.3).

Note that any label that is stored in the truncated label func-
tions (i.e., {L1(x) � � � LK(x)} can become the current label by moving
through the series of neighbor functions. This is because the neigh-
bor boundaries are evolved before the current segmentation, there-
fore the second neighbor can become the first neighbor, and finally
replace the current label. Labels that are not represented in this
series are ‘‘far away’’ and so cannot immediately be assigned at
x. These distant labels can appear in the Li at reinitialization (since
they are recomputed from the evolving segmentation boundaries)
and can thereby be assigned to x at a later stage in the evolution. As
we have noted previously, in 3D the evolution is extended to in-
clude a third distance function u2(x) and a third label function
L2(x). Analogously, L3(x) is automatically obtained during the
(re)initialization and may be stored so that the true third neighbor
can replace L2(x) when u2(x) would become negative. An example
of the evolution of the MGDM functions can be found in a Supple-
mental Movie published with the electronic version of this
manuscript.

3.2.1. Boundary-specific speeds
So far, the described framework has followed the classical ap-

proach where speeds are specified to act on objects (i.e., fi is the
speed of object Oi). Some segmentation tasks would benefit from
the ability to specify speeds that act on different parts of an object.
In particular, there are scenarios in which we would prefer to spec-
ify the speeds of contours/surfaces between objects rather than the
objects themselves. In this way, different parts of a single object
can behave differently because they belong to different boundary
surfaces.

The MGDM framework is ideally suited to this task since it
directly encodes specific boundaries within its decomposition.
Because the closest boundary is immediately identified, bound-
ary-specific speeds can be implemented without an expensive
search for the closest boundary at each point. Specifically, at a vox-
el x, the distance of the nearest surface is immediately obtained
from u0(x) (a convenient property of signed distance functions),
and the objects separated by that surface are immediately avail-
able from L0(x) and L1(x). With this information, we are able to ap-
ply speeds specific to the nearest boundary.

To accommodate such boundary-specific speeds, Eq. (9) may be
modified as follows:

@u0

@t
¼ fL0 ðxÞjr/̂L0 j � fL1 ðxÞjr/̂L1 j þ fL0 ;L1 ðxÞjr/̂L0 ;L1 j; ð11Þ

where fL0 ðxÞ and fL1 ðxÞ are speeds specified for objects OL0 and OL1 ,
and fL0 ;L1 is an additional speed acting on the boundary between
objects OL0 and OL1 . The expression jr/̂L0 ;L1 j ¼ jr/̂L0 j ¼ jr/̂L1 j de-
scribes the gradient magnitude of the level set functions of objects
OL0 and OL1 , and is equal to the gradient magnitude of the level set of
either object (see the discussion following Eq. (1)). Note that
fL0 ;L1 ðxÞ > 0 encodes expansion of the current label at point x, or
equivalently, withdrawal of the (L0,L1) boundary away from point
x. Likewise, fL0 ;L1 ðxÞ < 0 describes advancement of the (L0,L1) bound-
ary toward (or through) x. Note that the above interpretations de-
pend on the convention that the level sets are negative inside the
objects. If the opposite convention were used, than the signs of
the speeds would need to be flipped in order to act in the same
direction.

Despite the apparent simplicity of the above formulation, it is
important to remember the richness of available speeds afforded
by MGDM. These may stem from curvature, pressure, image inten-
sities or membership functions, as well as gradient or advection
vector fields. Furthermore, the weights associated with these speed
types can also be controlled independently for different objects
and boundaries.

3.3. Topology control

Topology control is often desired in medical imaging applica-
tions since the topology of organs and their relationships are
known from human anatomy. Other applications may also benefit
from prior knowledge of topology and/or relationship information
of objects in the image or scene. Most methods for handling topol-
ogy only maintain or correct the topology for one object (or one ob-
ject per level set function), but do not control the topological
relationships between objects.

The concept of digital homeomorphism (an extension of the sim-
ple point criterion [52,53] to multiple objects and groups of ob-
jects) introduced in [54] accounts for both single and multiple
object constraints by controlling the topology of the boundary be-
tween objects. The level set decomposition we use intrinsically
models boundary geometry, and so digital homeomorphism con-
straints are incorporated very naturally by modifying the evolution
of u0 as follows. Whenever u0 would change from positive to neg-
ative at a given point, the topology criterion for digital homeomor-
phisms is checked on the new segmentation L0. If the criterion
indicates a topological change, then the label is left unchanged
and its associated distance-based function is set to a small value
e > 0, as proposed in [12] for single object topology-preserving le-
vel sets.

Multi-object topology preservation usually requires the use of a
template with the desired topology when initializing the level set
evolution. The template is then registered to the image of interest
in order to provide a topologically correct initialization (see [54,6]).
With topology control, objects can only come in contact if they are
adjacent in the original template. Thus, we can use the alternate
distance definition of Eq. (8) in the algorithm, and make the evolu-
tion more efficient by only considering topologically consistent
candidates at a given point. The reinitialization is also faster as
the marching can stop when an object’s boundary reaches labels
that are topologically invalid.

4. Experiments

4.1. Comparison with previous multiple geometric deformable models

We provide here a comparison of our algorithm (MGDM), the
multiphase approach (MP) [15], and the N coupled level sets
(CLS) of Brox and Weickert [24]. The MP method provides a
compressed representation with no gaps or overlaps, while CLS
uses the same intrinsic coupling as MGDM (as in Eq. (9)) with
N level sets. Rather than focusing on a specific application, we
present here a generic problem for which all the methods should
perform similarly given the same energy function. Accordingly,
we consider a piecewise constant problem in which we mini-
mize [29]:
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E ¼
Z

x
a
X

n

Hð/nðxÞÞkIðxÞ � cnk2 þ bkdð/nðxÞÞk
" #

þ l 1�
X

n

Hð/nðxÞÞ
" #

dx; ð12Þ

where I is the image to segment, cn is the intensity of the nth object
and l is the mean of the objects’ intensities. Note that overlaps in-
cur a penalty since the data and length terms for both objects as-
signed at x contribute to the energy. The last term in this energy
functional penalizes unassigned or ‘‘gap’’ pixels and is always zero
for both MP and MGDM since they never form gaps during their
evolutions. CLS, however, requires a ‘‘gap-filling’’ term (see [24]
for details) that prevents the trivial solution comprising only gaps
(and no objects). This last term therefore measures the impact of
gaps during the CLS evolution, though it is exactly zero or close to
zero upon convergence in most cases. We set the regularization
parameter for the delta and Heaviside functions to � = 1, as was
used in [15]. The relative weights of the data and smoothness terms
were set to a = 1, and b = 0.01.

We consider four images with N 2 {4,8,16,32} objects and
512 � 512 pixels (choosing N as a power of two simplifies the mul-
tiphase representation) comprising superpositions of circular
shapes (see Figs. 3 and 4). Each unique intensity in the input image
appears in a circle with a radius (r) inversely proportional to the
number of objects to be segmented. The initialization consists of
circles of fixed radii (4 pixels), whose labels cycle through the avail-
able labels. In both cases, circle centers are located at a distance
0.85r from one another. All circles in the initialization intersected
at least one image circle with the corresponding intensity. All algo-
rithms were given the same initialization and run until convergence
Fig. 3. Comparative experiments with four objects. The value in parenthesis indicates t
convergence.
or a maximum of 5000 iterations. Convergence is determined when
30 iterations pass without a change in the segmentation.

As shown in Table 1, all the methods converge correctly to the
solution with four objects. When the number of objects increases,
MP becomes quickly plagued by local minima in its optimization.
This is because more objects increases the likelihood that multiple
simultaneous sign changes are required in the multiphase repre-
sentation in order to correctly switch labels. As a result, for large
N, MP becomes trapped in a label configuration whose energy can-
not be decreased by sign changes of a single level set function (see
Fig. 4 for the case of 32 objects). The CLS method avoids this prob-
lem, maintaining high accuracy for even a large number of objects.
There are no overlaps or gaps in any segmentation results of CLS,
but gaps (shown in black) commonly appear over the course of
the evolution (Fig. 4). MGDM remains stable with increasing num-
bers of objects, and also converges faster to the stable solution.
This is evident by comparing the evolution of the energy function,
as shown in Fig. 5. The presence of gaps in CLS slows the apparent
decrease of energy, while the optimization scheme of MP prevents
it from reaching an energy as low as MGDM or CLS.

Computationally, the MP approach is as memory efficient as
MGDM for small problems, but has increasing storage require-
ments and slower convergence for larger problems (see Table 1
and Fig. 5). The poor convergence of MP with many objects is quite
surprising, but outlines how apparently small limitations in the
representation can lead to major problems with large numbers of
objects. The computational and memory demands of the CLS meth-
od increase rapidly with the number of objects, while MGDM’s
compact representation requires a constant amount of memory
and lowers the computation times. Of the three methods, only
MGDM maintains a high accuracy by avoiding local minima,
he iteration being shown. The rightmost column shows each algorithm’s result at



Fig. 4. Comparative experiments with 32 objects. The value in parenthesis indicates the iteration being shown. The rightmost column shows each algorithm’s result at
convergence.

Table 1
Performance comparison for the three approaches on images with increasing
numbers of objects. A full iteration is comprised of six iterations of level set
evolution followed by re-initialization to ensure the stability of all methods. The first
of these 30 iterations is reported as the iteration count for convergence. ‘‘DNC’’
indicates that the algorithm did not converge by the 5000th iteration. The
misclassification rate counts gaps and overlaps as misclassified, and is computed
after convergence.

Objects MP CLS MGDM

Convergence (full iterations)
4 223 105 33
8 144 762 87

16 DNC 459 142
32 DNC 457 186

Memory usage (average, MB)
4 19 21 11
8 22 29 11

16 23 46 11
32 26 78 11

Computation time (average per iteration, ms)
4 54 236 51⁄

8 81 593 32
16 183 1143 34
32 596 2840 35

Misclassification rate (%)
4 0.17 7.63E�4 1.91E�3
8 0.93 7.63E�4 4.20E�3

16 4.58 3.05E�3 4.65E�2
32 14.3 8.01E�3 2.06E�2
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prevents object gaps or overlaps, and remains efficient indepen-
dently of the number of objects.

It is interesting to note that the computation time for MGDM
iterations for four objects (marked by � in Table 1) is larger than
that for larger numbers of objects. Also, the computation time for
the MP method for eight objects is less than twice the time re-
quired for four objects. These behaviors are due to the narrow band
implementation: the narrow band comprises a large number of
pixels at early iterations due to the nature of the initialization,
while it has fewer pixels at later iterations as the algorithm ap-
proaches convergence. The case with four objects converged after
a small number of iterations, but the average time per iteration
is high because most of those iterations operated on a large narrow
band. In the case with many objects, the narrow band size de-
creases about as rapidly, but more iterations are performed before
convergence with a small narrow band, decreasing the average
iteration time.
4.2. Demonstration of boundary-specific speeds

We next demonstrate MGDM’s ability to apply speeds on object
boundaries rather than on the objects themselves. A ‘‘toy’’ image
shows the benefits of designing speeds for boundaries rather than
objects (see Fig. 6). The central (red) object here shares two bound-
aries with non-background objects. One of these boundaries has
high curvature while one has low curvature. We would like to re-
cover the locations of these boundaries after they are corrupted by
‘‘boundary noise’’ (described in [55]). If curvature terms are applied
uniformly on the central object, either the low curvature boundary
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Fig. 5. Evolution of the global energy function E for different numbers of objects.

Fig. 6. A simple example demonstrating the benefits of applying different speeds on different boundaries. In this case, an intensity weight of 0.7 was applied in all cases.
Curvature terms with weights of 0.1 and 1.0 were applied to all objects in the ‘‘Small curvature’’ and ‘‘Large curvature’’ cases. In the variable curvature experiment, a curvature
weight of 0.1 was applied to the red–blue boundary, while all other boundaries had a curvature weight of 1.0. This allowed the high spatial frequencies of the true object to be
captured on one boundary, while simultaneously and correctly smoothing noise on another. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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will be needlessly noisy (for uniform low weight curvature term),
or the high-curvature boundary will be overly smoothed (for uni-
form high weight for the curvature term). When the curvature
weights are allowed to vary, however, the influence of regulariza-
tion and image terms can be balanced appropriately.
Fig. 7 shows a synthesized example in which a cartoon version
of North America’s geography is corrupted with ‘‘boundary noise’’.
The three countries and two oceans are able to be segmented based
on their intensity contrast. The eastern and western United States,
have the same image intensity, but can be separated by the narrow,



Fig. 7. A synthesized example showing the usage of different types of speeds (intensity and advection field). The x and y components of the GVF field are rendered in red and
green, respectively. The eastern and western US are delineated by the GVF field despite having the same image intensity. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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high-intensity Mississippi river. An appropriate speed was de-
signed by computing the gradient vector flow (GVF) [49] of the
intensity image with a k parameter of 0.2 and a maximum of 200
iterations. Most boundaries were regularized with moderate cur-
vature terms, except along the eastern coast of Canada, where
the St. Lawrence river and the Great Lakes define a more complex
boundary. As we see in this simple example, the need for bound-
ary-specific speeds arise quite naturally in many applications.

5. Application to cerebellum segmentation

We also explored applying MGDM in the segmentation and par-
cellation of the cerebellum from structural MRI. A magnetization
Fig. 8. Example of cerebellum segmentation results using MGDM. The top row shows 2D
annotated with tissue types (green) and boundary speed types (red). The GM–GM speed
The middle and bottom rows show 3D renderings of the initial labels and final segmentat
the white matter (rendered in blue) would be visible. (For interpretation of the references
prepared rapid gradient echo (MP-RAGE) image was acquired
using a 3.0T MR scanner (Intera, Phillips Medical Systems,
Netherlands) with the following parameters: 132 slices, axial ori-
entation, 1.1 mm slice thickness, 8� flip angle, TE = 3.9 ms,
TR = 8.43 ms, FOV = 21.2 � 21.2 cm, matrix 256 � 256 (voxel reso-
lution 0.828125 mm � 0.828125 mm � 1.1 mm). The cerebellum
has a central white matter (WM) structure called the corpus
medullare from which white matter branches sprout. These
branches are covered in a sheet of gray matter (GM) and together,
form the cerebellar lobes and lobules. A good delineation of the
corpus medullare (WM) should be smooth and not contain
branches of white matter, which suggests that a strong curvature
term is required. The cerebellar gray matter surface, on the other
slices of the source image, initial labels, and final segmentation. The initial labels are
s (A), the WM–GM speeds (B), and the (GM–CSF) speeds are summarized in Table 2.
ion, respectively. The gray matter labels were removed in the cutaway figure so that
to color in this figure legend, the reader is referred to the web version of this article.)



Table 2
Summary of the speeds applied to different boundaries of the cerebellum parcellation
experiment. The first column gives the boundary labels shown in Fig. 8.

Interface Curvature speed weight Region speed
weight

GVF
weight

A WM–
GM

0.05 0.5 0.0

B GM–CSF 0.5 0.5 0.0
C GM–GM 0.2 0.0 0.5
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hand, is highly convoluted and suggests that a curvature should
play a minor role at the boundary of gray matter and cerebral
spinal fluid (CSF). Furthermore, while image intensity can separate
cerebellar gray matter, white matter and CSF, the lobes themselves
have similar intensities and are separated by thin lines of lower
intensity (the fissures). We found that voxels x for which the image
Laplacian r2I(x) < 0 tended to belong to these fissures. This is be-
cause small fissures manifest as local intensity drops, and are
therefore highlighted where the divergence of the gradient (La-
place operator) is negative. The GVF field of this thresholded image
was found and used as an advection force in order to move the lobe
boundaries into their correct positions.

Fig. 8 shows an example of a cerebellum parcellation using
MGDM. We observe the effective delineation of the tissue classes
based on intensity (membership functions). Note the simultaneous
smoothness of the GM–WM boundary and roughness of the GM–
CSF boundary. The lobe boundaries are also well aligned with the
fissures under the guidance of GVF. The different boundary speeds
are indicated with red letters on the initial labels in Fig. 8. These
correspond to rows in Table 2, which summarizes speed types
and their contributions to different tissue interfaces. In particular,
the curvature weights and usage of region and GVF forces is differ-
ent for different boundaries.
6. Discussion

The MGDM decomposition and evolution combine the implicit
coupling present in [24] with a compact representation. In
(a)
Fig. 9. Illustrations of the decomposition’s limitations assuming a two function approxim
three different objects (including the current object) at a point, when two distance funct
two other object (blue and pink) are nearby, the true boundary locations (black lines) to
when a third (green) or fourth (orange) object is nearby but further than the first two obje
second neighbor and incurs errors, the magnitudes of which are indicated by the red arrow
(b), the 1D plot of the reconstructed level set function for object O1 (along the dotted
boundaries than from other object’s boundaries. (For interpretation of the references to
particular, objects compete for image pixels according to the rela-
tive strengths of their expansion speeds. Furthermore, MGDM does
not require a ‘‘gap-filling’’ term, since it evolves object boundaries
(the object on the other side of any boundary immediately replaces
the former object). This is possible because the novel level set
decomposition stores a point’s nearest neighboring objects. A rela-
tively small number of functions must be stored and correct com-
putations are still achieved using approximate signed distance
functions when far from an object’s boundary.

The approximation that is implicit in MGDM’s decomposition
gives rise to potential limitations. The functions /̂iðxÞ (see Eqs.
(6) and (7)) are equal to the signed distance functions in the vicin-
ity of the boundaries provided that the objects are not too thin and
no more than three objects meet at a boundary point in 2D (and no
more than four objects meet at a boundary point in 3D). Thin ob-
jects can be problematic when the evolution moves boundaries
through them, and multiple objects meeting at boundaries present
a slowly increasing error (see Fig. 9). In these cases, the difference
between /i and /̂iðxÞ decreases to zero near any boundary, and is
nearly zero in a narrow band around the zero level sets. For this
reason, the proposed decomposition yields results exactly equiva-
lent to N level set evolution in nearly all object configurations, but
with substantial computational savings since the number of func-
tions is independent of the number of objects. The error is nearly
zero even in ‘‘undesirable’’ configurations, and can be reduced (at
the expense of efficiency) by increasing the number of label and
distance functions that are computed and stored.

The choice to enforce a strict ordering of labels when two labels
are equidistant from a point (see Definition 3.1) rarely affects the
evolution or final segmentation. First, the choice of the number
of MGDM distance functions to store is made so that the object
signed distance functions at triple points are exactly recoverable.
This state of affairs is the most common situation in which this is-
sue arises. This forced ordering could potentially affect results
when one of the two equidistant labels is not stored due to the
truncated decomposition (i.e., if the third and fourth neighbors
are equidistant, and only the first three neighbors are stored, then
the fourth neighbor will be discarded). This is unlikely to affect
segmentation results very much for two reasons. First, the distance
and label functions are recomputed at reinitialization, and the true
(b)
ation in 2D. In (a) the MGDM decomposition can perfectly represent the distances to
ions are used. The white object is the current label at the centerpoint. When one or

those objects can be represented perfectly with two distance functions. However,
cts, MGDM approximates their distances (gray dotted lines) with the distance to the
s. The errors can be eliminated by storing additional levels of the decomposition. In
line), shows how approximations appear when we are further from the object’s

color in this figure legend, the reader is referred to the web version of this article.)
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neighbors will be stored (given evolution of the boundaries). Sec-
ond, very distant neighbors do not often rapidly promoted to be-
come the current label.

Our method is memory efficient, because the number of images
that must be stored is independent of the number of objects, N.
Note that the improved ‘‘multilayer’’ method with multiple level
set embedding of [32] also uses two level set functions in 2D. For
the evolution, we still have to compute the speeds for all objects
in theory, making the overall complexity similar to the classical ap-
proaches (it is a requirement for the other methods as well). How-
ever, we can often remove unlikely objects at a given point x from
the set of candidates in many practical applications. For instance, if
the segmentation method were to use a statistical atlas, objects
with low prior probability could be ignored. The algorithm variant
with topology control can also make use of neighborhood informa-
tion to reduce the set of candidates. The computational complexity
for the level set evolution, on the other hand, is reduced relative to
other methods as only two or three functions need to be updated,
independently of the number of objects.

Topology preservation is an excellent method for constraining a
segmentation when an a priori known topology can be asserted
and a good initialization can be obtained. On the other hand, when
the initialization is far from the true segmentation, the topology
constraint can hinder a desirable evolution. Artifacts may also ap-
pear when topology is preserved as the constraint can restrict ob-
jects in taking on ‘‘strange’’ shapes. This is because topology
constraints prevent object splitting or merging at erroneous
boundaries while allowing unusual geometric deformations to ap-
pear in order to correct the errors.

MGDM is well-suited to many new and challenging segmenta-
tion problems since it accurately and efficiently can represent
many objects. We demonstrated here its applicability in parcellat-
ing the cerebellum into seven sub-regions, and will explore a finer
(34 object) parcellation in the future. We are currently applying
MGDM to other problems such as cell segmentation and tracking,
retinal layer segmentation from optical coherence tomography
(OCT) images, and ultra-high resolution whole brain segmentation.
We foresee MGDM providing a distinctive benefit in cell tracking/
segmentation applications, where hundreds or thousands of cells
need to be segmented and tracked. Employing topology priors
would prevent cells that touch from merging labels, while simulta-
neously allowing cells that split to be tracked separately. This
could be accomplished by allowing one type of topology change
(a split) while preventing another (a merge), for instance, by fol-
lowing the approach of [13] with opposite rules.

7. Conclusion

In this paper, we introduced a multiple object level set repre-
sentation, which guarantees no overlaps or gaps, can optionally
preserve the topology of all objects and groups of objects, and
may apply any existing type of speed in the level set literature with
different weights on different parts of one object. The computa-
tional complexity in narrow band evolution and fast marching
re-initialization schemes is reduced and largely independent of
the number of objects to segment. Experiments on the fundamen-
tal problem of piecewise-constant image segmentation demon-
strate the numerical stability and accuracy of the method for
large numbers of objects. A challenging application to cerebellar
parcellation in MRI illustrates how to exploit the various advanta-
ges of the representation.
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